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Abstract—The non-uniform distribution of atherosclerosis
within the arterial system has been attributed to pro-
atherogenic influences of low, oscillatory haemodynamic
wall shear stress (WSS) on endothelial cells (EC). This theory
is challenged by the changes in lesion location that occur with
age in human and rabbit aortas. Furthermore, a number of
point-wise comparisons of lesion prevalence and WSS have
failed to support it. Here we investigate the hypothesis that
multidirectional flow—characterized as the average magni-
tude of WSS components acting transversely to the mean
vector (transWSS)—plays a key role. Maps of lesion prev-
alence around aortic branch ostia in immature and mature
rabbits were compared with equivalent maps of time average
WSS, the OSI (an index characterizing oscillatory flow) and
transWSS, obtained from computational simulations; Spear-
man’s rank correlation coefficients were calculated for
aggregated data and 95% confidence intervals were
obtained by bootstrapping methods. Lesion prevalence
correlated positively, strongly and significantly with trans-
WSS at both ages. Correlations of lesion prevalence with the
other shear metrics were not significant or were significantly
lower than those obtained for transWSS. No correlation
supported the low, oscillatory WSS theory. The data are
consistent with the view that multidirectional near-wall flow
is highly pro-atherogenic. Effects of multidirectional flow on
EC, and methods for investigating them, are reviewed. The
finding that oscillatory flow has pro-inflammatory effects
when acting perpendicularly to the long axis of EC but anti-
inflammatory effects when acting parallel to it may explain
the stronger correlation of lesion prevalence with transWSS
than with the OSI.
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ABBREVIATIONS

Akt Protein kinase B
EC Endothelial cells
eNOS Endothelial nitric oxide synthesis
~n The normal to the arterial surface
NF-jB Nuclear factor kappa-light-chain-enhancer

of activated B cells
NO Nitric oxide
OSI Oscillatory shear index
SICM Scanning ion conductance microscopy
t Time
T The period of the cardiac cycle
TAWSS Time average wall shear stress
transWSS Transverse wall shear stress
WSS Wall shear stress

INTRODUCTION

Overview

A striking feature of atherosclerosis is its predilec-
tion for certain well-defined arterial sites, particularly
within areas of branching and curvature. This pro-
pensity led to the suggestion that hemodynamic stres-
ses are critical in atherogenesis, and has motivated
extensive research into endothelial mechanotransduc-
ers and downstream signaling pathways. It has recently
been argued that the directionality of the hemody-
namic stresses is a key factor26 and, independently,
that the direction of hemodynamic stresses can alter
the balance of pro- and anti-atherosclerotic signals
within endothelial cells (EC).34 Here we explain why
this new biomechanical concept is required, present a
quantitative study providing further evidence for a
relation between flow directionality and disease,

Address correspondence to Peter D. Weinberg, Department of

Bioengineering, Imperial College London, London SW7 2AZ, UK.

Electronic mail: p.weinberg@imperial.ac.uk

Annals of Biomedical Engineering, Vol. 43, No. 1, January 2015 (� 2014) pp. 16–25

DOI: 10.1007/s10439-014-1095-4

0090-6964/15/0100-0016/0 � 2014 The Author(s). This article is published with open access at Springerlink.com

16



describe methods by which underlying mechanisms can
be studied, and discuss relevant findings concerning
cellular and molecular pathways.

Historical Background

The systematic study of lesion location commenced
with Anitschkow’s finding that aortic lipid deposits
develop in an arrowhead-shaped region surrounding
the downstream half of branch ostia in the cholesterol-
fed rabbit.1 Anitschkow suggested that mechanical
forces were involved, but it was Fry14 who proposed
the more specific hypothesis that the formation of le-
sions downstream of branches in hyperlipidemic ani-
mals is caused by an elevation of haemodynamic wall
shear stress (WSS) in such regions.

At around the same time, Caro et al.8 were studying
disease patterns in post mortem human aortas. Their
model studies confirmed that areas downstream of
branch mouths were exposed to high WSS but, con-
trary to the results of Anitschkow, they found that
such areas had a particularly low frequency of disease.
They consequently proposed that high WSS is pro-
tective and that disease is triggered instead by low
WSS. Subsequently Ku et al.,21 by applying laser
Doppler anemometry to transparent replicas of human
carotid bifurcations, provided evidence that human
atherosclerosis occurs in regions where near-wall flow
is oscillatory. A new index, the Oscillatory Shear Index
(OSI) was developed to capture this pattern of stresses.
As later modified by He and Ku,16 it is defined as:
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where ~sw represents the instantaneous WSS vector, t
the time, T the cardiac cycle and TAWSS the time
average WSS. Because high OSI is associated with low
time average WSS (the latter appearing in the
denominator of the former), the theories of Caro et al.
and of Ku et al. have become combined to some ex-
tent. The concept that low, oscillatory WSS triggers
atherosclerosis underlies most current research con-
cerning localizing factors.

