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A B S T R A C T   

The objective of this research was to evaluate the application of an electronic nose and chemometric analysis to 
discriminate volatile organic compounds between patients with COVID-19, post-COVID syndrome and controls in 
exhaled breath samples. A cross-sectional study was performed on 102 exhaled breath samples, 42 with COVID- 
19, 30 with the post-COVID syndrome and 30 control subjects. Breath-print analysis was performed by the 
Cyranose 320 electronic nose with 32 sensors. Group data were evaluated by Principal Component Analysis 
(PCA), Canonical Discriminant Analysis (CDA), and Support Vector Machine (SVM), and the test’s diagnostic 
power was evaluated through a Receiver Operaring Characteristic curve(ROC curve). The results of the che
mometric analysis indicate in the PCA a 97.6% (PC1 = 95.9%, PC2 = 1.0%, PC3 = 0.7%) of explanation of the 
variability between the groups by means of 3 PCs, the CDA presents a 100% of correct classification of the study 
groups, SVM a 99.4% of correct classification, finally the PLS-DA indicates an observable separation between the 
groups and the 12 sensors that were related. The sensitivity, specificity of post-COVID vs. controls value reached 
97.6% (87.4%–99.9%) and 100% (88.4%–100%) respectively, according to the ROC curve. As a perspective, we 
consider that this technology, due to its simplicity, low cost and portability, can support strategies for the 
identification and follow-up of post-COVID patients. The proposed classification model provides the basis for 
evaluating post-COVID patients; therefore, further studies are required to enable the implementation of this 
technology to support clinical management and mitigation of effects.   

1. Introduction 

The terms ‘long COVID’ or ‘post-COVID-19 syndrome’ refer to the 
implications and consequences of clinical manifestations reported in 
patients who have recovered from COVID-19. The most frequently 
occurring symptoms are shortness of breath, myalgia, headache and 
anxiety reported in 64–80% of patients in an interval ranging from 4 to 
24 weeks after the onset of COVID-19 [1]. Although this disease has 
been shown to be multisystemic, there is substantial concern about the 

sequelae on the nervous, cardiac and respiratory systems [2]. 
The level of respiratory damage is closely related to the severity of 

SARS-CoV-2 infection, the virus can damage the lung by three main 
pathways: i) acute respiratory distress syndrome (ARDS) with diffuse 
alveolar damage, ii) diffuse thrombotic alveolar microvascular occlusion 
and iii) airway inflammation associated with inflammatory mediators. 
The results of these mechanisms include altered alveolar oxygenation, 
hypoxemia and acidosis resulting in patient death or sequelae of 
recovered patient lung injury mainly in the form of organizing 
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pneumonia, diffuse alveolar damage and pulmonary fibrosis [3]. 
Following SARS-CoV-2 infection, similar to the reported effects of 

SARS-CoV-1 infection intra-alveolar thrombosis formation and inflam
matory airway damage contribute to the development of pulmonary 
fibrosis. SARS-CoV-1 may induce this effect by promoting the upregu
lation of profibrotic signaling molecules, including transforming growth 
factor-beta (TGF-β) induced by the virus nucleocapsid [4]. Considering 
that the similarity of the nucleocapsid protein between SARS-CoV-2 and 
SARS-CoV-1 is up to 90% [5], it has been speculated that they have a 
similar molecular mechanism. 

Thus, it is important to assess the post-COVID effects related to the 
gradual loss of lung function due to pulmonary interstitial fibrosis as it 
has negative effects on the life quality of people, who were initially 
thought to have recovered from COVID-19. Disturbingly, recent data 
indicate that one-third of people who have been infected with the SARS- 
CoV-2 virus may develop pulmonary fibrosis [6]. 

In the meantime, monitoring of recovered patients by a pneumolo
gist or internist is advised when any clinical suspicion of residual lung 
damage is present, this should be assessed by pulmonary function and/ 
or imaging tests. In terms of imaging, chest radiography is the 
acknowledged initial step. However, in patients with residual radio
graphic or functional damage, high-resolution chest computed tomog
raphy (CT) is indicated not only for further characterization of the 
anatomical regions of the lung parenchyma, but also to establish a 
baseline for follow-up and as the current method for the diagnosis of 
pulmonary fibrosis by classifying it by its anatomical pattern [4]. 

