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ABSTRACT

This study explores the mechanisms of glucocorticoid-induced osteoporosis (OP) and Rheumatoid arthritis (RA), focusing on apoptosis and
its role in the progression from RA to OP. Using microarray data from the GEO database, differential gene expression analysis was conducted
with the limma package, identifying significant genes in RA and OP. Weighted Gene Co-expression Network Analysis (WGCNA) further
examined gene relationships with the disease status, identifying co-expression patterns. Key genes were pinpointed by intersecting differen-
tially expressed genes from RA and OP datasets with WGCNA module genes. Functional enrichment analysis using the “clusterProfiler”
package focused on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. Machine learning methods, including Lasso
and Random Forest, refined the selection of key genes related to apoptosis. Immune infiltration analysis using CIBERSORT assessed immune
cell differences between disease and normal samples. The study highlighted two crucial genes: ATXN2L and MMP14. These genes were iden-
tified through various analyses and found to be significantly associated with the progression of RA and OP. Gene Set Enrichment Analysis of
ATXN2L and MMP14 revealed their involvement in specific biological processes and pathways. Correlation analysis between these key genes
and immune cell infiltration showed significant associations. The ROC analysis evaluated the diagnostic performance of ATXN2L and
MMP14, with miRNA regulatory networks related to these genes also predicted. In summary, this research provides valuable insights into the
molecular mechanisms of RA and OP, emphasizing the importance of apoptosis and immune processes.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0233961

INTRODUCTION

Osteoporosis (OP) and rheumatoid arthritis (RA) are two preva-
lent, interrelated conditions with growing global health burdens.
Osteoporosis, primarily defined by a loss of bone mass and density, is
associated with increased fracture risk, particularly in aging popula-
tions.1–4 The increasing longevity of populations worldwide has signifi-
cantly heightened the medical and economic impacts of OP.1,3 On the
other hand, RA is an autoimmune condition characterized by chronic

inflammation of the joints, leading to pain, swelling, and progressive
joint destruction.5–7 Affecting about 1% of the global population, RA
not only reduces patients’ quality of life but also increases morbidity
and mortality.6,7

In recent decades, advancements in the treatment of RA, such as
biologic therapies and disease-modifying antirheumatic drugs
(DMARDs), have significantly improved disease outcomes, slowing
joint destruction and inflammation.8,9 However, RA patients,
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especially those undergoing glucocorticoid therapy, are at a heightened
risk for developing osteoporosis.10 This dual burden of disease is
driven by shared mechanisms, including chronic inflammation and
the impact of RA treatments on bone metabolism.11 The accelerated
bone loss in RA, particularly through mechanisms involving immune
system activity, makes the disease a key contributor to secondary
osteoporosis.12

One crucial process contributing to both RA and OP progression
is apoptosis or programmed cell death.13 Apoptosis plays a major role
in maintaining the balance between bone formation and resorption,
and its dysregulation can lead to both excessive bone degradation (as
seen in osteoporosis) and joint damage (as observed in RA).14–16

Specifically, immune cells infiltrating joint tissues in RA release pro-
inflammatory cytokines that promote apoptosis of bone-forming cells,
leading to reduced bone density and strength.16 Despite some under-
standing of these processes, the precise genetic and molecular path-
ways linking apoptosis to the progression from RA to OP remain
poorly defined.

The goal of this study is to address this gap by identifying
apoptosis-related genes that contribute to both RA and OP using com-
prehensive bioinformatics analysis. We aim to explore the underlying
genetic mechanisms involved in apoptosis, immune infiltration, and

the progression of RA to OP. This research may unveil potential thera-
peutic targets that could help to mitigate bone loss in RA patients.17

RESULTS
Gene selection process and differential analysis results

In this study, the identification of key genes was conducted using
a multi-step approach to ensure that the genes selected were highly rel-
evant to both rheumatoid arthritis (RA) and osteoporosis (OP). We
began by collecting differentially expressed genes (DEGs) from the
GEO datasets GSE12021 (RA) and GSE56814 (OP). Differential analy-
sis of dataset GSE12021 identified 2660 genes with p-values less than
0.05. Furthermore, volcano plots [Fig. 1(a)] and heatmaps [Fig. 1(b)]
of differentially expressed genes were constructed. In GSE12021,
through the WGCNA analysis, modules with p-values less than 0.05
were screened, yielding 1571 module genes related to RA [Figs. 1(c)
and 1(d)]. This network analysis allowed us to focus on gene co-
expression patterns, highlighting genes that are likely to be functionally
related and potentially significant in RA. The GSE56814 dataset for
OP revealed 418key genes through differential expression analysis.

