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Abstract: Lipid rafts are highly ordered membrane microdomains enriched in cholesterol,
glycosphingolipids, and certain proteins. They are involved in the regulation of cellular processes in
diverse cell types, including mast cells (MCs). The MC lipid raft protein composition was assessed
using qualitative mass spectrometric characterization of the proteome from detergent-resistant
membrane fractions from RBL-2H3 MCs. Using two different post-isolation treatment methods, a
total of 949 lipid raft associated proteins were identified. The majority of these MC lipid raft proteins
had already been described in the RaftProtV2 database and are among highest cited/experimentally
validated lipid raft proteins. Additionally, more than half of the identified proteins had lipid
modifications and/or transmembrane domains. Classification of identified proteins into functional
categories showed that the proteins were associated with cellular membrane compartments, and with
some biological and molecular functions, such as regulation, localization, binding, catalytic activity,
and response to stimulus. Furthermore, functional enrichment analysis demonstrated an intimate
involvement of identified proteins with various aspects of MC biological processes, especially those
related to regulated secretion, organization/stabilization of macromolecules complexes, and signal
transduction. This study represents the first comprehensive proteomic profile of MC lipid rafts
and provides additional information to elucidate immunoregulatory functions coordinated by raft
proteins in MCs.

Keywords: lipid rafts; membrane proteins; protein localization; regulated secretion; signaling
pathway; proteome; mast cells

1. Introduction

Lipid rafts are dynamic ordered nanoscale assemblies in the plasma membrane and other
intracellular membranes, and are enriched in cholesterol and glycosphingolipids [1,2]. They are
characterized by the presence of proteins with lipid modifications, as well as proteins involved in
signal transduction. Due to their composition, they are resistant to solubilization in nonionic mild
detergents [1,3]. Lipid raft components can diffuse laterally in the plasma membrane, thus lipid
raft microdomains have the ability to associate and dissociate on a subsecond timescale, and vary
in stability, size, shape, lifetime, and molecular composition [3–5]. The compartmentalization of
molecules into lipid rafts provides a favorable environment to facilitate interactions among the raft
components. Therefore, lipid rafts act as platforms to segregate lipids, receptors, adaptors, kinases,
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scaffolding proteins, and cytoskeletal apparatus that trigger complex events and coordinate diverse
biological processes [2,6–10].

Since the total protein content of lipid rafts can be extensive, these microdomains are an attractive
target for mass-spectrometry (MS)-based proteomics. Proteomic strategies have been applied to lipid
rafts from a variety of tissue and cell types, including rat brain [11], Hella cells [12], ovarian cancer
cells [13], and immune cells, such as neutrophils [14,15], monocytes [16], and macrophages [17], as
well as lymphocytes T [18,19], B [20], and natural killer cells [21], with the aim of better identifying the
proteins present in lipid rafts [22–25]. Functional proteomic analysis of lipid raft proteins examines
the relationship between individual proteins and clusters them based on characteristics such as
structure, localization, binding partners, and post translational modification, which has led to the
elucidation of novel molecular pathways and biological events coordinated by these membrane
microdomains [23,25–27].

Mast cells (MCs) are multifunctional immune cells that, in addition to their well-established
role in allergic and anaphylactic reactions, are implicated in innate and adaptive immunity, and in
inflammation among other physiological and pathological processes [28–30]. Lipid rafts modulate
many important biological processes related to these MC functions, such as degranulation, endocytosis,
play a role in MC development and recruitment, and contribute to the preservation of MC structure
and organization [6,31–33]. However, there is no MC lipid raft proteome available. Only a few studies
report on the whole MC plasma membrane composition, using MS for lipid characterization [34] or
protein identification using MALDI-TOF (matrix-assisted laser desorption/ionization and time-of-flight)
or LC-MS/MS (liquid chromatography-mass spectrometry) [35–37]. Moreover, only a limited number
of proteins have been annotated and a non-detailed functional analysis was performed.

The present study was undertaken to investigate the qualitative proteomic profile of MC lipid rafts
using the rat mucosal MC line RBL-2H3. While the investigation of lipid rafts in MCs has largely been
done using RBL-2H3 MCs [38], there is no proteomic profile of lipid rafts from RBL-2H3 MCs or any
other MC. Although controversy exists over the exact character of RBL-2H3 MCs [39,40], they are still
a widely accepted model for functional studies of MC dynamics. Since the RBL-2H3 MC line was first
identified in 1973 [41], and later cloned and characterized [42], it has become one the most commonly
used models to study MC function [40]. RBL-2H3 MCs provide many advantages over primary
MCs. They may be grown in large amounts in culture and can easily be genetically manipulated.
RBL-2H3 MCs have also been used to study signaling pathways following FcεRI (high-affinity IgE
receptor) activation and MC regulated exocytosis, events in which lipid rafts are involved. More
recently, RBL-2H3 MCs have also been used as a model for studies focused on the detection of allergens,
diagnosis of allergic sensitization, and vaccine safety studies [40]. Even considering the problem of
MC heterogeneity, the findings provided by RBL-2H3 MCs have substantially contributed to a global
understanding of MC function. The results of the present investigation show that the methods applied
here were efficient in identifying lipid raft proteins in MCs and these raft microdomains are involved
in the regulated secretion, organization, and stabilization of macromolecular complexes, as well as
signaling transduction pathways important to MC biological functions. This qualitative proteomic
data should provide a more complete understanding of lipid rafts in MC biology.