Some clinical management guidelines for post-COVID assessment 
have recently emerged with research findings on disease progression, e. 
g., the UK’s National Institute for Health and Care Excellence recom
mends a chest X-ray for patients recovered after the 12th week and 
continuing respiratory symptoms [7]. The World Health Organization 
(WHO) developed a quick guide for the use of chest CT indicated for the 
evaluation of sequelae of COVID-19, particularly if the thrombotic or 
multisystemic disease is suspected. Although these images are key to the 
diagnosis, they do not reveal functionality, only anatomy. Therefore, 
adding respiratory function tests in these cases is indispensable, since 
one item is “how it looks”, and another one is “how it works” [8]. 

The WHO also states an important recommendation, especially for 
public policies in low- and middle-income countries where limited 
equipment is available for these patients, provisions should be consid
ered to facilitate the transfer of these people to referral hospitals for 
these studies [8]. However, in addition to the limited availability of 
technology, it does not consider local scenarios such as particularly 
marginalized areas that are at great distances from these technologies 
and specialists who identify early the sequelae of COVID-19. For 
example, in Mexico according to the Breviary of Health Statistics of 2018 
there were only 389 CT scanners. In addition, it is indicated that the 
equipment is mainly concentrated in hospitals in large urban centers. 
This social inequality violates the human right to health, particularly for 
those people who are unable to travel to hospitals or do not receive the 
necessary medical care [9]. Currently, efforts to control COVID-19 dis
ease have focused on counting infected and “recovered” cases based on 
their infection capacity, transmission control, clinical severity, phar
macological treatment, vaccination schemes and social isolation. 
Although these measures are important, protocols for the care of 
post-COVID patients’ sequelae are still in constant development. Moni
toring of patients with this condition requires various tools to evaluate 
its progression, for example, in the NICE guideline on long COVID the 
application of several tests is recommended before and during pulmo
nary rehabilitation including a complete blood count, renal and liver 
function tests, a C-reactive protein test and an exercise tolerance test 
[10]. In this guide, it is also recommended that a chest X-ray be offered 
to all patients by 12 weeks after acute infection if they present ongoing 
respiratory symptoms. Key areas of research on post-COVID syndrome 
include risk factors for developing the syndrome (including its preva
lence in different populations), clinically effective interventions, 

population screening, and the natural history of the disease. 
The aforementioned techniques represent high costs for the patient 

and/or healthcare system and require highly qualified personnel for 
their execution and subsequent analysis of results, which is reflected in 
long periods to issue a reliable result. In this context, the development of 
advanced analytical platforms for monitoring patients with symptoms 
after the disease is of utmost importance in the present scenario. 
Providing simple, sensitive and specific tools to health personnel is vital 
for monitoring and treatment of the sequelae generated by COVID-19. 

In this regard, our research group has demonstrated the application 
of exhalatory metabolomics during several studies as a viable screening 
method for chronic diseases such as chronic obstructive pulmonary 
disease, lung cancer, breast cancer, diabetes, preeclampsia, and others 
[11–16]. Human exhaled breath is a complex composition of gases in 
which over 3000 compounds have been identified including small 
inorganic compounds such as NO, O2, CO2, volatile organic compounds 
(VOCs) and non-volatile organic compounds (NVCs) [17]. These mix
tures of organic compounds are a product of cellular metabolism and 
exhibit low solubility in the blood. Hence, they are readily excreted 
during respiration and can be determined by appropriate analytical 
techniques. 

These chemical patterns - also called the ‘volatolome’ - are the result 
of normal physiological health conditions and specific pathophysiolog
ical conditions allowing its analysis to provide a low cost, rapid and non- 
invasive screening window into the physiological condition of a patient. 
In a recent study by our research group a global chemical pattern of 
VOCs in exhaled breath was identified capable of discriminating be
tween patients with COVID-19 and controls using electrochemical 
nanosensors. According to our automated learning model, the method
ology presented a sensitivity of 100% and a specificity of 97.6% in 
addition to identifying asymptomatic subjects [18]. This represents a 
practical screening approach that may rapidly identify suspected pa
tients and provide useful epidemiological information to guide com
munity health strategies in the context of COVID-19. 

An outstanding feature of this methodology is that it has been 
demonstrated in several studies to assess lung damage associated with 
various pathologies such as COPD and lung cancer [13–15]. Thus, the 
present study aimed at evaluating the use of olfactory technology 
comprising functionalized nanosensors in an electronic nose approach 
augmented by chemometric analysis to discriminate volatile organic 
compound patterns characteristic for patients with COVID-19, post-
COVID syndrome, and healthy controls. 

2. Material and methods 

2.1. Study design 

The study was approved by the state health research ethics com
mittee of San Luis Potosí, Mexico, with registration number SLP/ 
08–2020, in compliance with national regulations for the execution of 
health research projects in humans. 