The next step involved intersecting these gene sets to identify
genes common to both RA and OP using a differential analysis of the
OP dataset, and by using a selection criterion of p< 0.05, we identified

FIG. 1. Differential analysis and WGCNA Results for RA; (a) volcano plot of differentially expressed genes; (b) heatmap showing differentially expressed genes; (c) display of
threshold for WGCNA analysis; and (d) display of various modules in WGCNA.
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418key genes. We then created a heatmap [Fig. 2(a)] and a volcano
plot [Fig. 2(b)] of these differentially expressed genes. Finally, we inter-
sected the differentially expressed genes from RA, genes related to
RA’s WGCNA modules, and the differentially expressed genes from
OP [Fig. 2(c)], ultimately identifying 23key genes for further analysis.
This intersection allowed us to narrow down genes that are potentially
implicated in both diseases. To further refine this list, we cross-
referenced the intersected genes with an apoptosis gene set, focusing
specifically on genes involved in programmed cell death, a process
known to play a significant role in the pathogenesis of both RA and
OP.

Enrichment analysis

We further conducted GO [Figs. 3(a) and 3(b)] and KEGG [Figs.
3(c) and 3(d)] enrichment analyses on these 23 key genes: C20orf27,

EIF1, CDCA4, ARID5A, BRD4, JUND, ADRBK1, MMP14, NR4A1,
ATXN2L, IER2, NFKB2, MED25, DND1, MAVS, GOLGA2, PLK3,
ZC3H7B, JUNB, TSC22D4, ACIN1, FSTL3, and CCL25. The GO
enrichment analysis results indicated that these key genes are
mainly enriched in pathways, such as organelle inheritance, Golgi
inheritance, and ossification. The KEGG enrichment results
showed that these key genes are primarily concentrated in path-
ways like osteoclast differentiation and the MAPK signaling
pathway.

To further explore the mechanisms from RA to OP, we inter-
sected these key genes with genes related to apoptosis to investigate the
role of apoptosis-related genes in these two diseases. As shown in
Fig. 4(a), we identified 10key genes: BRD4, MMP14, NR4A1,
ATXN2L, NFKB2, MAVS, GOLGA2, PLK3, JUNB, and ACIN1. We
conducted a protein–protein interaction analysis to study these genes
and their related proteins, as depicted in Fig. 4(b).

FIG. 2. Identification of key genes: (a) heatmap displaying differentially expressed genes in OP patients; (b) volcano plot showing differentially expressed genes in OP patients;
and (c) determination of key genes in RA and OP.
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Machine learning screening

Initially, we used LASSO on the OP dataset to screen the afore-
mentioned 10 key genes, from which we identified six crucial genes
[Figs. 5(a) and 5(b)], namely,BRD4, MMP14, NR4A1, ATXN2L,
NFKB2, and ACIN1. Subsequently, a random forest analysis was
conducted, resulting in the identification of 10 key genes [Figs. 5(c)
and 5(d)].

Furthermore, we refined the screening of these 10key genes in
the RA dataset. Through the LASSO analysis [Figs. 6(a) and 6(b)], we
identified four key genes: MMP14, ATXN2L, MAVS, and JUNB. The
random forest analysis yielded the top 10 key genes [Figs. 6(d) and 6
(e)]. By intersecting these sets of genes, we identified two crucial genes:
ATXN2L and MMP14 [Fig. 6(c)].

Furthermore, we conducted the GSEA analysis on these two key
genes to explore their potential pathways. The GO analysis results for
ATXN2L showed significant enrichment in GOBP_PLATELET_
DEGRANULATION and GOCC_AZUROPHIL_GRANULE. The
KEGG analysis results for ATXN2L indicated significant enrichment

in KEGG_CITRATE_CYCLE_TCA_CYCLE and KEGG_
GLUTATHIONE_METABOLISM [Figs. 7(a) and 7(b)]. For MMP14,
the GO analysis results revealed significant enrichment in GOBP_
DETECTION_OF_CHEMICAL_STIMULUS and GOBP_MYELOID_
LEUKOCYTE_MEDIATED_IMMUNITY. The KEGG analysis results
for MMP14 showed significant enrichment in KEGG_LYSOSOME and
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION
[Figs. 7(c) and 7(d)].

