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In object-based image analysis of high-resolution images, the number of features can reach hundreds, so it is necessary to perform
feature reduction prior to classification. In this paper, a feature selection method based on the combination of a genetic algorithm
(GA) and tabu search (TS) is presented. The proposed GATS method aims to reduce the premature convergence of the GA by the
use of TS. A prematurity index is first defined to judge the convergence situation during the search. When premature convergence
does take place, an improved mutation operator is executed, in which TS is performed on individuals with higher fitness values.
As for the other individuals with lower fitness values, mutation with a higher probability is carried out. Experiments using the
proposed GATS feature selection method and three other methods, a standard GA, the multistart TS method, and ReliefF, were
conducted on WorldView-2 and QuickBird images. The experimental results showed that the proposed method outperforms the
other methods in terms of the final classification accuracy.

1. Introduction

With the development of satellite remote sensing technolo-
gies, more and more high spatial resolution images are now
becoming available. High spatial resolution images have been
widely and successfully utilized in land-cover classification
[1]. As smaller-scale ground objects can be identified and
more detailed information can be obtained from high-
resolution images, the traditional pixel-based image analysis
methods cannot satisfy the classification demands of high-
resolution remote sensing images, because of the low accu-
racy and the insufficient utilization of the rich information
[2]. In object-based classification approaches, by grouping
pixels together with a specific method, the images are seg-
mented into homogeneous regions named “objects,” which
can provide not only spectral information, but also texture
features, shape features, and neighboring relationships for
the classification [3]. Therefore, in high-resolution image
classification, it is reasonable to use object-based methods
instead of pixel-based methods. A large number of studies

have compared pixel-based and object-based classification
techniques, and it can be concluded that the classification
accuracies obtained by the object-based methods are higher
than those obtained by the pixel-based methods [4].

The dimensions of the features extracted from image
objects are much larger than pixels, which mainly contain
spectral-based information (e.g., mean, ratio, and standard
deviation) [5]. In object-based classification, hundreds of
features involving the spectral, geometry, and texture features
can be obtained from the image objects. However, large
amounts of features participating in classification always give
rise to the “dimension disaster,” which decreases the clas-
sification accuracy. As some features make contributions
to the classification and others have less influence on the
result, features are commonly divided into relevant features,
redundant features, and irrelevant features [2]. To yield better
classification results, the irrelevant information should be
removed, as much as possible, and the utilization of relevant
information should be maximized. Therefore, feature selec-
tion prior to the object-based classification of high-resolution
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remote sensing images is a prerequisite. After the redundant
and irrelevant features are removed, the training time is
reduced and the classification efficiency can be improved [6].

The task of feature selection is to obtain the optimal fea-
ture subset to achieve a similar or better classification quality
than when using all the features [6]. Various approaches have
been put forward for feature selection, including the branch
and boundmethod [7], the sequential forward selection (SFS)
method [8], the sequential backward selection (SBS) method
[9], and ReliefF [10]. However, a variety of problems still exist
in the above methods, including the high computational
complexity, monotonicity of the objective function, and
insufficient consideration of the correlations between fea-
tures. The feature selection process is actually a kind of com-
binatorial optimization problem; therefore, intelligent search
algorithms can be used to solve the problem. Evolutionary
computation (EC) methods have been applied in feature
selection problem and achieved much success recently [11].
For example, as a global optimizationmethoddeveloped from
the genetic process of natural selection, genetic algorithms
(GA) have been widely used in feature selection studies [12–
14] because of their robustness and fast searching speed.
With mutual information as the evaluation function, Huang
et al. [15] searched for the optimal feature subset using a
GA, with consideration of the correlations not only between
candidate features and classes, but also between candidate
features and selected features. Yan et al. [16] carried out fea-
ture selection using an adaptive GA, in which the probabili-
ties of crossover and mutation for each individual depend on
their fitness values. In this way, superior individuals can be
found and the convergence speed is increased. However, in
terms of population diversity, there is still room for improve-
ment. Therefore, further study and improvement of the use
of GAs for feature selection are necessary.