Several Patterns of Lesions Occur in Human Arteries

It is not obvious how the low, oscillatory WSS
theory could account for the pattern of atherosclerosis
observed by Anitschkow and subsequently confirmed
by many others. That might appear unimportant; it is

certainly conceivable that lesions in hyperlipidemic
rabbits have different localizing factors from those
involved in human disease. Indeed, Caro et al.8 sug-
gested that entry of cholesterol from blood into the
wall might be critical in hyperlipidemia whilst exit into
the lumen of lipids made or modified in the wall might
be limiting in normolipidemia, leading to mirror image
patterns of disease. We have suggested, however, that
the different patterns reflect a difference in age.37 The
apparent discrepancy, it is proposed, results from an
inappropriate comparison of immature animal vessels
with mature human ones. (Young rabbits are generally
used for reasons of cost, whereas post mortem human
tissue usually derives from adult cadavers).

In support of this idea, we have shown that the area
downstream of branches is spared when mature rabbits
are administered a cholesterol-rich diet.4 The fact that
immature and mature rabbits develop different pat-
terns of disease despite being on the same diet for the
same length of time10 argues against the idea that the
pattern depends on the relative levels of lipid in the
blood and the wall. Evidence that there is a parallel
change with age in human lesion patterns is provided
by the work of Sinzinger et al.,32 who observed lipid
deposition downstream of branch ostia in the aortas of
human fetuses, newborns and infants; the pattern
resembled the one observed by Anitschkow in imma-
ture rabbits and not the one observed by Caro et al. in
mature human aortas. Additional age-related changes
in human aortas were demonstrated by Sloop et al.33:
lesions occurred at the lateral margins of branch ostia
in early adulthood, but upstream of ostia later on.

A Re-evaluation of the Low, Oscillatory WSS Theory

The occurrence of several patterns of lesions in
human (and rabbit) arteries provides an obvious
challenge to the low, oscillatory WSS theory. Are all
patterns of lipid deposition explained by low, oscilla-
tory WSS, requiring that it occurs at different sites at
different ages? Or is there a change with age in the type
of stress that triggers lesions?

We investigated this question by comparing maps of
lesions with maps of WSS (derived from computa-
tional simulations of steady flow) in immature and
mature rabbit aortas.24 Both data sets were derived
from 4 to 9 rabbits at each age, both were mapped at
high resolution, and the comparison was made using a
novel statistical method that did not assume a linear
relationship between the variables or independence of
neighboring grid squares in each map. Assessments
were made separately for the proximal segment and the
middle segment of the descending thoracic aorta and
for regions around intercostal branch ostia.

Multidirectional Flow and Atherosclerosis 17



Patterns of WSS, like patterns of lesion prevalence,
changewith age in the rabbit.25That appears tobe caused
by a change in the amount of taper of the aorta, which
alters the persistence down the vessel of Dean vortices
generated in the arch.25 Despite both patterns changing
with age, the evidence for a correlation between themwas
not strong24: significance was obtained for the proximal
descending thoracic aorta at both ages, but not for the
middle segment at either age. Around branch ostia, the
correlation was borderline in immature animals and not
significant in mature ones. Even where significance was
obtained, the relation was always positive; that is, high
lesion frequencies were associated with high WSS—no
evidencewasobtained for anassociationwith lowWSS in
any location at either age.

The failure to obtain any evidence for the low shear
stress theory, despite examining mature rabbits whi-
ch—at least in the vicinity of branches—have a lesion
pattern resembling one found in adult human aortas,
led us to re-examine the strength of the published data
for the theory. A systematic review was conducted,27

examining all papers in PubMed that contained the
following search terms: atherosclerosis (or a variety of
words describing the same disease), shear, and one of
15 words indicating that shear stresses had been
obtained by computational fluid dynamics. The search
was restricted to numerical studies because experi-
mentally derived WSS is currently less reliable. The
resulting 406 articles were then evaluated against a set
of pre-defined inclusion and exclusion criteria, leaving
40 studies. Of these, 32 (80%) were thought by their
authors to support the low, oscillatory WSS theory.