The study design was cross-sectional and observational. Three study 
groups were included: i) COVID-19 positive patients; ii) post-COVID 
patients and iii) a healthy control group (negative to SARS-CoV-2 and 
without previous infection nor post-COVID syndrome). Data from 
COVID-19 positive patients were extracted from previous studies of our 
research group [18]. Inclusion criteria for the group of COVID-19 pos
itive patients were: i) 18–70 years old, both sexes; ii) symptomatic 
(patients presenting, headache, sore throat, body aches, general 
discomfort, loss of taste and smell, among other typical COVID-19 
symptoms), and asymptomatic (with positive SARS-CoV-2 RTq-PCR 
test); iii) Ct of the SARS-CoV-2 specific gene in RT-qPCR below 38 to be 
considered positive. The non-inclusion criteria were: i) pregnant pa
tients; ii) patients with confirmed pulmonary infection other than 
COVID-19 (influenza, tuberculosis or other infectious diseases). Criteria 
for elimination included: i) subjects who withdrew informed consent 
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and, ii) subjects who in the course of sampling acquired an infectious 
pathology. 

For the post-COVID group, the inclusion criteria were the following, 
i) adult patients between 18 and 70 years of age, both sexes; ii) attending 
health care centers; iii) clinical history based on the Case Report Form 
(CRF) for Post COVID proposed by the World Health Organization [19]; 
iv) with the presence of persistent symptoms of COVID-19 after 4 weeks 
of disease onsetand, v) with negative RTq-PCR test for SARS-CoV-2 at 
the time of recruitment and evaluation. 

The study elimination criteria for this group were: i) patients with 
suspected or confirmed diagnosis of previous pulmonary disease; ii) 
patients with signs and/or symptoms of infectious disease; iv) patients 
who did not present a negative confirmatory RTq-PCR test for SARS- 
CoV-2; iii) impossibility of collecting the exhaled breath sample; vi) 
impossibility of performing the pulmonary function test and, vii) sub
jects who withdrew informed consent. 

For the control group (SARS-CoV-2 negative subjects), the inclusion 
criteria were: i) 18–70 years of age; ii) both sexes; iii) absence of res
piratory diseases; iv) negative test for SARS-CoV-2 by RT-qPCR and, v) 
subjects having at least 7 days without apparent COVID-19 symptoms. 

2.2. Respiratory function assessment to patients with the post-COVID 
syndrome 

Assessment of respiratory function was performed only in the post- 
COVID group. Spirometry tests (pre-and post-bronchodilator) were 
performed on participants who met the inclusion criteria, following the 
guidelines of the American ATS/ERS standards employing an EasyOne® 
Plus Diagnostic portable spirometer, and normal values predicted were 
those established for the Mexican-American population in the NHANES 
III study [20]. 

2.3. Exhaled breath sampling 

Breath sampling was based on previous studies of our research 
group. The participants were required to follow specific indications: i) 
under 8 h minimum fasting conditions; ii) no alcohol consumption 24 h 
prior to the study; iii) no smoking at least 8 h before the study and, iv) 
without oral hygiene. For exhaled breath sample collection, the partic
ipants were requested to be seated and relaxed. The sample collection 
consisted of three deep inhalations and afterwards exhalation into a 1.4- 
L metallized plastic bag previously purged with ultra-pure nitrogen. 
Subsequently, the bag was hermetically sealed for its transportation to 
the laboratory facilities. Every sample was obtained in duplicate, 
transported at 4 ◦C and analyzed on the same day [21]. 

2.4. Exhaled breath fingerprint assessment via electronic nose based on 
chemoresistive gas sensors 

The Cyranose 320 (Sensigent®, California, USA) electronic nose was 
used to collect the exhaled breath fingerprint of the three study groups. 
This system incorporated 32 chemoresistive gas sensors for VOC 
detection. Once these sensors have contact with VOCs, polymers coated 
onto the individual sensor elements adsorb the vapor. During this pro
cess, the distances between conductive particles within the polymer 
material increase, and thus, an increase in resistance of the composite 
material is observed. This resistance change is evaluated as a pattern of 
changes for all sensors within the array, and is then used to identify the 
VOC fingerprint of the exhaled breath sample. 