Tabu search (TS) is also a typical way to solve optimiza-
tion problems [17], and it has been performed successfully
in the combinatorial optimization field. Danenas et al. [18]
developed a credit risk evaluation method based on TS and
the correlation-based feature subset evaluator. Based on TS
and variable neighborhood search, Sicilia et al. [19] presented
an optimization algorithm to solve the problem of vehicle
routing in urban areas. Moreover, combinations of TS and
other approaches have been proved to be able to solve differ-
ent optimization problems. For example, by combining the
advantages of simulated annealing (SA) and TS, Katsigiannis
et al. [20] presented a hybrid method named SA-TS to solve
the optimal sizing problem of autonomous power systems.
Shen et al. [21] proposed a gene selection method based on
a combination of particle swarm optimization (PSO) and TS
for tumor classification. A continuous tabu simplex search
(CTSS) method was developed by Chelouah and Siarry [22]
by the combination of TS and the Nelder-Mead simplex
approach to solve global optimization problems inmultimin-
ima functions.

In El Ferchichi et al.’s work [23], both GA and TS were
used to select optimal feature subsets based on data from
transport system and they found that each method had its
own advantages in terms of processing speed or dimensional-
ity reduction.Through an investigation of the performance of
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Figure 1: Crossover and mutation operators of the genetic algo-
rithm.

the GA and TS, it is not difficult to see that the weakness of TS
is the dependence on the initial solutions and the slow speed
of convergence, while the problem with the GA is premature
convergence. However, in theory, the GA could provide good
initial solutions for TS and, in return, the characteristics of
TS could help the GA to escape from premature convergence.
Consequently, a novel feature selectionmethod namedGATS
based on the combination of a GA and TS is proposed in this
paper.

The rest of this paper is organized as follows. In Section 2,
the main principle of the proposed GATS method is intro-
duced. The implementation of the GATS method is detailed
in Section 3. The experimental results and discussions are
provided in Section 4. Finally, the conclusions are made in
Section 5.

2. Introduction to GATS

2.1. Overview of the Genetic Algorithm (GA). As a random
heuristic search algorithm inspired by natural evolutionary
laws, the GA was first proposed by Holland in 1975 [24]. To
solve a problem by the use of the GA, the first step is to
establish the initial population. Each member of the initial
population is called an “individual” (or chromosome), corre-
sponding to a solution to a certain problem [19]. Commonly,
fitness is used to represent a chromosome’s adaptability to the
environment, so each chromosome is evaluated by a certain
objective function [25]. A selection operation is then carried
out as it picks the individuals with higher fitness values, which
are used to regenerate new offspring [26, 27]. After this,
crossover is an essential step to produce new individuals by
randomly recombining the selected parent chromosomes on
a random crossover point with a specific probability. Finally,
a mutation operation is implemented with a relatively small
probability, which can reduce the appearance of local optima
by randomly replacing one or more genes of the current
chromosomes [13, 28].The crossover andmutation operators
of the GA are illustrated in Figure 1.

2.2. Overview of Tabu Search (TS). As a metasearch strategy
first put forward byGlover [17, 29], the TS algorithmhas been
widely used to solve combinatorial optimization problems.
By starting with an initial feasible solution 𝑋, TS conducts
the search in the neighborhood solutions of 𝑋 generated
by neighborhood moves (explained later). The value of the
best solution so far 𝑋best is initially assigned the value of𝑋. Supposing that 𝑋󸀠 is the best among the neighborhood
solutions, then the value of 𝑋 is replaced with the value of
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Figure 2: Neighborhood moves of GATS.

𝑋󸀠 in two cases:𝑋󸀠 is not included in the tabu list (explained
later); and 𝑋󸀠 is included in the tabu list, but it satisfies the
aspiration criterion (explained later). At the same time, if
the new solution 𝑋󸀠 is superior to 𝑋best, the value of 𝑋best
is replaced with the value of 𝑋󸀠. The move from 𝑋 to 𝑋󸀠
is then recorded by the tabu list, which means that this
move is forbidden in a certain number of iterations. The
neighborhood search is continued based on the new feasible
solution𝑋󸀠.This whole procedure is iteratively executed until
the stopping condition is satisfied. After the iterative process
has ended, the current best solution so far 𝑋best is the final
optimal solution provided by the TS method [30].