Superficially, that seemed like good evidence for the
theory. However, a more detailed examination pre-
sented a different picture. Studies were ranked in cat-
egories depending on the degree of quantification and
data reduction used when making the comparison
between shear and disease; those in the lowest category
presented a purely descriptive analysis and those in the
highest category employed a point-by-point statistical
comparison.27 When subdivided in this way, the 27
studies in the lowest four categories universally sup-
ported the low, oscillatory WSS theory, the eight
studies in the next two categories (which made quan-
titative, spatially resolved comparisons between shear
and disease metrics but used either axial or circum-
ferential averaging) were approximately evenly di-
vided, and all five studies in the most rigorous category
failed to support the theory.

Development and Preliminary Evaluation
of a New WSS Metric

We speculated that a different metric of so-called
‘‘disturbed flow,’’ perhaps associated with different

influences on the biology of EC, might give a better
correlation.26 Examination of flows and cellular
responses in experiments where EC were cultured in
swirling dishes, described in more detail below, led us
to suggest that multidirectional WSS might be partic-
ularly atherogenic. The OSI does not distinguish well
between uniaxial pulsatile flow and multidirectional
flow. Figure 1 shows that it is possible to obtain the
same time averaged WSS and the same OSI for two
very different flow regimes, one consisting of purely
uniaxial near-wall flow and the other being truly
multidirectional. To distinguish between them, we
developed a new metric, the transverse WSS (trans-
WSS), to capture multidirectionality.26

The metric is defined as:
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where ~n represents the normal to the arterial surface. It
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and it averages over the cardiac cycle the magnitude of
those components of the instantaneous WSS vector
that are perpendicular to the mean WSS vector in the
plane of the endothelium.

TransWSS by itself does not completely characterize
the pattern of WSS. For example, it cannot distinguish
between unidirectional flow and reversing but uniaxial
flow, both of which have a transWSS of zero (Fig. 1);
the OSI and time average WSS are still required to
capture these potentially important aspects of flow
dynamics. However, transWSS does distinguish
between uniaxial and multidirectional flows even when
they have the same OSI. There are some limitations to
the applicability of transWSS but they appear unlikely
to be important in practice, and the metric has clear
advantages over others that have attempted to capture
aspects of multidirectionality—these points are re-
viewed elsewhere.26

Preliminary Results and Need for a Further Study

When the metric was used to post-process simula-
tions of pulsatile flow in immature and mature rabbit
aortas, patterns of transWSS were observed at some
branches that showed a remarkable resemblance to
patterns of diet-induced lipid deposition at the two
ages.26 However, the results of our systematic review27

discourage subjective comparisons between patterns of
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WSS metrics and disease. Here we present a new study
that quantified the correlation and compared it with
those obtained for time average WSS and the OSI.

METHODS

The investigation employed novel statistical tech-
niques to compare average maps of WSS metrics and
lesion frequencies around intercostal branch ostia in
immature and mature rabbits. The WSS and lesion
data derived from two previous studies10,26 that are
only briefly summarized here.

Computational Fluid Dynamics Study

Simulations of pulsatile flow in the thoracic aortas
of two immature and two mature male New Zealand
White rabbits (HSDIF strain) were conducted using
the in-house spectral/hp element solver Nejsar.26

Aortic geometries were obtained from micro-CT scans
(nominal 50-lm resolution) of vascular corrosion
casts.25 The casts may have been affected by resin
shrinkage during polymerisation but WSS maps ap-
pear insensitive to precise intercostal branch geome-
try.19 The aortic inflow velocity profile was blunt; an
earlier parametric study25 showed that flow solutions
are insensitive to this assumption too. The inflow
waveform was physiological with a mean Reynolds
number of 300. Branch outflow waveforms had the

same shape as the aortic waveform, as suggested by the
Doppler ultrasound data of Sloop et al.,33 and were in
phase with it. Approximately 0.2% of aortic flow en-
tered each intercostal artery, consistent with the
velocity data of Sloop et al.33 and the diameter ratios
of the two vessels. (Although the magnitude of WSS
variations around ostia is sensitive to branch flow rate,
the character of the pattern is not affected to the same
extent.19) A zero velocity gradient/constant pressure
boundary condition was imposed at the extended
aortic outflow. Walls were rigid, which again appears
to make little difference to WSS results [data not
shown]. Tethering, and therefore asymmetric move-
ment of the aorta during the cardiac cycle, was ig-
nored; Zeng et al.39 have demonstrated that this is a
reasonable approximation even for the coronary
arteries.