2. Results

2.1. Obtention of Lipid Rafts from RBL-2H3 Mast Cells

Lipid rafts were isolated from RBL-2H3 MCs using discontinuous sucrose-density gradient
ultracentrifugation. LAT1 (linker for activation of T-cells 1), a lipid-raft-specific protein in immune
cells [43,44], was used as a marker for the lipid rafts. Using immunoblotting, LAT1 was highly
enriched in Fractions 2 and 3. In addition, the SFK (Src family kinase) Lyn, and the rodent MC-specific
GD1b-derived gangliosides, both well-characterized MC lipid raft components [45,46], were also
enriched in Fractions 2 and 3 (Figure 1). Additionally, Flotillin-1, a widely used marker of lipid rafts [8],
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was also concentrated in Fractions 2 and 3. Thus, Fractions 2 and 3 represent the lipid raft fractions in
these preparations. In contrast, Histone H3, a nuclear protein, was concentrated in Fractions 9 and 10.
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Fractions were also immunoblotted with anti-Histone H3, a nuclear protein. Data representative of 
three independent experiments is shown. 
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OGP (octyl β-glucopyranoside) detergent followed by a final methanol-chloroform extraction. The 
solubilized proteins obtained from the lipid raft fractions after the post-isolation treatments were 
submitted to nano-UPLC-MSE analysis. The samples were run in three technical replicates and only 
proteins identified in two out of the three replicates were considered for further analysis. The 
obtained UPLC-MSE protein data generated by the PLGS was processed to verify the quality of the 
proteomic analysis (Figure S1: Dynamic range of the proteomic analysis). For reliable protein 
identification, a reverse sequence database of Rattus norvegicus was used to calculate the false rate. 
The false positive rates of proteins obtained from MetI and MetII were, respectively, 1.04% and 0.36%. 
Supplementary Figure 1 depicts the results obtained from an analysis of the dynamic range indicating 
that a 3 log difference in abundance and a good distribution of both high and low concentrations of 
the proteins were obtained with both methods. This approach ensured the selection of highly 
representative proteins. 

After processing, according to the criteria stated in Section 5.6, 429 proteins were identified in 
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proteins identified in Methods I and II). 

Figure 1. Identification of RBL-2H3 mast cell lipid rafts. Lysates of RBL-2H3 MCs were fractionated
using sucrose density gradient ultracentrifugation, and fractions were immunoblotted using antibodies
against lipid raft markers: LAT1, SFK Lyn, rodent MC-specific GD1b-derived gangliosides, and
Flotillin-1. Proteins and lipids associated with lipid rafts were concentrated in Fractions 2 and 3.
Fractions were also immunoblotted with anti-Histone H3, a nuclear protein. Data representative of
three independent experiments is shown.

2.2. Identification of Mast Cell Lipid Raft Proteins Using Nano-UPLC-MSE

The lipid raft fractions (Fractions 2 and 3) obtained from three independent experiments were
pooled. The resulting sample was divided and used for two different post-isolation treatment methods,
Method I (MetI) and Method II (MetII). MetI eliminated the sucrose from the enriched lipid raft
fractions prior to MS analysis. MetII was harsher than MetI and involved mixing the sample with
OGP (octyl β-glucopyranoside) detergent followed by a final methanol-chloroform extraction. The
solubilized proteins obtained from the lipid raft fractions after the post-isolation treatments were
submitted to nano-UPLC-MSE analysis. The samples were run in three technical replicates and
only proteins identified in two out of the three replicates were considered for further analysis. The
obtained UPLC-MSE protein data generated by the PLGS was processed to verify the quality of
the proteomic analysis (Figure S1: Dynamic range of the proteomic analysis). For reliable protein
identification, a reverse sequence database of Rattus norvegicus was used to calculate the false rate.
The false positive rates of proteins obtained from MetI and MetII were, respectively, 1.04% and 0.36%.
Supplementary Figure S1 depicts the results obtained from an analysis of the dynamic range indicating
that a 3 log difference in abundance and a good distribution of both high and low concentrations
of the proteins were obtained with both methods. This approach ensured the selection of highly
representative proteins.

After processing, according to the criteria stated in Section 5.6, 429 proteins were identified in
MetI (Table S1: Detailed annotation of proteins identified in Method I), and 753 in MetII (Table S2:
Detailed annotation of proteins identified in Method II); 196 proteins were exclusively identified in
MetI and 520 proteins were exclusively identified in MetII, and 233 proteins were common between
the methods. In total, 949 proteins were identified (Figure 2) (Table S3: Detailed annotation of proteins
identified in Methods I and II).
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Figure 2. Proteomic identification of lipid raft enriched fractions of RBL-2H3 mast cells. MC
lipid-raft-enriched Fractions 2 and 3 were used for Nano-UPLC-MSE analysis. A Venn diagram
depicting the number of overlapping and unique proteins present in MC lipid rafts processed using
Method I (MetI) and Method II (MetII) is shown.

2.3. Characterization of Mast Cell Lipid Raft Proteins

The 949 identified proteins were then analyzed to determine whether they had been previously
reported as lipid raft proteins or had characteristic modifications of lipid raft proteins. Of the 949
identified proteins, 855 (≈90%; 855/949) were found in the RaftProtV2 database as previously reported
lipid raft proteins [26], while 94 of the proteins had not been previously annotated (Table S4: Mast
cell lipid raft proteins absent from RaftProtV2 database, and Figure S2: Immuno-blot analysis of the
β-subunit of FcεRI from RBL-2H3 MC lipid rafts). Of the previously annotated proteins, 172 were
unique to MetI and 454 to MetII, thus indicating that MetII was more efficient in extracting lipid raft
proteins (Table S5: Mast cell lipid raft proteins analyzed by RafProtV2 database). A total of 570 (≈67%;
570/855) of these proteins were classified as high-confidence lipid raft proteins based on experimental
evidence according to the RaftProtV2 database, confirming that these proteins were indeed lipid raft
proteins. The proteins with the highest number of citations supported by experimental evidence are
listed in Table 1.

Lipid modifications are one of the characteristics of lipid-raft-associated proteins [1]. Therefore,
all the identified proteins were examined for lipid modifications using bioinformatic analysis. Almost
half of the identified proteins (46.8%; 444/949) had at least one lipid modification: S-palmitoylation,
isoprenylation, N-myristoylation, or GPI (glycophosphatidylinositol) anchor. There was basically no
difference in the percentage of proteins with lipid modifications extracted with either MetI (50.3%;
216/429) or MetII (48%; 361/753). However, MetII had a higher number of proteins with lipid
modification in all categories analyzed (Figure 3).
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Table 1. Mast cell lipid raft proteins annotated with the highest number of citations supported by
experimental evidence in RaftProtV2 database.