In this section, we explain the key elements in the TS
method, as mentioned above: the neighborhood moves, the
tabu list, and the aspiration criterion. Commonly, neigh-
borhood moves can be realized in several ways, for exam-
ple, increasing or decreasing the values of the chromosome
genes by one and reversing the positions of two genes
belonging to the same chromosome. In this paper, the
position exchange pattern is adopted. As shown in Figure 2,
supposing that one current solution 𝑋 can be expressed by{7, 2, 9, 4, 8, 3, 5}, it is not difficult to judge that {7, 4, 9, 2, 8, 3,5} and {8, 2, 9, 4, 7, 3, 5} belong to the neighborhood of 𝑋
resulting from position exchange of the underlined elements.
Meanwhile, {5, 6, 9, 4, 8, 3, 5} and {1, 2, 9, 4, 8, 3, 9} are not
neighborhood moves of 𝑋 because the values of the under-
lined elements have been changed. The tabu list is a kind of
short-term memory table and is used to deposit the latest
neighborhood moves which are forbidden for 𝐿 𝑡 (length of
the tabu list) times. In this way, local optima can be effectively
avoided. Generally, the first input first output (FIFO) strategy
is used to deal with the updating of elements in the tabu
list, which means that, after 𝐿 𝑡 times iterations, the element
is released from the tabu list and the tabu property for this
move is removed. However, once a move included in the tabu
list leads to a better solution than 𝑋best, the tabu property is

ignored because it led the searching to obtain the best solution
so far. Accordingly, its solution replaces the current solution𝑋 and the best solution so far 𝑋best. This is the so-called
aspiration criterion. On the one hand, it can help to prevent
the loss of superior solutions during the iterations; on the
other hand, it can encourage the movement to unexpected
solution fields to further realize the global search [31].

2.3. Basic Principle of the GATS Method. As previously men-
tioned, premature convergence is the main problem of the
GA, and the weaknesses of TS is its dependence on the initial
solutions and the single-point search mode. Fortunately, the
GA can provide high-quality initial solutions for TS, and its
fast searching speed can compensate for the speed problem of
TS.Moreover, the flexible tabu list and the aspiration criterion
of TS can help the GA to escape from local optima. In the
proposed GATS method, TS is integrated with the GA in the
following way: the mutation operator based on TS replaces
the original mutation operator once the prematurity warning
has been triggered. Evolutionary computation approaches
refined by local search methods could be termed as memetic
algorithms which have been successfully applied in many
studies [32–35]. And a memetic framework has also been
utilized in the proposed feature selection method.

To judge whether or not the search process has been
trapped in premature convergence, the prematurity index is
defined through calculating the similarity degree between
each two individuals as follows:

𝐼 = 𝑁−1∑
𝑖=1

𝑁∑
𝑗=𝑖+1

(𝑁 − 2)! ∗ 2!𝑁! ∗ 𝑊𝐿 , (1)

where 𝐼 is the prematurity index,𝑁 is the count of individuals
of the population, 𝑁!/((𝑁 − 2)! ∗ 2!) is the count of the
combinations of pairwise individuals from the population,𝑊
is the count of the same genes with the same locations for
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Figure 3: Binary encoding scheme.

each two individuals among the whole population, and 𝐿 is
the length of the chromosome.

During each iteration of the feature selection procedure,
the prematurity index is calculated after the crossover step
to judge if the prematurity problem has occurred. Once
prematurity does happen, all the individuals in the current
population are first sorted in descending order by values of
fitness.The TS is then performed based on the top 50% of the
sorted individuals, and the mutation operator is executed on
the others with a high probability. By the use of the proposed
GATS method, on the one hand, the prematurity problem
of the GA is improved and, on the other hand, TS can start
searching with a batch of favorable initial solutions instead of
a common one. In this way, both the GA and TS can give full
play to their respective advantages in the optimization search
problem.

3. The Proposed GATS Methodology

3.1. Coding Scheme. The binary coding scheme is the most
commonly used coding technique, and its encoding and
decoding are simple. It is also easy to realize genetic operators,
including crossover and mutation, in the binary coding
scheme. Therefore, the binary coding method is adopted in
this paper to express the chromosomes in the GATS feature
selection procedure. As shown in Figure 3, we suppose that
the number of all the candidate features is 𝐿, then the length
of each chromosome is 𝐿, and each gene of the chromosome
corresponds to one feature. When a gene from one chromo-
some is expressed as “1,” it means that the corresponding
feature has been selected; when the gene is marked as “0,” it
means that this feature has not been selected.