Disease Localisation

Aortic lipid deposition was induced in 8 immature
and 9 mature male New Zealand White rabbits of the
HSDIF strain by administering a diet supplemented
with 1% cholesterol for 8 weeks.10 Lesions were
stained with oil red O and, after counterstaining the
aorta with Evans’ Blue Dye, were imaged en face at a
nominal resolution of 8 lm using a flatbed scanner. A
grid with line spacing equivalent to 120 lm was
superimposed on each image so that the presence or
absence of lesions could be manually scored in each

FIGURE 1. Three different flow environments to which an EC could be exposed. The black arrows represent WSS vectors at
various times in the cardiac cycle. The gray arrows indicate their evolution with time during the cardiac cycle. The table lists
TAWSS (Pa), OSI, and transWSS (Pa) for the three environments. Modified from Ref. 26.
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square, and frequency-of-occurrence (‘‘prevalence’’)
maps were obtained by combining the maps.9

Analysis of the Maps

The study analyzed maps centred on intercostal
branch ostia in the proximal and middle segments of
the descending thoracic aorta. The maps had a size
equivalent to 1.92 9 1.92 mm in immature rabbits and
2.4 9 2.4 mm in mature ones, approximately com-
pensating for the change of size with age. They were
obtained by averaging data from 112 immature and
126 mature branches examined in the lesion study,10

and from 18 immature and 20 mature branches in the
numerical study.26

Each haemodynamic metric was correlated with le-
sion prevalence at each age, using Spearman’s rank
coefficients to avoid the assumption of a linear rela-
tion. To avoid the problem of autocorrelation between
grid squares, confidence intervals of the coefficients
were assessed using a bootstrapping approach. Briefly,
many additional lesion prevalence maps were created
by repeatedly drawing new samples from the original
data; the same number of individual branch maps was
used in each of these samples as when creating the
original average map, but because sampling with
replacement was used, some branches would have been
included more than once and others not at all. Repe-
tition of the process gives an estimate of the sampling
distribution of the original map. The same procedure
was carried out for the shear metrics, and correlation
coefficients were then computed for different pairwise
comparisons of the shear and lesion maps, leading to a
distribution of correlation coefficients from which a
confidence interval was obtained. (Further details of
the statistical methods will be presented elsewhere.)
The significance of the correlation coefficients was
determined by observing whether the confidence
interval included a coefficient of zero, and the signifi-
cance of differences between coefficients was deter-
mined by observing whether their absolute confidence
intervals overlapped. (It was necessary to consider only
magnitudes, and to ignore signs, so that the strength of
a positive correlation could be compared with the
strength of a negative one).

RESULTS

Average maps of lesion prevalence and WSS metrics
for immature and mature animals are shown in Fig. 2.
The same maps are presented in Fig. 3 but absolute
lesion frequencies and absolute values of WSS metrics
have been replaced by ranks—that is, the pixel with the
lowest intensity was given a rank of 1, the next lowest a

rank of 2, etc.—to correspond with the ranking
method used to calculate correlations between the
maps.

In young animals, lesions occurred distal to branch
ostia in the downstream arrowhead pattern first de-
scribed by Anitschkow. In mature animals, the highest
lesion prevalence occurred at the sides of the branches,
with low prevalence upstream and downstream of the
branch, along its centreline. This pattern has varied
slightly between studies: the lateral peaks of high
prevalence occurred more proximally in a meta-ana-
lysis4 of trials involving much older animals of the
HSDIF strain fed a variety of atherogenic diets—if the
ostium is considered as a compass rose then the lesions
occurred at the ‘‘East’’ and ‘‘West’’ locations, rather
than the ‘‘Southeast’’ and ‘‘Southwest’’ ones shown in
Fig. 2—and the ratio of frequencies upstream and
downstream of the branch is somewhat different in
maps of the spontaneous lesions that occasionally oc-
cur in old rabbits.3 Nevertheless, in all cases the pat-
tern is broadly similar to the one identified in young
adult human aortas by Sloop et al.33

Time average WSS in immature animals was ele-
vated in a patch downstream of the branch, as pre-
dicted by the boundary layer arguments of Fry14 and
Caro et al.8 However it was also elevated, albeit to a
lesser extent, upstream of the branch. That reflects the
convergence of upstream streamlines caused by fluid
entering the branch from regions lateral to it.19 The
patches of elevated WSS had a slightly different shape
in the mature animals, but the overall distribution did
not change substantially.