Method Protein
Accession Protein Description Gene

Name
Experimental

Evidence
Number of
Citations

MetII P63018 Heat shock cognate 71 kDa
protein Hspa8 H (3) M (3) R (3) 102

MetII Q9Z1E1 Flotillin-1 Flot1 H (3) M (1) R (3) 101

MetI; MetII P15999 ATP synthase subunit alpha
mitochondrial Atp5fla H (3) M (3) R (3) 98

MetI P10719 ATP synthase subunit beta
mitochondrial Atp5f1b H (1) M (1) R (3) 97

MetI; MetII Q9Z2L0 Voltage-dependent
anion-selective channel protein 1 Vdac1 H (3) M (3) R (3) 97

MetI; MetII P67779 Prohibitin Phb H (3) M (1) R (1) 91

MetI; MetII P60711 Actin cytoplasmic 1 Actb H (3) M (3) R (3) 90

MetII Q9Z2S9 Flotillin-2 Flot2 H (3) M (3) R (3) 90

MetI; MetII P81155 Voltage-dependent
anion-selective channel protein 2 Vdac2 H (3) M (3) R (1) 90

MetI; MetII P06685 Sodium/potassium-transporting
ATPase subunit alpha-1 Atp1a1 H (1) M (1) R (1) 89

MetI; MetII P04797 Glyceraldehyde-3-phosphate
dehydrogenase Gapdh H (1) M (1) R (1) 88

MetI; MetII P54311 Transducin beta-1 Gnb1 H (3) M (3) R (3) 87

MetI Q07936 Annexin A2 Anxa2 H(1) M (3) R (3) 86

MetI; MetII P04897 Guanine nucleotide-binding
protein G(i) subunit alpha-2 Gnai2 H (3) M (3) R (3) 86

MetI; MetII P06761 Endoplasmic reticulum chaperone
BiP Hspa5 H (1) M (1) R (1) 86

MetI; MetII P35565 Calnexin Canx H (1) M (1) R (1) 83

MetI; MetII G3V6P7 Myosin heavy chain 9 Myh9 H (3) M (3) 83

MetI P31000 Vimentin Vim H (3) M (3) R (3) 81

MetI; MetII P09527 Ras-related protein Rab-7a Rab7a H (1) M (1) R (1) 79

MetI; MetII P26453 Basigin Bsg H (3) M (3) R (3) 78

MetI; MetII D4A133 V-type proton ATPase catalytic
subunit A Atp6v1a H (3) M (3) 78

MetI; MetII P63102 14-3-3 protein zeta/delta Ywhaz H (1) M (1) R (1) 77

MetI; MetII P11442 Clathrin heavy chain 1 Cltc H (3) M (3) R (3) 77

MetII F1M779 Clathrin heavy chain Cltc H (3) M (3) R (3) 77

MetII Q5XI04 Erythrocyte band 7 integral
membrane protein Stom H (1) M (1) 77

MetI; MetII P54313 Transducin beta-2 Gnb2 H (3) M (3) R (3) 76

MetII B5DEH2 Erlin-2 Erlin2 H (3) M (3) R (3) 74

MetII O70377 Synaptosomal-associated protein
23 (SNAP-23) Snap23 H (3) M (3) R (3) 74

MetI; MetII P32551 Cytochrome b-c1 complex subunit
2 mitochondrial Uqcrc2 H (3) M (3) R (3) 72

MetI; MetII Q5XIH7 Prohibitin 2 Phb2 H (3) M (3) R (3) 71

Method—Post-isolation treatment method; Protein accession—UniProt protein accession number; Protein
description—Functional description; Gene name—Name of gene that codes for the protein sequence; Experimental
evidence—Experimental data validating inclusion as a lipid raft protein; (1) indicates protein identification by more
than one biochemical extraction method; (3) indicates fulfillment of criteria (1) and the sensitivity to more than
one raft perturbation technique; Number of citations—Number of studies with supporting experimental evidence
describing the lipid raft protein; H—Human; M—Mouse; R—Rat.
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Proteins with transmembrane domains are also known to be targeted to lipid rafts [47,48]. The
presence of a transmembrane domain was predicted in all proteins identified by both methods using
TMHMM server version 2.0 (Figure 4A,B). The common group of proteins contained a sizeable
number of proteins with transmembrane domains (27%; 63/233). Few (7.14%; 14/196) unique proteins
in MetI had transmembrane domains, and only four of these unique proteins had two or more
transmembrane domains. In contrast, the majority (52%; 274/520) of the unique proteins obtained using
MetII contained at least one transmembrane domain. Furthermore, the unique proteins isolated by
MetII had a higher number of transmembrane domain/protein in comparison to the common proteins
or unique proteins identified with MetI. Thus, MetII was more efficient at extracting proteins with
transmembrane domains.
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Figure 4. Analysis of transmembrane domain (TMD) present in unique and common mast cell lipid
raft proteins identified using Method I or Method II. Prediction of the presence of TMD was done using
the TMHMM server v2.0. (A) Number of proteins with and without TMDs is shown. (B) The number
of proteins with TMD versus the number of TMD/protein is given.

2.4. Functional Characterization of Mast Cell Lipid Raft Proteome

Initially, all identified proteins from both MetI and MetII were used for global proteomic analysis.
The 949 proteins were annotated according to the three classes of biological domains (cellular component,
biological processes, and molecular function) from Gene Ontology (GO) using the Software Tool for
Researching Annotations of Proteins (STRAP) [49]. In the cellular component class, 13% of the proteins
were associated with the GO terms plasma membrane (11%) and cell surface (2%). Terms associated
with cytoplasm (10%), other intracellular organelles (11%), endoplasmic reticulum (9%), mitochondria
(6%), and cytoskeleton (5%) were also highly represented (Figure 5A). In the GO class biological
processes, the largest groups were proteins categorized by their involvement in regulation (26%) and
cellular process (24%). The terms localization (13%) and response to stimulus (10%) were also highly
represented (Figure 5B). Finally, in the molecular function class, the GO terms binding (48%), catalytic
activity (30%), and structural molecular activity (8%) were the most frequent (Figure 5C).
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Figure 5. Graphical representation of the GO classes of biological domains association data with the
949 proteins identified in mast cell lipid rafts as annotated by STRAP. Identified proteins were grouped
according to the three main GO classes: (A) cellular component, (B) biological processes, and (C)
molecular function. The data is expressed as a percentage of proteins associated with each GO term.