3.2. Objective Function. The objective function in the GA is
designed to calculate the fitness values, which can be used to
evaluate the viability of the individuals. A set of good features
can separate classes quite precisely bymaking thewithin-class
distance as short as possible and the between-class distance as
long as possible. In this paper, the within-class and between-
class distances are chosen as the main factors to form the
objective function. And they are calculated as follows:

𝐷𝑤 = √∑
𝐶
𝑖=1∑𝑛𝑖𝑗=1 [(𝑋𝑖𝑗 − 𝑉𝑖)𝑇 (𝑋𝑖𝑗 − 𝑉𝑖)]𝑛 ,

𝐷𝑏 = √∑
𝐶
𝑖=1∑𝐶𝑗=𝑖+1 [(𝑉𝑖 − 𝑉𝑗)𝑇 (𝑉𝑖 − 𝑉𝑗)]𝑁𝐶 ,

(2)
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Figure 4: Flowchart of the GATS method.

where 𝐷𝑤 is the within-class distance, 𝐶 is the count of all
the classes, 𝑛𝑖 is the count of the samples from class 𝑖, 𝑋𝑖𝑗 is
the feature vector of sample 𝑗 from class 𝑖, 𝑉𝑖 is the feature
vector of the center belonging to class 𝑖, and 𝑛 is the count
of all the samples. 𝐷𝑏 is the between-class distance, and 𝑁𝐶
is the count of the combinations between classes which can
be calculated by 𝐶!/(𝐶 − 2)!2!. Based on the principle of
minimizing the within-class distance and maximizing the
between-class distance, the objective function can finally be
expressed as follows:

𝐹 = 𝐷𝑏𝐷𝑤 + 𝑑, (3)

where 𝐹 is the fitness value and 𝑑 is an extremely small con-
stant (here, 𝑑 = 10−10) in the case that the value of𝐷𝑤 is zero.
3.3. Procedure of GATS. A flowchart of the proposed GATS
method is shown in Figure 4. The implementation of the
whole procedure can be explained as follows.

Step 1 (initial population). Individuals with the length of 𝐿
are randomly generated to form the initial population with
the size of𝑁.
Step 2 (objective function). Values of fitness for each individ-
ual are calculated by (3).

Step 3 (selection). The purpose of selection is to retain the
superior individuals with higher fitness values. As a classical
random selection technology, roulette wheel selection [36]
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(also named proportional selection) is adopted in GATS. In
the roulette wheel selection method, the selected probability
of each individual is proportional to the value of its fitness.
When the size of the population is𝑁, the chosen probability
for one individual can be calculated as follows:

𝑃𝑖 = 𝐹𝑖∑𝑁𝑖=1 𝐹𝑖 , (4)

where the probability of being chosen for individual 𝑖 is 𝑃𝑖,
and the fitness value of individual 𝑖 is 𝐹𝑖. Individuals with
higher fitness values are more likely to be selected.

Step 4 (crossover). By exchanging the genes of two parent
individuals with a certain crossover probability 𝑃𝑐, as shown
in Figure 1, two offspring individuals are produced. Through
the crossover operation, the information of the individuals
is sufficiently recombined and the search range is effectively
expanded.

Step 5 (judgment of prematurity). As the proposed GATS
method is used to improve the premature convergence prob-
lem of the GA, the detection of prematurity is quite impor-
tant. The prematurity index 𝐼 is calculated by (1). Through a
large number of experiments, the threshold value is derived,
and once the value of 𝐼 is larger than threshold 𝑇𝑝, Step 8
is executed. Otherwise, it means prematurity has not yet
occurred, so go to Step 7.

Step 6 (conventional mutation). As an important operation,
this step simulates gene mutation of the biological evolution
process. The mutation operation is executed on a random
gene of parent individuals by changing it from “1” to “0” or
from “0” to “1” with a specific mutation probability 𝑃𝑚. Then
go back to Step 2.