For sample processing, each sample was incubated at 37 ◦C for 5 min 
before analysis. The electronic nose was operated at a constant flow rate 
of 120 mL/min for 40 s of baseline recording with ultra-pure nitrogen, 
and then for a sample recording period of 90 s. Subsequently, the flow 
rate was increased to 180 mL/min of ultra-pure nitrogen for sample line 
purging and air inlet cleaning while the sensor substrate temperature 
was maintained at 32 ◦C through the analysis cycle. For internal quality 

control, the resistance of the 32 sensors was registered each day before 
and after measurements. 

2.5. Chemometric data analysis 

All data were normalized by using the following fractional difference 
model: ΔR/R0 = (Rmax-R0)/R0, where R is the response of the system to 
the sample gas, and R0 is the baseline recording, the reference gas being 
the ultra-pure nitrogen flow. 

A self-scaling routine was performed to eliminate the effects of the 
magnitude of each sensor respons by subtracting the average of the 
samples from the individual response of each sample and dividing by the 
standard deviation of the samples. 

To capture the maximum variability within the data, Principal 
Component Analysis (PCA) was performed. PCA is a multivariate data 
analysis technique that is used to reduce the dimensionality of the data 
while preserving its structure. PCA executes a singular value decompo
sition based on eigenvalues and eigenvectors to define a reduced data 
subspace utilizing a correlation matrix to enhance the influence of 
spectral features. Thereby, PCA can be used to study the contribution of 
each sensor to the separation of the studied patient groups [22]. Ca
nonical Discriminant Analysis (CDA) was used to assess clustering 
within the data sets of all groups and to assign a new sample to a class 
considering the class that presents the shortest Mahalanobis distance 
between the centroid and the canonical space of the sample. For this 
purpose, cross-validation by the ‘leave-one-out-procedure’ was per
formed to predict the group belonging and to obtain overall classifica
tion success rates. The Mahalanobis distance between the group means 
is given in units of standard deviation. 

Alternatively, a Support Vector Machine (SVM) algorithm was 
employed in the same way to evaluate clustering within the data sets of 
all studied patient groups. SVMs are kernel-based (i.e., radial Gaussian) 
supervised learning classification methods that determine the optimal 
boundaries (i.e., support vectors) that precisely separate groups [13]. 
SVMs construct a hyperplane or a set of hyperplanes in a high- or 
infinite-dimensional space, which can be used for classification. SVMs 
consider a set of input data and predict for each given input which of the 
possible classes constitutes the output. This procedure yields a 
non-probabilistic binary linear classifier. To cope with a large number of 
input data and the dimensionality of the data space, an optimal hyper
plane is defined as the linear decision function with the maximum 
margin between the vectors of the classes. To construct optimal hyper
planes, support vectors reflecting the number of data are created, the 
support vectors then determine the optimal margins [21,22]. Chemo
metric analyses were performed by using the CDAnalysis (Sensigent®) 
statistical software package. 

Following, Canonical Analysis of Principal Coordinates (CAP) was 
used to order the matrices and, to determine the level of misclassifica
tion between sampling regions, the leave-one-out method was applied to 
the variables in the canonical space (using a K-fold of n = 103) to predict 
the group associations and thereby obtain the overall classification 
success rates, using a value of m = 21. An external validation of the 
model was performed, randomly selecting 30% of the samples. This 
analysis was performed by the statistical software PRIMER v7 with 
PERMANOVA add-in. 

Only the CAP1 axis was evaluated using the Receiver Operating 
Characteristic curve (ROC curve) because it represented 100% of the 
data. With a 95% confidence interval (CI) and the threshold value or cut- 
off point was selected with the highest specificity/sensitivity ratio [23]. 

Additionally, a Partial Least Squares - Discriminant Analysis (PLS- 
DA) and a Variable Importance in Projection (VIP) (Metaboanalyst.ca ® 
online free statistical software) were executed to identify differential 
sensors among groups and to rank the sensor response according to their 
importance in discriminating patient groups. Also, PLS-DA was used to 
differentiate the groups. PLS-DA is a supervised statistical method that 
uses multivariate regression techniques to extract information for 
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predicting class belonging via a linear combination of independent 
variables. 

3. Results 

A total of 102 breath samples were collected; 42 from patients with 
COVID-19, 30 with the post-COVID syndrome and 30 from control 
subjects. The characteristics of the patients are described in Table 1. For 
the control group, 23 women and 7 men participated with an average 
age of 42.4 ± 10.8 years and an average body mass index of 25.8 ± 3.9 
kg/m2. For the COVID-19 group, 14 women and 28 men participated 
with an average age of 38 ± 14 years, symptom onset ranged from 4 to 8 
days, with 100% of participants presenting anosmia, fever, arthralgia, 
and myalgia, and 19 patients reported being active smokers. Post-COVID 
patients presented an average of 129 days in a range of 45–250 days, 17 
women and 13 men participated with an average age of 54.8 ± 12.8 
years and a body mass index of 28.5 ± 6.3 kg/m2. 