2.5. Distribution among GO Domains of the Mast Cell Lipid Raft Proteins Identified Using Different
Post-Isolation Methods

In order to evaluate the differences between the methods, the identified proteins were divided into
unique groups for each method and the common group. The proteins were analyzed according to the
three classes of biological domains from GO by STRAP [49]. In the GO cellular component class, the
unique MetI proteins had a higher percentage of proteins linked to the GO terms: cytoplasm, nucleus,
and other. The unique MetII proteins had a higher percentage in cytoplasm, endoplasmic reticulum,
other, other intracellular organelles, and plasma membrane. Moreover, the comparison between the
methods showed an approximately 1.2–2.5-fold increase in unique MetII proteins linked to the terms
endoplasmic reticulum, endosome, other, other intracellular organelles, and plasma membrane. The
common group showed a high percentage of proteins associated with the terms nucleus, other, and
plasma membrane (Figure 6A). The MetII unique proteins were distributed in practically all the terms
in the cellular component in GO. The distribution of the MetII unique proteins with transmembrane
domains was practically identical (Figure S3: Total identified proteins and unique MetII proteins with
transmembrane domains (TMD) have a similar distribution in the cellular component GO class). In
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the biological processes GO class, there was an increased percentage of unique proteins from MetI
associated with the terms cellular process, other, regulation, and response to stimulus. With MetII
the highest percentage of proteins were associated with the terms cellular process, localization, other,
and regulation. Among the common proteins, the highest percentage of proteins were associated with
the terms cellular process, localization, other, regulation, and response to stimulus (Figure 6B). In the
molecular function class, there was an increased percentage of unique proteins isolated with MetI
associated with the terms binding, catalytic activity, and other. With MetII, the highest percentage of
proteins were associated with the terms binding, catalytic activity, and other. In the common group,
the highest percentage of proteins was associated with the terms binding, catalytic activity, and other
(Figure 6C). The identified proteins were also analyzed by the highest percentage within each term
(Table 2). These analyses demonstrate that functionally, the identified proteins were consistent with
their being lipid raft components. Moreover, there was no bias between MetI or MetII as each method
was associated with 10 GO terms and the common proteins were associated with 8 GO terms. However,
the highest percent of proteins associated with a given GO term differed between the methods.
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Figure 6. Analysis of unique and common proteins localized in mast cell lipid rafts isolated with MetI
or MetII. The unique and common proteins identified using MetI and MetII in lipid rafts from RBL-2H3
MCs were analyzed according to the three main GO classes: (A) cellular component, (B) biological
processes, and (C) molecular function. Data for the unique and common proteins identified using MetI
and MetII in lipid rafts from RBL-2H3 MCs was annotated using STRAP.

2.6. Functional Enrichment of the Mast Cell Lipid Raft Proteins

It is also important in proteomic studies to provide a functional assessment of the identified
proteins for further system studies. Therefore, the functional relationship among the proteins identified
in the MC lipid raft proteome was assessed. An analysis was carried out using the data from Rattus
norvegicus proteins available in the DAVID Bioinformatics Resources database [50]. Many functional
groups were identified in this proteome data. These groups were based on the enrichment score, the
number of annotated proteins in each GO term, Fisher exact p-value, and false discovery rate (FDR)
(Table S6: Enriched GO terms from mast cell lipid raft proteome analysis using DAVID Bioinformatic
Resources). The groups with higher enrichment scores are shown in Figure 7. The terms associated with
the highest group enrichment score were extracellular vesicle, extracellular exosome, membrane-bound
vesicle, and extracellular regions; these terms are all consistent with a localization on or near the plasma
membrane. However, the group with the highest fold enrichment was associated with the terms
mast cell degranulation, leukocyte degranulation, and MC activation involved in immune response.
Other significantly enriched single terms that were not grouped were membrane protein complex,
membrane organization, membrane-bounded organelle, cytoskeleton organization, and biological
adhesion (Figure 7). This analysis showed that based on the terms encompassed in the enriched
groups, as well as the isolated terms, that proteins associated with processes such as vesicle-mediated
secretion by immune cells, membrane associated protein localization and stabilization, and immune
cell signaling response were significantly enriched in the MC lipid raft proteome.
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Table 2. Highest percentage of annotated proteins within each GO term.

GO Term Unique MetI Unique MetII Common

Cellular Component Class

Cell surface +

Cytoplasm +

Cytoskeleton + +

Endoplasmic reticulum +

Endosome +

Extracellular +

Macromolecular complex +

Mitochondria +

Nucleus +

Other +

Other intracellular organelles +

Plasma membrane +

Ribosomes +

Biological Processes Class

Cellular process +

Immune system process + +

Interaction with cells/organelles +

Localization +

Metabolic process +

Other +

Regulation +

Response to stimulus +

Molecular Function Class

Binding +

Catalytic activity +

Molecular transducer activity +

Other +

Structural molecular activity +
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Figure 7. Functional relationship among the proteins and their associated GO terms in the mast cell
lipid raft proteome. Groups with the highest enrichment scores following analysis using DAVID are
shown. The enrichment score groups (brown rectangles) and non-grouped terms (blue rectangle) are
indicated according to their biological significance. The fold enrichment factor (orange bars) is also
shown. Data was analyzed using the DAVID Bioinformatics Resources database.

3. Discussion

This proteomic study provides a comprehensive description of the protein composition of RBL-2H3
MC lipid rafts. It provides evidence that the use of two methods to extract lipid raft proteins increases
the proteome coverage and improves the identification of integral and associated lipid raft proteins.
These proteins are involved in various aspects of MC function, especially those related to MC secretion,
organization and stabilization of macromolecules complexes, and signal transduction.