Step 7 (the improved mutation). This is the key step in help-
ing the search procedure to jump out of the local convergence
situation.When premature convergence occurs, TS is carried
out based on the superior individuals with higher fitness
values. The conventional mutation operation with a higher
probability𝑃𝑚𝑡 is performed on individuals with lower fitness
values.The proportion of superior individuals is set to 50% in
GATS. Then go back to Step 2.

Step 8 (termination condition). In GATS, after a specified
number of iterations, the feature selection process stops.

It is worth mentioning that voting technology is utilized
in GATS to obtain optimal feature subsets with a quantitative
size, as the count of features selected by the proposedmethod
is uncertain. At first, the above procedures are carried out iter-
atively for a certain number of times (50 times in this paper).
Statistical analysis is then conducted based on the above fea-
ture selection results, and the features are ranked according
to the number of times they are selected. Finally, the features
with the highest number of selections are included in the
optimal feature subset.

4. Results and Discussion

The proposed GATS method was realized by visual C++
programming language on a computer with a 3.10GHz CPU
and 4.00GB RAM under the Windows 7 operating system.

4.1. Experimental Design. As shown in Figure 5, a World-
View-2 image with a 0.5m spatial resolution and a QuickBird
image with a 0.6m resolution were, respectively, used in two
experiments to verify the proposed method. The experimen-
tal regions are both located in the city of Wuhan, Central
China. As shown in Figure 5(a), the first study site is a typical
urban area, with the land-cover types including buildings,
vegetation, water, shadows, and ground surfaces. The second
study area displayed in Figure 5(b) is a complex suburban
area, with vegetation, water, buildings, ground surfaces, bare
land, and secondary bare land.

As the first step of the whole classification procedure, a
bottom-up region merging method is employed in GATS to
segment the images.Through segmentation experiments, the
settings of the parameters were decided and are shown in
Table 1. Figure 6 shows the final segmentation results of the
WorldView-2 and QuickBird images. After the segmentation
process, 790 objects for the WorldView-2 image and 1319
objects for the QuickBird image were finally obtained, and
249 features were extracted from the objects, as shown in
Table 2. All the texture features listed in the table were derived
from the gray-level cooccurrence matrix (GLCM) proposed
by Haralick et al. [37]. And then, 77 training samples for the
WorldView-2 image and 96 training samples for the Quick-
Bird image were randomly selected by manual work for both
the feature selection and subsequent classification procedure.

Based on the above analysis and preprocessing of the
experimental images, the GATS method was executed on
the 249 features to select the optimal feature subset. Table 3
shows the details of the parameter settings for the GATS
feature selection method and as parameters of GA and TS
are commonly used, most of these parameters are assigned
values empirically according to the practical problems [26,
38, 39]. As the main purpose of GATS is to improve the
premature convergence of the GA, a comparison between
GATS and the GA is essential to confirm the effectiveness
of the proposed method. To prove that the GA can provide
multiple initial solutions with a high quality for TS, a multi-
initial-solutionTSmethodwith common initial solutionswas
utilized for the comparison. In addition, as a typical feature
selection technology, ReliefF [2] was also compared with
GATS. In summary, three experiments based on standard
GA, a multistart TS approach [40], and the classical ReliefF
algorithm were carried out in this study. In the experiments,
the values of the parameters for the GA and TS were kept the
same as GATS. In the experiment with ReliefF, the sampling
times 𝑆𝑟 were 500 and 800, the number of neighbor points𝑁𝑟
was 5 and 10, and the threshold values of the feature weight𝑇𝑅
were 0.8 and 0.8 for theWorldView-2 and QuickBird images,
respectively.

4.2. Experimental Results. Table 4 lists the numbers of
selected features, the mean and standard deviation of both
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(a) WorldView-2 image (b) QuickBird image

Figure 5: Experimental images.