The most common symptoms reported by post-COVID group and 
during the acute phase of COVID-19 were anosmia, low oxygenation, 
arthralgia and myalgia. The average oxygenation was 80%, similar to 
the reported by patients in the COVID-19 group in acute phase. 

According to the spirometric values, 21 patients presented a 
restrictive pattern and 60% required supplemental oxygen in a range of 
use from 0 to 240 days. The average oxygen saturation during the acute 
stage of the disease, measured by pulse oximetry, was 81%, 13% of the 
patients received hospital care due to COVID-19, likewise, 60% of the 
patients reported the use of supplemental oxygen required with average 
use of 53.7 days (Table 1). Seventy percent of the patients with post- 
COVID syndrome reported fatigue as the main persistent symptom, 
followed by 60% with dyspnea and 36% with cough. The male sex re
ported 30% greater persistence of symptoms than women (Supplemen
tary Figure 1). 

As the main risk factors for serious disease identified in post-COVID 
syndrome patients, smoking was reported by 40% of the population and 
hypertension was present in 26%. Moreover, the functional evaluation 
showed that 46.6% did not have functional limitations (Grade 0), 10% 
minimal functional limitations (Grade 1), 6.6% light functional limita
tions (Grade 2), 26.6% moderate functional limitations (Grade 3) and 
6.6% severe functional limitations (Grade 4). 

The lung function assessment in the post-COVID group revealed 30% 
of patients with normal criteria, 63.3% with pulmonary restriction 
criteria, and 6.6% with bronchial obstruction criteria without significant 
response to fast-acting β2 bronchodilator, the mean difference in the 

results of the pulmonary function was analyzed according to sex, where 
the FVC was significantly lower (p 0.02) in men vs. women (Supple
mentary material Table 1). 

Regarding the chemometric analysis, Fig. 1 shows PCA results be
tween the COVID-19 group, control group and the post-COVID group. 
The analysis achieves an explanation of 97.6% of the variability between 
the groups by 3 PCs (PC1 = 95.9%, PC2 = 1.9%, PC3 = 0.7%). In this 
graph, a separation between VOC patterns in the exhaled breath of the 
three groups is clearly observed. 

In Fig. 2, the CDA model is presented, whereby the discrimination 
between the three study groups is achieved using only two PC axes with 
a correct classification of 100%. It is immediately evident that via the 
PC1 axis the separation between the control group concerning the pa
tients with COVID-19 and post-COVID-19 is achieved, which represents 
70.11% of the variability within the data. Likewise, it was found that 
through the PC2 axis provides a separation between patients with 
COVID-19 and post-COVID representing 29.89% of the variability 
within the data. In addition, in the SVM model (Fig. 3) the discrimina
tion between the 3 groups at 99.4% is shown indicating that there is 
indeed a significant difference between the global VOC fingerprints of 
the groups. 

The CAP of post-COVID and controls showed a separation between 
the chemical fingerprints of each group through two canonical axes 
CAP1 (r2 = 0.9661) and CAP 2 (r2 = 0.8669), with a 100% of correct 
total classification (Fig. 4). Also, the values of the external validation of 
the CAP model obtained a percentage of correct prediction of 100%. 

Fig. 5a shows the PLS-DA plot for the three groups. The graph in
dicates the group each sample belongs to and the discrimination be
tween the three evaluated patient groups. A separation between the 
post-COVID group, COVID-19 and the control group is clearly 
observed. The variable importance in projection (Fig. 5b) indicates that 
for the post-COVID group the sensors S20, S5, S6, S26, S28, S11, S18, 
S12, S29, S23, S31 and S25 contribute more significantly to the sepa
ration of the groups, while for the COVID-19 group the sensors S30, S7 
and S9 present the dominating contribution to the separation of the 
group. 

Furthermore, with the values generated in the CAP 1 score, the cut- 
off point of − 0.015 was established for COVID-19 vs controls, which 
provided 96.7% sensitivity (confidence intervals at 95%: 83.3–99.9%) 
and 100% specificity (confidence intervals at 95%: 88.4–100%) 
(Fig. 6a). The cut-off point of − 0.012 was established for COVID-19 vs 
controls, which provided 97.6% sensitivity (confidence intervals at 95%: 
87.4–99.9%) and 100% specificity (confidence intervals at 95%: 
88.4–100%) (Fig. 6b). 