Although the structure, composition, and functional roles of lipid rafts has been extensively
investigated in many cell types, there is no universal protocol for the isolation and enrichment of
these microdomains [24–26]. The lack of a universal protocol for lipid raft isolation stems from the
controversy over the biochemical aspects of raft microdomains, such as their instability, size, and highly
dynamic nature [2,51,52]. However, the solubilization of whole samples with nonionic mild detergents,
such as Triton X-100 at low temperature, followed by sucrose density gradient centrifugation and
the recovery of the detergent resistant membranes (DRMs) from the light fractions of the gradient,
is the most commonly used method to obtain lipid rafts [13,18,22,51,53–55]. This method requires
careful interpretation, since differences in lipid raft isolation methods, such as type and concentration
of the detergent, as well as the duration of the incubation, make results difficult to compare [21,56].
Moreover, evidence suggest that microdomain fractions obtained using detergent-free methods are
less enriched in lipid raft proteins than those prepared with detergents [57].

The proteins found in the low-density fractions may be integral lipid raft constituents or associated
with lipid raft components [23,44,47,48,58]. Some of these proteins, such as LAT1, are known to
be lipid raft components and serve as a guide to elucidate the contents and properties of these
microdomains [23,43,44]. Using LAT1 as a marker, the identification of lipid rafts in the low-density
fractions of the sucrose gradient seen here is supported by previous results in RBL-2H3 MCs [6,59–62]
and in bone marrow-derived MCs (BMMCs) [63]. However, in other cell types, other proteins, such
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as caveolin-1 [64,65], flotillin-1 [64,66,67], and CD-36 [56], are often used to identify lipid rafts. The
findings seen here, as well as those reported in the literature, confirm that Fractions 2 and 3 from
RBL-2H3 MC homogenates are enriched in lipid rafts, and that these fractions may be pooled and used
for proteomic characterization.

Numerous other studies have examined the lipid raft proteome in various cell types and tissues
and form the basis of the RaftProtV2 database [25]. The RaftProtV2 database has been used to compare
proteomic data from previous studies with newly reported lipid raft proteomes. Other investigations
have described a similar percentage of proteins already annotated in the RaftProtV2 database as was
seen in the present study [12,13,68,69]. Furthermore, it has been suggested that less than 25% of
the total reported membrane raft proteins in the RafProtV2 database fall into the high confidence
category [25]. However, in the lipid raft proteome reported in this study, 65% of the proteins were high
confidence raft proteins, indicating that the obtention and post-isolations methods used in this study
resulted in an enriched lipid rafts fraction from MCs.

Part of the proteins identified in the present investigation had not been annotated in the RaftProtV2
database. However, some of the non-annotated proteins belonged to the same family of proteins as
known lipid raft proteins. For example, although FcεRI subunit beta is absent from the RaftProtV2
database, the gamma subunit of the receptor is included [56,70]. The current study confirmed the
presence of the FcεRI subunit beta in MC lipid rafts using proteomic and immuno-blot analysis. FcεRI
subunit beta had previously been reported as a component of MC lipid rafts using western blots and
immunomicroscopy [6,62,63]. Since the RaftProtV2 database does not contain any MC proteomes, not
surprisingly, many of the RaftProtV2 non-annotated proteins are mainly expressed by MCs such as
chymase, FcεRI subunit beta, mast cell carboxypeptidase A, and mast/stem cell growth factor receptor.
Other non-annotated proteins are expressed by MCs and other immune cells, including arachidonate
5-lipoxygenase-activating protein, MHC class I, SAMNS1, macrophage stimulating 1 receptor, and
interleukin-3 receptor subunit beta [71,72].

The use of more than one method to extract proteins from the lipid raft fractions may yield a
more complete recovery of proteins [25]. Both MetI and MetII have been used extensively in other
studies characterizing lipid raft proteomes from different tissues and cell types [1,3,12,14,73,74]. In the
present study, extraction of proteins from the lipid raft fractions using MetI or MetII resulted in the
identification of proteins common to both methods, as well as proteins unique to each method. The
differences observed between MetI and MetII may be explained, in part, by the distinct post-isolation
treatment used in each method. The strategy applied in MetI eliminates the sucrose from the enriched
lipid raft fractions prior to MS analysis [16]. The procedure used in MetII mixes the sample with
another detergent (OGP), followed by methanol-chloroform extraction, which aids in removing the
interfering lipids that could be aggregated with the isolated proteins [73,74]. Extraction using MetII
yielded a higher number of total proteins, as well as those with lipid modifications typical of membrane
raft proteins [1,47].

Lipid modifications can be either permanent cotranslational additions or post-translational
modifications [47,48]. The main lipid modifications are S-palmitoylation, isoprenylation, N-terminal
myristic acid tails, GPI-anchors, and cysteine acylation. Conjugation to lipids seems to be the most
widespread and consistent factor in determining whether a protein will partition into lipid rafts [47,75].
Moreover, the isolation and identification of transmembrane proteins represents one of the most
difficult challenges for MS [25]. However, extraction with chloroform/methanol used in MetII greatly
improved the yield of the predicted transmembrane proteins. Transmembrane domains typically
consist of α–helices or β–sheets, which favor the entry of the proteins into membrane rafts [48,76].
MetII was more efficient in extracting proteins with lipid modification or transmembrane domains and
is thus more suited toward providing MC lipid raft proteins for MS investigations. The post-isolation
treatment used in MetII may expose a greater number of transmembrane proteins, thus making them
available for trypsin digestion [74] and allowing for their subsequent MS identification.
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The importance of proteomic studies goes beyond a simple catalogue of the proteins present in
a given sample. It also provides information on the functional relationships among the identified
proteins. The Gene Ontology (GO) project provides for consistent descriptions of gene products
found in different databases. The association of the lipid raft proteins with the GO class biological
processes and molecular function showed that the MC lipid raft proteins are associated with terms
consistent with the central role of lipid rafts in a number of important cellular events. The terms
such as cellular process and catalytic activity can be correlated with the function of lipid rafts in
protein processing [77]. Moreover, the terms structural molecular activity, binding, and localization
can be related to intracellular trafficking and sorting mechanisms [78,79]. Additionally, the terms
regulation and response to stimulus integrate the function of lipid rafts in diverse signal transduction
pathways [6,7,32,80].