(a) Segmented WorldView-2 image (b) Segmented QuickBird image

Figure 6: Segmented images.

fitness values and CPU time of GATS, GA, multistart TS,
and ReliefF methods through 50 times runs. As a typical
highly efficient feature weighting method, the time taken by
the ReliefF algorithm is shorter than the other threemethods.
Among the other three methods, although the GA costs the
least time, the number of features obtained by this method is
always the largest, and its mean fitness values are the lowest.
In the multistart TS method, as several initial solutions are
used in the search instead of a single one, the CPU time is
longer than for theGA, but the fitness values are higher. As for
the proposed GATSmethod, the time required is longer than
for the multistart TSmethod, but the feature extraction effect
is much better as the number of optimal features obtained
by GATS is much smaller. Most importantly, the mean
values of fitness obtained by the proposed GATS method
are obviously improved compared with the other methods.
In addition, statistical analysis has been conducted based on

above experiments and standard deviation values for fitness
and CPU time have been obtained. It is not hard to see
that both items get low values which demonstrate the high
stability and reliability of the proposed method.

Table 5 lists the final feature selection results of each
method (the number of features participating in the fol-
lowing classification was uniformly set to seven for all the
experiments). It is not difficult to observe that, as important
information in object-based high-resolution image analysis,
texture features such as GLCM mean are always selected by
the proposed method, but, for the other methods, texture is
ignored in most cases, and the spectral information occupies
the dominant position.

As one of themost effectivemachine learning algorithms,
support vector machine (SVM) has been widely employed
in the classification of remote sensing images [41–44]. Using
the above feature selection results, SVM was adopted to
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Table 1: Segmentation parameters.

Image Parameter
Scale Shape Compactness

WorldView-2 48 0.1 0.6
QuickBird 80 0.2 0.6

Table 2: List of object features.

Feature category Object features Number of features
Spectral Mean, Brightness, NDVI, NDWI, HSI, Ratio, Standard deviation, Skewness, etc. 22
Geometry Length/Width, Shape index, Area, Volume, Compactness, Density, Asymmetry, etc. 27

Texture Homogeneity, Contrast, Dissimilarity, Entropy, Mean, StdDev, Correlation, Ang. 2nd
moment, etc. 200

Table 3: Parameter settings of GATS.

Parameter Explanation Value
WorldView-2 QuickBird𝑆 Iterations of the GA 75 100𝑁 Size of the initial population 25 40𝐿 Length of each individual 60 60𝑃𝑐 Crossover probability 0.8 0.8𝑃𝑚 Standard mutation probability 0.1 0.1𝑃𝑚𝑡 Modified mutation probability 0.8 0.8𝐼 Index of prematurity 0.8 0.85𝑆𝑡 Iterations of TS 40 23𝑁𝑡 Size of the TS neighborhood 25 10𝐿 𝑡 Length of the tabu list 10 12

Table 4: Number of features and CPU time.

GATS GA TS ReliefF
WorldView-2

Feature number 45 123 107 86
Mean fitness 12.09 6.25 8.97 —
CPU time (seconds) 31.92 5.90 27 1.93
Std fitness 0.79 0.96 1.09 —
Std CPU time 2.45 1.35 1.96 0.21

QuickBird
Feature number 67 130 113 99
Mean fitness 17.93 11.63 13.52 —
CPU time (seconds) 37.14 16 32.83 2.37
Std fitness 1.14 1.46 1.63 —
Std CPU time 2.79 1.52 2.46 0.36

classify the WorldView-2 and QuickBird images. Through
calculation of the 𝑘-fold cross-validation method, the values
of C and Gamma (the parameters of SVM) were, respectively,
set to 100 and 5 for the WorldView-2 image and 32 and 0.5
for the QuickBird image. The final classification results are
shown in Figures 7 and 8.

For the WorldView-2 classification results, it can be
observed that buildings with more accurate contours and
higher integrity are provided by the GATS method, as high-
lighted with the yellow rectangle in Figure 7(a). Meanwhile,
the extraction of buildings by GA and ReliefF is incomplete,
and, for TS, some of the buildings are misclassified as water
and shadows. In terms of a place featuring a mixture of
ground and vegetation, as highlighted by the yellow ellipse,
it can be distinguished by GATS, whereas the other methods
result in misclassification. As highlighted by the blue circle,
the small area of vegetation surrounded by other large-scale
objects can also be successfully recognized by the proposed
method. The TS method misclassifies the small vegetation
object as shadow, and GA and ReliefF fail to recognize it.