4. Discussion 

The present study demonstrates the potential of using electronic nose 
systems augmented by automated learning techniques for the discrimi
nation of post-COVID patients. The main contribution of this work is the 
determination and differentiation of characteristic global VOC finger
print patterns from the exhaled breath of COVID-19 patients, post- 
COVID patients and healthy controls. 

A systematic review that recruited 380 patients from 19 studies for 
the evaluation of pulmonary function in post-COVID patients through 
spirometry, reported a prevalence of 15% of patterns suggestive of re
striction and 7% with an obstructive pattern, reporting that between 6 
and 18% of the patients reported a history of smoking [24], even though 
the population of this study had greater socio-demographic homoge
neity as well as a larger sample size, the behavior of the variables of lung 
function and smoking was similar to the results obtained in our study, in 
contrast to the fact that in this sample those patients with any type of 
previous lung disease were excluded. 

On the other hand, a cohort of COVID-19 survivors, who were 
evaluated for functional capacity and lung function in 3 and 6 months 
after infection, showed a predominance and persistence over time of a 

Table 1 
Evaluated parameters in the study groups.  

Parameters Control COVID-19 Post-COVID 

N 30 42 30 
Female (N) 23 14 17 
Male (N) 7 28 13 
Age (Years) 42.4 ± 10.8 38 ± 14 54.8 ± 12.8 
BMI (kg/m2) 25.8 ± 3.9 26.7 ± 4.6 28.5 ± 6.3 
Dyspnoea (mMRC) N/A N/A 3 (0–4) 
Fatigue (VAS) N/A N/A 2 (0–8) 
Use of oxygen (days) N/A N/A 28 (0–240) 
Tobacco index 0 (0–2) N/A 0 (0–40) 
Functional grade N/A N/A 1 (0–4) 
Oximetry in COVID-19 (%) at sampling 95 ± 2 81 ± 14 94.5 ± 2.1 
Restrictive spirometric pattern (N) N/A N/A 21 
FVC (L) N/A N/A 77.2 ± 20.5 
FEV1 (L) N/A N/A 80.4 ± 21.3 
FEV1/FVC N/A N/A 105.2 ± 6.4 
PEF (L/s) N/A N/A 96.6 ± 17.5 
MEF- 25–75% (L) N/A N/A 94.4 ± 30.4 

BMI: Body Mass Index, mMRC: Modified Medical Research Council scale, VAS: 
Visual Analog Scale 0–10 points, Functional grade assessed by post functional 
status scale (B1), FVC: Forced Vital Capacity, FEV1: forced expiratory volume in 
1 s, PEF: peak expiratory flow; MEF: mid-expiratory flow N/A: not assessed. 
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Fig. 1. Principal Component Analysis (PCA) plot of the study groups. Yellow circle post-COVID group, green square COVID-19 group and blue rhombus control 
group. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Canonical Discriminant Analysis (CDA) of the study groups. Yellow circle post-COVID group, green square COVID-19 group and blue rhombus control group. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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pattern suggestive of pulmonary restriction in combination with a 
decreased pulmonary diffusion of carbon monoxide (DLco) [25]. 

The alteration of pulmonary gas diffusion has been widely reported 
as one of the main mechanisms that contribute to residual respiratory 
failure and hypoxia after infection by SARS-CoV-2 [26]. In this sense, an 
interesting variable in the post-COVID group is the prolonged use of 
oxygen after obtaining a negative result for SARS CoV-2, showing a 
positive relationship with age, a decrease in oxygen saturation as well as 
a higher fatigue score and dyspnoea. According to the above, a study on 
prolonged oxygen therapy after COVID-19 infection, reported age older 

than 50 years as one of the main risk factors for a poor result in hospital 
discharge in addition to the presence of 3 or more co-morbidities [27]. 
Another study found that being 70 years of age or older and having 
dyspnea symptoms was associated with a prolonged duration of need for 
supplemental oxygen therapy [28]. 

Likewise, persistent dyspnea as one of the main symptoms referred to 
in the post-COVID group, has been associated with a significant decrease 
in forced vital capacity, pulmonary gas exchange and oxygen saturation 
in a study carried out in 186 surviving patients of varying degrees of 
severity of COVID-19 [29]. On the other hand, fatigue as the most 
common post-COVID symptom in this study group, is reported in a 
similar way in other studies with an incidence that ranges between 
17.5% and 72% among hospitalized patients, extending in several oc
casions beyond seven months after disease onset [30]. 