In the analysis of the GO class cellular component, the proteins associated with terms other than
plasma membrane may be explained in part by the fact that many proteins originally located in the
cytoplasm or nucleus could be translocated and interact with plasma membrane constituents to form
protein complexes [81]. Moreover, lipid rafts may also be found in cellular compartments other than
the plasma membrane such as in endoplasmic reticulum and mitochondria [55,74,82–84]. Several
lipids and proteins associated with lipid rafts are synthesized in the endoplasmic reticulum/Golgi
apparatus before being transported to the plasma membrane [27], where they may move laterally
within the plasma membrane as well as traffic continuously between the plasma membrane and internal
compartments [78]. Finally, nuclear lipid microdomains are important in maintaining subnuclear
structures and act as platforms for the transcription process during proliferation [85].

In addition, within the cellular component class, five percent of the identified proteins were
associated with the GO term cytoskeleton. The structure and organization of lipid rafts is tightly
integrated with the cell cytoskeleton [7,13,19,62]. Studies using live cell imaging have shown that the
actin filaments are commonly co-localized with lipid rafts under a stimulus induced co-redistribution
of raft components at the cell surface [86]. Moreover, the dynamic rearrangement of the cytoskeleton
in MCs following stimulation can act to stabilize the lipid raft clusters [6,62,87,88].

The group with the highest enrichment score in the MC lipid raft proteome included the GO terms
extracellular vesicle, membrane-bounded vesicle, extracellular exosome, and extracellular region. The
terms that showed the greatest fold enrichment factor included the terms mast cell degranulation,
leukocyte degranulation, and MC activation involved in immune response. Lipid rafts have ideal
features for participating in intracellular membrane transport, acting as a crucial regulator of vesicle
cargo and their consequent endocytosis and secretion [89–91]. Notably, the hallmark of MC activation
via FcεRI is the immediate release via highly regulated exocytosis (degranulation) of inflammatory
mediators that are presynthesized and stored in MC secretory granules [92,93]. Moreover, perturbation
of the raft structure has a profound impact on FcεRI-mediated degranulation in MCs [6,62,94].

The group with the next-highest enrichment score included proteins that were involved with
the establishment of localization, protein localization, and macromolecular localization. Many of the
proteins associated with these terms are adaptors or scaffolding proteins. These proteins then act
as docking sites for signaling molecules in lipid raft domains forming a multicomponent assembly,
which facilitates signal transduction in diverse pathways [88,95]. Furthermore, other raft proteins
identified in this study were also related to the signal transduction pathways in MCs. These proteins
included CD45 (receptor-type tyrosine-protein phosphatase C), FcγRII (low affinity immunoglobulin
Fc gamma receptor II), MC/stem cell growth factor receptor, IP3-receptor, integrins, phospholipid
scramblase, serine/threonine-protein phosphatase PP1-alpha, protein-tyrosine phosphatase 1B, IQGAP1,
calreticulin, calmodulin, DJ-1, RhoA, Gnai-2, and cdc42 [96–102].

Another group with highly enriched scores included the GO terms membrane microdomain/raft
and membrane region. Several transmembrane proteins, known to be associated with lipid rafts,
were also identified in our MC proteome such as the flotillins and prohibitins. Other scaffold
proteins, such as tetraspanins (CD81 and CD63) and the important transmembrane adaptor proteins
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(TRAPs) in immunoreceptor signaling LAT1 and NTAL (non-T cell activation linker; LAT2) [103],
were also identified in this lipid raft proteome. LAT1 and NTAL become rapidly phosphorylated in
FcεRI-activation, resulting in its association with numerous signaling molecules [32,43,104]. Moreover,
these TRAPs are also involved in the regulation of MC morphology, adhesion, and chemotaxis [104,105].
RACK1 (receptor for activated C kinase 1), a member of the tryptophan-aspartate repeat family of
proteins, was also identified. RACK1 adopts a highly conserved seven-bladed β-propeller structure
that serves as binding sites for multiple partners [106,107]. Recently, RACK1 was identified as a crucial
component of a multiprotein complex formed in T-cell lipid rafts upon TCR (T-cell antigen receptor)
activation [108]. Despite the significant role that RACK1 plays in shuttling and anchoring proteins and
its involvement in immunoregulatory responses [107–109], RACK1 has not previously been described
in MCs.

There was also an increased enrichment score of the group containing the GO terms MC
degranulation, leukocyte degranulation, and MC activation involved in immune response. This group
also showed the highest fold enrichment. This MC lipid raft proteome consistently identified many
of the proteins already described to be involved in MC degranulation, such as SNAREs (soluble
N-ethylmaleimide-sensitive-factor attachment protein receptor), including VAMP (vesicle-associated
membrane protein) 7 [110], VAMP3, VAMP8 [110,111], SNAP-23 (synaptosomal-associated protein
23) [110,112], Syntaxin 3 [113], and Syntaxin 4 [113]. In addition to the accessory proteins the
RAB GTPases (RAB3D, RAB5, RAB7, RAB9A, RAB11, RAB27A, RAB27B, and RAB43) [114–116],
syntaxin-binding protein 2 (MUC18-2) [113], α-SNAP (alpha-soluble NSF attachment protein) [93],
and syntaxin-binding protein 5 (Tomosyn-1) [117] were also identified.

The functionally related group that includes the GO terms positive regulation of signaling, positive
regulation of cell communication, positive regulation of signal transduction was also enriched. Cell
membrane lipids and lipid raft proteins have been implicated in various signaling events, including
those dependent on the immunoglobulin-receptor superfamily in immune cells [18,32,80,118]. In
MCs, the events immediately following FcεRI activation that result in downstream signaling are
still not completely understood [32,87,92]. However, it is known that the aggregated receptors are
translocated into lipid rafts where the SFKs are activated with subsequent phosphorylation of the
receptor subunits [32,87,88]. The N-terminal sequences of SFKs allow them to anchor to saturated
fatty acid derivatives in the inner leaflet of the plasma membrane, enabling their partitioning into
lipid rafts [119,120]. Five of the eight members of SFKs, including Lyn, Fyn, Yes, Fgr, and Lck, were
identified in this lipid raft proteome from non-activated RBL-2H3 MCs.