As shown in Figure 8, for the QuickBird image, there
are several miss-extractions of buildings in the results of the
other three methods, as highlighted by the yellow ellipse in
the bottom right corner of the image. The extraction of the
main road in Figure 8(a) by GATS is more complete than
for the other methods. Despite the high similarity of the
spectral characteristics, the water, buildings, and shadows in
Figure 8(a) are less likely to be misclassified because of the
participation of the texture information in the classification.
From the visual assessment of the classification results, it
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Table 5: List of features selected by each method.

Data Method Features
Spectral Texture Geometry

WorldView-2

GATS Mean layer 1/4, Brightness, GLCMmean layer 3 (0∘), —
Ratio layer 1, Intensity GLCM ang. 2nd moment (135∘)

GA NDWI, NDVI, GLCM homogeneity layer 1 (45∘), —
Ratio layer 1/2/4 GLCM homogeneity layer 3 (45∘)

TS
NDWI, NDVI,

— —Mean layer 2/4,
Ratio layer 1/2/4

ReliefF
NDWI, NDVI,

— Elliptic FitMean layer 4, Brightness,
Ratio layer 1/4

QuickBird

GATS
NDWI, NDVI, GLCM ang. 2nd all dir.,

—Mean layer 2, GLCM ang. 2nd moment
Ratio layer 1, Intensity layer 1 (45∘)

GA
NDWI, NDVI,

— —Mean layer 3/4,
Ratio layer 2/3, Saturation

TS
NDWI, NDVI,

— —Brightness,
Ratio layer 1/2/3/4

ReliefF
NDWI, NDVI,

— —Mean layer 3, Saturation,
Ratio layer 3/4, Hue

is not difficult to conclude that, in general, the proposed
method leads to a preferable classification effect.

4.3. Accuracy Analysis and Discussion. As the final objective
of analyzing images by the proposed GATS method is to
improve the classification accuracy, confusion matrices are
used to quantitatively evaluate the performance of the dif-
ferent methods. Producer’s accuracy, user’s accuracy, overall
accuracy, and Kappa coefficient calculated from the matrix
are the key indicators to assess the classification quality in
Figures 7 and 8.

The producer’s accuracy refers to the probability of a
reference sample being correctly classified [45]. It can be
calculated by

PA = 𝑥𝑖𝑗∑𝑥+𝑗 ∗ 100%, (5)

where PA represents the producer’s accuracy, 𝑥𝑖𝑗 refers to the
element in the 𝑖th row and 𝑗th column of the matrix, and∑𝑥+𝑗 represents the sumof the elements from the 𝑗th column
of the confusion matrix.

The user’s accuracy represents the probability of the
classified land being grouped into the true ground reference
category:

UA = 𝑥𝑖𝑗∑𝑥𝑖+ ∗ 100%, (6)

where UA represents the user’s accuracy and∑𝑥𝑖+ is the sum
of the elements from the 𝑖th row.

The overall accuracy refers to the percentage of correctly
classified samples and can be calculated by

OA = ∑𝐶𝑖=1 𝑥𝑖𝑖∑𝐶𝑖=1∑𝐶𝑗=1 𝑥𝑖𝑗 ∗ 100%, (7)

where OA represents the overall accuracy,𝐶 is the dimension
of the confusion matrix (also the number of classes), and 𝑥𝑖𝑖
is the sum of the elements in the confusion matrix’s diagonal.

To measure the classification ability of the utilized
method with respect to a random classification, the Kappa
coefficient is obtained by statistical calculation of the confu-
sion matrix and can be expressed as follows:

𝐾 = 𝑛 ∗ ∑𝐶𝑖=1 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑗)𝑛2 − ∑ (𝑥𝑖+ ∗ 𝑥+𝑗) , (8)

where 𝐾 represents the Kappa coefficient and 𝑛 is the total
number of samples. Generally speaking, the higher the above
accuracies or coefficients, the better the classification effect.

Overall accuracies andKappa coefficients for both images
are listed in Table 6. For the WorldView-2 image, the GATS
method produces a significantly better classification effect
than the other methods, with increments of at least 11.5% in
OA and 0.14 in Kappa. In terms of the QuickBird image, the
highest OA of 88.25% is yielded by GATS.