Considering the persistence of symptoms in 70% and abnormalities 
in lung function in 63% at 4 months as the average time of evolution of 
the post-COVID group, a cohort study of clinical, functional and imaging 
evaluation 4 months after hospital discharge due to COVID-19, reported 
that 61% still had symptoms, 39% showed abnormalities in pulmonary 
gas diffusion, decreased oxygen saturation in a 6-min walk, as well as 
pulmonary restriction and 41% with radiological abnormalities [31]. 

Even though there is wide clinical and socio-demographic hetero
geneity in the various scientific reports, it is possible to appreciate a 
similar trend of symptoms and persistent factors reported in this study 
and the mentioned scientific references, which could be analyzed in 
subsequent scientific studies. 

Regarding our metabolomic results, clinical research collaborators of 
our research team on COVID-19 have identified transient and persistent 
systemic changes in molecular signatures in blood samples from patients 
three months after the acute phase of the disease. These biochemical 
abnormalities, which were identified by a label-free quantitative assay 
platform that integrated nuclear magnetic resonance (NMR) spectros
copy and mass spectrometry (MS) are related to ongoing symptoms of 

Fig. 3. Support Vector Machine Model (SVM). Yellow circle post-COVID group, green square COVID-19 group and blue rhombus control group. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Canonical Analysis of Principal Coordinates (CAP) of chemical prints of 
patients with COVID, post-COVID and controls. 
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post-COVID. Markers that change significantly during disease progres
sion and arise from cytokines, lipoprotein interactions, and markers of 
inflammation have been identified. The damage caused by SARS-CoV-2 
in different organs has been explained by the increase in oxidative stress 
caused by the cytokine storm and the hyper-reactivity of the immune 
system [32], this process has been proven to modify the overall cellular 
metabolism of the host [33]. Several investigations support the state
ment that this metabolic phenotype appears to be an effective tool for 
assessing systemic functional recovery of patients after COVID-19 
[34–37]. Holmes et al. reported the sequelae of metabolic changes in 
serum of 27 post-COVID patients within 3 months of evolution, they 
found that biomarkers related to liver damage, muscle, tissue regener
ation and immune functions (taurine and glutamine/glutamate) were 
present with significant differences with respect to controls and that 
some molecules such as apolipoprotein B100/A1 were similar, reflecting 
the reversion to the metabolic phenotype of healthy subjects [37]. 

In this context, Lamote et al. have proposed that changes in the 
profile of volatile compounds in the breath during the acute phase of 
COVID-19 can be used to assess the evolution of the disease [38]. 

VOCs are generally the end products of carbohydrate and lipid 
metabolism, as well as oxidative stress and cytochrome p450 liver en
zymes in human cells, they are also endogenous gaseous transmitters 
involved in the regulation of many biological processes [39]. VOCs 
signatures have already been used as descriptive patterns in the diag
nosis and monitoring of various pulmonary diseases such as COPD, lung 
cancer, cystic fibrosis, and other chronic and infectious lung diseases 
[13,14,40]. In this regard, several VOCs have been described in exhaled 
breath in the acute phase of COVID-19 disease, among which the pres
ence of several biomarkers has been described with the most 
outstanding ones being identified as 2,3-butandione, aldehyde, 2, 
8-dimethyl-undecane, n-propyl acetate [41]; ethanal, acetone, 2-buta
none, methanol, octanal, isoprene, heptanal, propanal, propane [42]; 
methylpent-2-enal, 2,4-octadiene 1-chloroheptane, nonanal [43]; buta
noate, butyraldehyde, isopropanol [44]; alcohol, acetone, carbon mon
oxide [45] and, octanal, nonanal, heptanal, decane, tridecane, and 
2-pentyl furan [46]. 

Regarding VOCs in exhaled breath of post-COVID patients, no reports 
were found in the literature at the time of the study; however, VOCs 

Fig. 5. Partial Least Squares - Discriminant Analysis (PLS-DA). 5a) Plot of component 1 vs component 2; 5 b) plot of variable importance in projection.  