4. Conclusions

Based on the present data, a comprehensive study of the MC lipid raft proteome provides strong
evidence that our two methods increased the proteome coverage and improved the identification
of integral and associated lipid raft proteins. These proteins are involved in various aspects of
MC function, especially those related to MC regulated secretion, organization and stabilization of
macromolecules complexes, and signal transduction pathways. Thus, this identification of the raft
membrane proteins could provide important tools for further investigation of molecular mechanisms
related to the immunoregulatory functions of MCs.

5. Materials and Methods

5.1. Cell Culture

RBL-2H3, a rat MC line [42], was grown as monolayers in Dulbecco’s Minimum Essential Medium
(DMEM) supplemented with 15% fetal calf serum and an antibiotic-antimycotic mixture (100 U/mL
penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B) in a humidified environment
containing 5% CO2 in air at 37 ◦C. All reagents used for the cell culture were purchased from
ThermoFisher Scientific (Thermo Fisher Scientific, Invitrogen, Carlsbad, CA, USA).
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5.2. Isolation of Lipid Rafts from RBL-2H3 Mast Cells

The lipid rafts were isolated using sucrose density-gradient ultracentrifugation, essentially as
previously described [120]. Briefly, (3–5) × 107 RBL-2H3 MCs were plated in 150 mm tissue culture
dishes (Corning Incorporated - Life Sciences, Oneonta, NY, USA). After 24 h, the cells were washed
twice with ice-cold PBS and harvested and lysed on ice with 0.05% Triton X-100 (v/v) in 2.6 mL ice-cold
MES buffer (25 mM 2-(4-Morpholino) ethane sulfonic acid, pH 6.5, 150 mM NaCl, 5 mM EDTA,
and 1 mM Na3VO4) containing 2 mM PMSF and 50 µL/mL protease inhibitor cocktail. All reagents
were purchased from Millipore Sigma (St. Louis, MO, USA). The resulting suspension was then
homogenized 30 times on ice using a Dounce homogenizer with a tight-fitting piston, followed by
incubation on ice for 15 min. The lysates were then centrifuged for 10 min at 900× g and the 2.6 mL
of supernatant was overlaid on 2.6 mL 80% sucrose (w/v) in a MES buffer in the bottom of a 13 mL
Beckman centrifuge tube (Beckman Coulter, Fullerton, CA, USA) and gently vortexed to give the final
concentration of 40% sucrose. Thereafter, the sample was overlaid with 5.2 mL of 35% sucrose (w/v) in
lysis buffer. Then, 2.6 mL 5% sucrose (w/v) in lysis buffer was added on top to form a discontinuous
gradient. Samples were centrifuged using a Beckman SW40Ti rotor (Beckman Coulter) at 38,000 rpm
for 20 h at 4 ◦C. Fractions 1.3 mL in volume were collected from the top of the tube.

5.3. Immunoblotting Analysis of Lipid Raft Enriched Fractions

In order to localize the lipid rafts in the gradient fractions, 5µL from each fraction were immobilized
on Hybond membranes (GE Healthcare Life Sciences, Marlborough, MA, USA) using the vacuum
microfiltration system Bio Dot (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The membranes
were immunoblotted as previously described [121]. The following primary antibodies were used:
goat polyclonal antibody anti-mouse LAT (Clone Q-20) (Santa Cruz Biotechnology Inc., Santa Cruz,
CA, USA), rabbit polyclonal antibody anti-human Lyn (Clone 44 sc-15) (Santa Cruz Biotechnology
Inc.), mouse mAb anti-FcεRI beta subunit antibodies generously provided by Dr. Reuben Siraganian
(NIH—NIDCR, Bethesda, MD, USA), rabbit polyclonal antibody anti-human Flotillin-1 (ab41927) and
rabbit polyclonal antibody anti-human Histone H3 (ab1791) (Abcam, Cambridge, MA, USA), and mouse
monoclonal antibody anti-rat GD1b derived gangliosides (Clone AR32AA4) (BD Pharmingen, San
Jose, CA, USA). The secondary antibodies used were donkey anti-goat IgG conjugated to horseradish
peroxidase (HRP), donkey anti-rabbit IgG conjugated to HRP, and donkey anti-mouse IgG conjugated
to HRP (Jackson ImmunoResearch Laboratories Inc., West Grove, PA, USA). The membranes were
developed using enhanced chemiluminescence (ECL Kit; GE Healthcare) and the images were obtained
with ImageQuant LAS 4000 (GE Healthcare).

5.4. Extraction and Digestion of Mast Cell Lipid Raft Proteins for Mass Spectrometry

The lipid raft enriched fractions (the low-density Fractions 2 and 3) obtained from three
independent experiments were pooled and the sample was used for two different post-isolation
treatment methods. In MetI, the samples were mixed with ice-cold 50 mM NH4HCO3 (Millipore
Sigma) pH 7.9, washed, and concentrated using an Amicon® Ultra-3 Centrifugal Filter (Merk Millipore,
Burlington, MA, USA). In MetII, the pooled fractions were gently mixed with ice-cold MNE-buffer
(25 mM MES, pH 6.5; 5 mM EDTA; 150 mM NaCl) and pelleted using centrifugation (200,000 × g, 1 h).
Samples were subsequently mixed with 100 µL of 100 mM n-octyl-beta-D-gluco-pyranoside (OGP)
followed by methanol-chloroform extraction as previously described [74].

For both methods, the proteins were enzymatically digested as described previously [122,123] with
some modifications. Briefly, the protein content was quantified using the Bradford reagent (Millipore
Sigma), and bovine serum albumin (BSA; Millipore Sigma) was used as a standard [124]. Then, 50 µg of
protein from each method was added to 10 mL of 50 mM ammonium bicarbonate, pH 8.5. Then, 25 µL
of RapiGESTTM SF Surfactante (0.2% v/v) (Waters, Milford, PA, USA) was added, and the sample was
vortexed and then incubated at 80 ◦C for 15 min. The sample was reduced via incubation with 2.5 µL
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of 100 mM dithiothreitol (DTT) (GE Healthcare) at 60 ◦C for 30 min and cysteine alkylation was done
by incubating the samples with 2.5 µL of 300 mM iodocetamide (GE Healthcare) for 30 min at room
temperature in the dark. The proteins were subsequently digested with 10 µL of trypsin (0.05 mg/µL;
Promega, Madison, WI, USA) at 37 ◦C for 16 h. The samples were subsequently acidified with 10 µL
of 5% trifluoracetic acid (v/v) (Millipore Sigma), followed by incubation at 37 ◦C for 90 min in order
to stop the trypsin digestion and precipitate the RapiGEST™ SF Surfactante, and centrifugation at
21,000× g at 4 ◦C for 30 min was carried out. The supernatants were dried in a Savant™ SpeedVac™
Concentrator (ThermoFisher Scientific), and all obtained peptides were suspended in 49.5 µL of a
solution containing 20 mM ammonium formate and 100 fmol/µL yeast enolase (MassPREPTM protein;
Waters) as an internal standard.