A similar lack of fundamental change with age was
seen close to the ostia in the maps of OSI. In both
immature and mature animals, the highest OSI occu-
red at the lateral and proximal margins of the ostium;
only the balance between the lateral and proximal
peaks changed slightly, the lateral ones being more
accentuated in the immature animals. At both ages,
values of the OSI were substantially lower further
away from the ostium, and were lowest upstream and
downstream of the branch.

The maps of transWSS showed the greatest change
with age. In the immature animals, transWSS was high
in an arrowhead-shaped pattern around the down-
stream half of the ostium. In the mature animals,
however, the point and two barbs of the arrowhead
largely disappeared, and the periostial region of high
transWSS merged with longitudinal stripes of moder-
ately elevated transWSS at the lateral margins of the
map.

Figure 4 shows the correlation coefficients and
associated confidence intervals for the relation between
lesion prevalence and the three shear metrics at both
ages. Considering first the time average WSS, there was
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no significant correlation in the mature animals. There
was a positive correlation in the immature animals.
The correlation in the younger group was significant in
this study despite being only borderline in our earlier
investigation because the new statistical methods have
somewhat greater power; however, the value of
the coefficient was low. There was no significant

correlation between lesion prevalence and the OSI for
the mature animals, and a significant inverse correla-
tion—albeit with another low coefficient—for the
immature animals. TransWSS correlated significantly
with lesion prevalence in mature animals, unlike the
other two metrics. It also correlated significantly in the
immature animals, and significantly more strongly

FIGURE 2. En face maps showing the pattern of lesion prevalence and three WSS metrics around intercostal branch ostia (white)
in the aortas of immature (top row; 1.92 3 1.92 mm) and mature (bottom row; 2.4 3 2.4 mm) rabbits. Mean aortic flow is from top to
bottom.

FIGURE 3. The maps shown in Fig. 2 but with absolute values replaced by the rank order of pixels (blue 5 lowest pixel intensity,
red 5 highest pixel intensity).
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than the other two metrics. At both ages, the correla-
tion coefficients for the transWSS were positive and
approximately three times those observed for the other
metrics.

DISCUSSION

TransWSS correlated positively, strongly and sig-
nificantly with lesion prevalence at both ages. Corre-
lations of lesion prevalence with the other shear
metrics were either not significant or significantly lower
in magnitude than those obtained for transWSS. No
correlations supported the low, oscillatory WSS the-
ory. The data are consistent with the views that lesions
in immature and mature aortas are triggered by the
same type of hemodynamic stress, that the anatomical
pattern of these stresses changes with age, and that
multidirectional near-wall flow is highly atherogenic.
These results are subject to some uncertainty. First, the
mature pattern of lesions has varied slightly from study
to study, although it retains the same essential char-
acteristics.3,4,10 Second, the boundary conditions used
in the numerical simulations are approximations; for
example, Sloop et al.33 showed that the aortic flow
waveform near intercostal branch ostia changes with
age in people, but such variations were not taken into
account. Third, we only described results for a small
region around branch ostia; the study demonstrated
that in at least these areas correlations with the dif-
ferent shear metrics can be separated, and significantly
stronger correlations obtained for transWSS, but it did
not establish a universal connection. Additionally, we

have not yet investigated a range of other shear
metrics (including spatial and temporal WSS gradi-
ents) putatively linked to atherosclerosis. The likely
significance (or otherwise) of multidirectional flow
can be established further by studies that overcome
these limitations but also by investigating effects of
such flow on putatively pro- and anti-atherogenic
behaviors of EC.

Methods for Studying Effects of Transverse
Flow In Vitro

We have employed two methods for studying effects
of transverse or multidirectional flow on EC. One,
developed by Wang et al., uses the geometry of a
standard parallel-plate flow chamber to accustom EC
to flow from one direction. The EC, as is common in
such apparatus, grow on a glass slide. In the new
apparatus, however, this slide can be manually rotated
by any angle in the plane of its surface. Since the flow
direction remains constant, this results in the EC being
exposed to flow from a direction other than the one to
which they had adapted. The apparatus is described in
more detail elsewhere.35

A strength of the method is that the flow is pre-
dictable and controllable. Numerical simulations and
experiments examining particle tracks showed that the
cells are exposed to uniform, laminar flow and a well-
defined, steady shear stress.35 The change in angle of
the flow can also be controlled precisely.