Fig. 6. ROC curve for the screening of COVID-19 (6a) and post-COVID (6 b) when using the CAP1 axis. An AUC of 1.0 was obtained with a cut-off point of − 0.015 for 
COVID-19 vs controls and − 0.012 for post-COVID vs controls. 
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have been reported in conditions similar to post-COVID, for example, in 
a study by Ruskiewicz et al., they report that the identity of the marker 
compounds identified are consistent with a combination of extrap
ulmonary metabolic, and gastrointestinal manifestations of COVID- 19 
within the body as well as airway inflammatory responses [42]. Many of 
these metabolites have also been associated with lung damage caused by 
different etiologies like cystic fibrosis, COPD, asthma and lung cancer 
[40,47,48]. These studies indicate that VOC patterns may indeed be 
used in disease progression monitoring, this has been proven in liver 
diseases, diabetes, and asthma [49–51]. Thus, based on our results this 
technique could more ubiquitously be used to evaluate post-COVID 
patients and determine their progression vs. the chemical VOC finger
print phenotype of healthy controls. However, to test this hypothesis 
extended studies will be required to follow-up on patients and their 
progression. 

While our preliminary study lays a solid basis for extending the 
evaluation of electronic nose systems in this context, several limitations 
should be mentioned. Among the most important ones are the numbers 
of the studied populations, the lack of a group where people fully 
recovered from COVID-19 would be analyzed, the inability to perform 
tests to evaluate lung capacity in patients with ongoing SARS-CoV-2 
infection due to biosafety considerations, and the lack of identification 
of specific metabolites by methods such as mass spectrometry. The latter 
would help to improve the fundamental understanding of the metabolic 
processes that are altered in post-COVID. However, the test concept we 
present herein is perfectly capable of discriminating between patients 
with infection and patients with sequelae at a 100% correct classifica
tion rate, at a complete analysis time of 5 min, at very low cost compared 
to high-resolution tomography, and in a compact and portable system 
format that renders its application at the point-of-need (e.g., in reha
bilitation centers) on a massive scale entirely feasible. Hence, medical 
personnel even in less favored regions may be provided with a real-time 
assessment tool on patient progression. Last but not least, this will aid 
physicians and researchers to establish rapid mitigation strategies to 
face future pandemic scenarios and to develop preventive and thera
peutic strategies for similar hyperinflammatory conditions. 

5. Conclusion 

In the present study it was possible to identify global profiles of 
volatile organic compounds in patients with COVID-19, post-COVID 
syndrome and controls by using an electronic nose system augmented by 
chemometric data analysis. Hundred percent correct classification was 
achieved between the studied patient groups using supervised learning 
algorithms. 

As a perspective, we consider that this technology, due to its 
simplicity, low cost and portability, can support strategies for the 
identification and follow-up of post-COVID patients. The proposed 
classification model provides the basis for evaluating post-COVID pa
tients; therefore, further studies are required to enable the imple
mentation of this technology to support clinical management and 
mitigation of long-term effects. 
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Padilla, C.A. Domínguez-Reyes, J.A. Tenorio-Torres, O. Ornelas-Rebolledo, 
G. Mehta, B.N. Zamora-Mendoza, R. Flores-Ramírez, Application of chemoresistive 
gas sensors and chemometric analysis to differentiate the fingerprints of global 
volatile organic compounds from diseases. Preliminary results of COPD, lung 
cancer and breast cancer, Clin. Chim. Acta 518 (2021) 83–92. 

[15] M. Rodriguez-Aguilar, S. Ramirez-Garcia, C. Ilizaliturri-Hernandez, A. Gomez- 
Gomez, E. Van-Brussel, F. Diaz-Barriga, S. Medellin-Garibay, R. Flores-Ramirez, 
Ultrafast gas chromatography coupled to electronic nose to identify volatile 
biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: 
a pilot study, Biomed. Chromatogr. 33 (12) (2019), e4684. 

B.N. Zamora-Mendoza et al.                                                                                                                                                                                                                 

https://doi.org/10.1016/j.talanta.2021.122832
https://doi.org/10.1016/j.talanta.2021.122832
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref1
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref1
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref1
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref2
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref2
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref2
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref2
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref2
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref2
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref3
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref3
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref3
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref4
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref4
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref4
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref4
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref5
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref5
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref6
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref6
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref6
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref7
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref8
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref8
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref8
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref8
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref8
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref9
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref9
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref9
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref9
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref10
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref10
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref11
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref11
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref11
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref11
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref11
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref11
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref12
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref12
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref12
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref12
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref12
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref13
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref13
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref13
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref13
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref14
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref14
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref14
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref14
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref14
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref14
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref15
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref15
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref15
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref15
http://refhub.elsevier.com/S0039-9140(21)00753-0/sref15


Talanta 236 (2022) 122832

9
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