5.5. Nano-Electrospray Ionization Source (ESI) and Ultra-Performance Liquid Chromatography Mass
Spectrometry (UPLC-MSE)

Nanoscale LC separation of tryptic peptides was performed using a nanoACQUITYTM system
(Waters) equipped with a nanoEaseTM 5 mm × BridgeTM BEH130 C18 300 mm × 50 mm precolumn;
trap column 5 mm, 180 mm × 20 mm; and BEH130 C18 1.7 mm, 100 mm × 100 mm analytical
reversed-phase column (Waters). The peptides were separated into 10 fractions and the gradient
elution was performed as follows: 8.7, 11.4, 13.2, 14.7, 16, 17.4, 18.9, 20.7, 23.4, and 65% acetonitrile/0.1%
(v/v) formic acid, with a flow rate of 2000 mL/min. The source was operated in positive ionization mode
nano-ESI (+). GFP [Glu]1-fibrinopeptide B human ([MC2H]2+ = 785.8426) (Millipore Sigma) was used
for lock mass calibration of the apparatus, using a constant flow rate of 0.5 µL/min at a concentration
of 200 fmol protein. MS analysis was performed on a Synapt G1 MSTM (Waters) equipped with a
NanoElectronSpray source and two mass analyzers: a quadrupole and a time-of-flight (TOF) operating
in V-mode. The mass spectrometer was programmed in the data-dependent acquisition mode, in
which a full scan in the m/z region of 50–2000 was used. Data were obtained using the instrument in
the MSE mode, which switched between the low energy (6 V) and elevated energy (40 V) acquisition
modes every 0.4 s. Samples were analyzed using three replicates.

5.6. Data Processing and Protein Identification Analysis

The acquired MS raw data were processed using the ProteinLynx Global Server version 2.4 (PLGS)
(Waters). The data were subjected to automatic background subtraction, deisotoping, and charge
state deconvolution. After processing, each ion comprised an exact mass-retention time (EMRT) that
contained the retention time, intensity-weighted average charge, inferred molecular weight based
on charge, and m/z. The processed spectra were searched against Rattus norvegicus entries (29,952
sequences) from the UniProt database (http://www.uniprot.org). The mass error tolerance for peptide
identification was under 50 ppm. The parameters for protein identification included: (I) the detection
of at least two fragment ions per peptide; (II) five fragments per protein; (III) the determination of
at least one peptide per protein; (IV) carbamidomethylation of cysteine as a fixed modification; (V)
phosphorylation of serine, threonine, and tyrosine, and oxidation of methionine were considered as
variable modifications; (VI) maximum protein mass (600 kDa); (VII) one missed cleavage site was
allowed for trypsin; (VIII) and a maximum false positive ratio (FDR) of 4% was allowed. The minimum
repeat rate for each protein in all replicates was two. The protein table was compared using the
Spotfire® v8.0 software, and graphs were generated for all data.

5.7. Bioinformatics Analysis

To detect the co-differentially presented protein in our data sets, we performed a comparative
analysis of the overlaps using Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/).
RaftProtV2 database (http://raftprot.org) was used to systematically analyze the known lipid raft
proteins [26]. Since proteomes of rat lipid rafts correspond to less than 13% of the included data [26],
data obtained from human and mouse lipid raft proteomes was also used in this analysis.

http://www.uniprot.org
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://raftprot.org


Int. J. Mol. Sci. 2019, 20, 3904 16 of 22

The graph of experimentally determined lipid modification types was generated using
PhosphoSitePlus (http://www.phosphosite.org) [125]; SwissPalm (http://www.swisspalm.org) [126];
PRENbase (http://mendel.imp.ac.at/PrePS/PRENbase) [127]; MYRbase (http://mendel.imp.ac.at/
myristate/myrbase) [128]; and PredGPI (http://gpcr.biocomp.unibo.it/predgpi) [129]. In order to
systematically investigate the denaturing properties of the applied methods, an analysis of potential
transmembrane domains (TMD) was conducted using TMHMM 2.0 (http://www.cbs.dtu.dk/services/
TMHMM/) on the complete data set [130,131].

Gene Ontology (GO) annotation charts based on the complete list of UniProt Knowledgebase
accession entries were generated using STRAP (Software Tool for Researching Annotations of
Proteins) [49]. The Database for Annotation Visualization and Integrated Discovery (DAVID;
http://david.ncifcrf.gov), version 6.8, National Institute of Allergy and Infectious Diseases [50], was
used for enrichment analysis, enrichment scores for annotation groups, and fold enrichment factors
for individual GO terms, as well as Fisher’s exact p-values and false discovery rates (FDR) using
Benjamini–Hochberg coefficients, adjusting for multiple comparisons.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/16/3904/
s1. Figure S1: Dynamic range of the proteomic analysis. Figure S2: Immuno-blot analysis of the β-subunit of FcεRI
from RBL-2H3 MC lipid rafts. Figure S3: Total identified proteins and unique MetII proteins with transmembrane
domains (TMD) have a similar distribution in the cellular component GO class. Table S1: Detailed annotation
of proteins identified in Method I. Table S2: Detailed annotation of proteins identified in Method II. Table S3:
Detailed annotation of proteins identified in Methods I and II. Table S4: Mast cell lipid raft proteins absent from
RaftProtV2 database. Table S5: Mast cell lipid raft proteins analyzed by RafProtV2 database. Table S6: Enriched
GO terms from mast cell lipid raft proteome analysis using DAVID Bioinformatic Resources.
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