The second method is to grow EC in conventional
circular dishes or multi-well plates placed on an orbital
shaker. The orbit of the dish or well forces a swirling
motion in the medium, and hence applies a shear stress
to the cells. This method has been used for many years
to compare effects of flow with no flow [e.g., Ref. 36].
However, it can also be used to distinguish effects of
different types of flow because the temporal pattern of
shear vectors varies with distance from the center of
the well. Of particular interest in the current context is
its potential to compare uniaxial and multidirectional
flows.

Unfortunately, the flows are difficult to characterize.
Experimental methods such as optical Doppler veloc-
imetry have been used12 but most work, starting with
that of Berson et al.,5 has employed numerical meth-
ods. The computational simulations are complicated
by the presence of a free surface. Nevertheless, there is
increasing understanding of the effects of well diame-
ter, medium height, orbital radius and angular velocity
on the spatial and temporal patterns of shear [e.g., Ref.
30]. At least one combination of these parameters gives
a pattern of flow where all EC are exposed to a similar
mean shear stress magnitude but shear vectors in the
center of the well are more multidirectional than those

FIGURE 4. Mean correlation coefficients (with 95% confi-
dence intervals) for the relation between lesion prevalence
and the three WSS metrics shown in Figs. 2 and 3.
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near the rim.28 (However, excursions of shear magni-
tude from the mean are also greater near the rim.28)

A further disadvantage of the technique is the need
to compare cell properties between different regions of
the well, restricting studies to phenomena that can be
measured in a spatially resolved way (usually by
microscopical techniques). Its two substantial advan-
tages are that the cells can be chronically exposed to
the flows (which is more representative of the in vivo
situation) and that throughput is high.

Ideal methods have yet to be devised. The first
method would be improved if the multidirectional
flows could be applied chronically, for example by a
rotational oscillation of the glass slide, and if multiple
slides could be used to increase throughput. Another
possibility would be to alter the standard parallel-plate
flow chamber in some other way, for example by
incorporating multiple inflow and outflow ports.
(Studies of this type have been conducted by Kataoka
et al.,18 but the frequency of change in flow direction
was far removed from the physiological range consid-
ered here.) It might be possible to obtain more
appropriate and better-controlled flows in the swirling
plate method, and particularly to eliminate radial
variation in the range of shears, by manufacturing
non-cylindrical wells.

Preliminary Data on Mechanisms

Despite the drawbacks of both techniques, inter-
esting data have been obtained with them. We first
consider measurements acquired by using the parallel
plate device.34

Transient phosphorylation of the p65 subunit of the
NF-jB transcription factor, a key trigger of inflam-
matory activation in EC, occurred 5 min after cells
were turned 90� to the flow to which they had adapted
for 24 h, but not if they were turned by 180� or 360�.
(Phosphorylation activates the molecule). Phosphory-
lation of eNOS, generally regarded as atheroprotec-
tive, was not increased following rotation through 90�,
but was increased by rotation through 180�. Phos-
phorylation of Akt, an upstream activator of eNOS,
showed similar behavior to eNOS, except that the
phosphorylation was maintained for longer.34

It appears that the polarity of the cells is what
matters. These effects were not observed in EC that
had been pre-exposed to flow for 2 rather than 24 h,
and were therefore not aligned with that flow. Fur-
thermore, when naı̈ve EC were exposed to onset of
flow, there was preferential nuclear translocation of
NF-jB in individual cells that were oriented perpen-
dicularly to the flow direction. Thus, orientation
without flow modulates responses in the same way.
Lastly, effects of oscillatory flow were examined on EC

aligned on micropatterned fibronectin lines. Flow that
was perpendicular to the cells’ direction stimulated
reactive oxygen production and NF-jB activation
whereas parallel flow had little effect. By contrast,
phosphorylation of eNOS and production of NO were
high in parallel and negligible in perpendicular flow.
Thus oscillatory flow, widely regarded as pro-athero-
genic, did indeed have pro-atherogenic effects when
acting perpendicularly to aligned and elongated EC,
but it had anti-atherogenic effects when acting parallel
to them. This result may explain the absence of an
overall correlation between the OSI and lesion preva-
lence described above.