Table 7 lists the producer’s accuracies and user’s accura-
cies for each class of the WorldView-2 image. Due to the
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Figure 7: Classification results for the WorldView-2 image.

Table 6: Overall accuracy and Kappa for the WorldView-2 and QuickBird images.

WorldView-2 QuickBird
GATS GA TS ReliefF GATS GA TS ReliefF

OA (%) 89.50 75.50 73.50 78.00 88.25 83.00 74.75 73.25
Kappa 0.86 0.68 0.66 0.72 0.84 0.76 0.65 0.63

spectral similarity between buildings and ground, the lowest
producer’s accuracy of 75.81% for buildings and the lowest
user’s accuracy of 52.08% for ground are yielded by the TS
and GA methods, respectively. However, with the assistance
of the texture information provided by the GATS feature

selection method, both the producer’s and user’s accuracies
of buildings reach 91.94%, and the accuracy of ground is
also much higher than for the other methods. The above
results indicate that texture features can play a key role in
differentiating classes with similar spectral characteristics.
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Figure 8: Classification results for the QuickBird image.

Although ReliefF outperforms the other methods in CPU
time, it provides the lowest user’s accuracies of 51.95% and
47.5%, respectively, for vegetation and shadows.

The producer’s accuracies and user’s accuracies for the
QuickBird image are listed in Table 8. Compared to the other
classes, the buildings class shows the biggest increase in user’s
accuracy with the GATS method. Both the producer’s and
user’s accuracies for vegetation 1 and vegetation 2 provided
by GATS reach a stable level of 90%, whereas the accuracies
yielded by the other methods are mainly between 70% and
80%.Not only does ReliefF obtain the lowest overall accuracy

and Kappa, but it also yields the lowest user’s accuracy of only
50% for bare land and the lowest producer’s accuracy of 55%
for roads.

5. Conclusions

In this paper, we have put forward a feature selection
method based on the integration of GA and TS (GATS).
The proposed GATS method is aimed at improving the
premature convergence of the GA with the new mutation
operator modified by TS. To validate the reliability and
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Table 7: Classification accuracies for the WorldView-2 image.

Class GATS GA TS ReliefF
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Buildings 91.94 91.94 85.00 87.93 75.81 89.00 85.48 88.33
Ground 91.43 78.05 71.43 52.08 60.00 52.50 65.71 54.76
Vegetation 90.91 90.91 90.91 83.33 90.91 90.91 81.82 51.95
Water 84.00 93.33 74.00 72.55 68.00 80.95 78.00 79.59
Shadows 90.48 92.68 63.64 90.32 83.33 61.40 76.19 47.50

Table 8: Classification accuracies for the QuickBird image.

Class GATS GA TS ReliefF
PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Buildings 86.67 92.86 80.00 72.73 76.67 69.70 83.33 62.50
Vegetation 1 91.72 88.08 86.21 85.62 66.90 76.98 68.97 76.92
Vegetation 2 86.67 90.91 83.33 85.03 80.00 72.73 79.33 73.46
Water 86.67 86.67 73.33 84.62 66.67 90.91 66.67 90.91
Bare land 84.62 78.42 80.00 66.67 73.33 68.75 66.67 50.00
Sec. bare land 86.67 86.67 86.67 81.25 86.67 76.47 66.67 76.92
Roads 90.00 85.71 80.00 84.21 80.00 80.00 55.00 84.62
Shadows 80.00 87.50 60.00 75.00 90.00 75.00 80.00 72.73

effectiveness of the proposed feature selection method, other
feature selection methods, a traditional GA, multistart TS,
andReliefF, were also implemented. SVMwas then utilized to
classify theWorldView-2 andQuickBird images based on the
selected features.Through the experiments and comparisons,
it was demonstrated that the proposed GATS method can
increase the classification accuracy by providing feature sub-
sets with the within-class distances as small as possible and
the between-class distances as big as possible. However, the
proposed method could be further improved in terms of fea-
ture number. As restriction of the feature number is not easy
to implement in the binary coding scheme, voting technology
is used in GATS to select a fixed number of features from the
feature selection results.Therefore, in our futurework, a novel
coding scheme for GATS will be studied, by which control of
the optimal feature number will be realized.
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