An interesting response obtained by using the
swirling plate system in conjunction with scanning ion
conductance microscopy (SICM) was that EC cultured
near the edge of the wells, where shear is most uniaxial,
were more elongated and aligned and less compliant
than cells in the center of the well, where the shear is
multidirectional.29 When the SICM technique was
applied to different regions of fresh porcine aorta, EC
of the outer curvature of the arch, which is generally
assumed to be protected from atherosclerosis, were
more elongated and aligned and less compliant than
cells from the atheroprone inner curvature.29 An
association between high compliance and multidirec-
tional flow in vitro, and with sites expected to develop
lesions in vivo, is of interest because altered stiffness
may represent an early event in mechanotransduction;
EC become significantly more compliant as early as
30 s after exposure to shear stress.11

Potential Upstream and Downstream Pathways

As we recently noted,31,38 a completely symmetrical
cell cannot be sensitive to the direction of flow; some
degree of elongation or functional asymmetry is
required before transWSS can be recognized. This
suggests that transWSS might have most effect where
cells are more elongated. Why then, does purely
oscillatory flow, where direction changes by 180�,
activate NF-jB and induce inflammatory pathways in
EC in vitro? (Low magnitudes of unidirectional flow,
though less potent than oscillatory flow, also activate
predominantly inflammatory pathways.23) Wang
et al.34 have suggested that the answer to this question
may reside in the fact that low and oscillatory shears
fail to induce EC alignment; the cells retain some
elongation but are randomly oriented. Thus, even
unidirectional or purely oscillatory flow will be per-
pendicular to a substantial fraction of the cells in the
population. This complexity may account for seem-
ingly contradictory reports of the association of EC
shape with lesions.6,15 EC also align perpendicularly to
the direction of cyclic stretch,17 so off-axis flow—and,
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by implication, high lesion prevalence—might also
occur when the angle between flow and stretch is not
equal to 90�.

Endothelial morphology could be directly involved
in sensing transWSS. Flow over EC is locally per-
turbed because the surface of the cells is not flat, and
the degree of perturbation depends on flow direction:
peak WSS and peak WSS spatial gradient are both
greater when flow is perpendicular to the long axis of
aligned cells than when it is parallel.2 Internal deter-
minants might also be involved. For example, shear
direction could be sensed relative to cytoskeletal
structures such as actin bundles, microtubules or focal
adhesions, so long as these have a preferred orientation
within the cell. Integrin and focal adhesion dynamics
are already implicated in flow sensing, so are likely
candidates. In this context, it is of interest that F-actin
stress fibers are not always aligned with the long axis of
the cell: Kim et al.20 showed that their orientations can
diverge by up to 30�.

Considering pathways further downstream, activa-
tion of NF-jB by transverse flow is likely to increase
recruitment of circulating monocytes. The distribution
of intimal white blood cells around the aorto-coeliac
branch of rabbits bears little resemblance to maps of
time average WSS or the OSI obtained from compu-
tational simulations of flow at the same branch, but
does correspond to patterns of secondary flow visual-
ized in physical models.7,22 The strength of the sec-
ondary flows varies during the cardiac cycle, so it
would be of interest to examine the correspondence
with transWSS. Finally, we note that uptake of plasma
macromolecules by the rabbit aortic wall around
intercostal branch ostia shows age-related patterns
that visually resemble the patterns of transWSS and
lesion prevalence13; we speculate that they depend on
the former and help determine the latter.

CONCLUSION

The new statistical investigation presented above
showed that the different patterns of lesions seen
around aortic branch ostia in immature and mature
rabbit aortas both correlate significantly with the level
of transWSS, an index of multidirectional flow. Fur-
ther studies will examine a wider range of ages, the
effect of varying boundary conditions, other WSS
metrics that have been linked to atherosclerosis, and
the correlations obtained in other parts of the arterial
system. They will also determine why transWSS has an
age-dependent pattern.

The correlation between transWSS and lesion
prevalence observed at immature and mature rabbit
intercostal branch points may be relevant to human

disease since the two patterns of lipid deposition clo-
sely resemble those seen in very young32 and young
adult33 human aortas. Together with the studies dem-
onstrating possible mechanisms,29,34 the results have
the potential, almost literally, to change the direction
of the 50-year search for mechanical factors that
localize atherosclerosis.
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