Immune correlation analysis

We conducted a correlation analysis between the selected key
genes and the immune infiltration results from GSE56814 (Fig. 8). We
found that ATXN2L is positively correlated with B cells naïve, T cells
CD4 memory activated, and T cells regulatory Tregs [Fig. 8(a)], while
MMP14 is positively correlated with B cells memory and negatively
correlated with T cells CD4 memory resting [Fig. 8(b)]. All p-values
were less than 0.05. Additionally, there were significant differences in

FIG. 3. Enrichment analysis results of key genes; (a) and(b) results of the GO enrichment analysis and (c) and (d) results of the KEGG enrichment analysis.
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FIG. 4. Protein–protein interaction analysis. (a) Intersection of key genes and (b) display of the protein–protein interaction network.

FIG. 5. Machine learning screening. (a) and (b) Key genes selected using the LASSO method based on the OP dataset and (c) and (d) key genes selected using the Random
Forest method based on the OP dataset.
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T cells CD4 memory resting and Mast cells resting between the disease
and normal groups [Fig. 8(c)].

ROC analysis and prediction of related miRNAs

Finally, we conducted ROC performance evaluation and found
that ATXN2L has an AUC value of 0.667, and MMP14 has an AUC
value of 0.649, indicating good diagnostic performance [Fig. 9(a)]. We
also constructed a protein interaction network [Fig. 9(b)] and pre-
dicted the miRNA interaction networks associated with these two key
genes [Figs. 9(c) and 9(d)].

DISCUSSION

Historically, managing osteoporosis (OP) has involved medica-
tion and lifestyle adjustments, with increasing public awareness about
fracture prevention being crucial. Research indicates a significant cor-
relation between osteoporosis and rheumatoid arthritis (RA), where
RA-induced deterioration of bone quality accelerates the development
of periarticular osteoporosis.18 Existing studies suggest that RA can
exacerbate OP by accelerating the deterioration of cortical bone

geometry and reducing bone mass, which in turn accelerates periartic-
ular osteoporosis.19 Preventive measures for RA include a balanced
diet, weight control, appropriate exercise, and correcting improper
postures. Consuming foods rich in calcium and vitamin D, engaging
in gentle exercises like walking and calisthenics, and correcting
improper daily postures, such as prolonged squatting, are all effective
prevention strategies. These measures, combined with targeted treat-
ments informed by transcriptomic analyses, could offer more precise
interventions for patients.20

In this study, we employed a comprehensive bioinformatics
approach to analyze microarray data from RA and OP using the GEO
database datasets GSE12021 and GSE56814. Our differential expres-
sion analysis identified 418 key genes in the OP dataset and 1571 mod-
ule genes related to RA. Heatmaps and volcano plots demonstrated the
expression patterns of these genes in disease samples vs normal sam-
ples, underscoring the importance of cell apoptosis in OP and RA. By
cross-analyzing the differentially expressed genes from RA and OP, we
identified 23key genes that potentially play critical roles in both dis-
eases. GO and KEGG enrichment analyses of these genes revealed their
primary involvement in biological processes, such as organelle

FIG. 6. Determination of key genes; (a) and (b) key gene selection based on the RA dataset using LASSO method; (c) intersection of key genes; (d) and (e) key gene selection
based on the RA dataset using Random Forest method.
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inheritance, Golgi inheritance, and ossification, as well as pathways
including osteoclast differentiation and the MAPK signaling pathway.
These results provide deeper insights into the roles of these genes in
both OP and RA, aligning with known mechanisms of bone metabo-
lism and inflammation.

The application of machine learning methods, including
LASSO and random forest analysis, refined the identification of
key genes and confirmed their potential diagnostic value through
ROC analysis. Immune infiltration analysis revealed significant
correlations between key genes and various immune cell types,
especially B cells, T cells, and regulatory T cells (Tregs). This
finding highlights the importance of immune regulation in both
OP and RA. Notably, ATXN2L (Ataxin-2-Like) and MMP14
(Matrix Metalloproteinase 14) emerged as genes of significant
interest. ATXN2L, associated with RNA metabolism and neuro-
degenerative diseases, may contribute to the pathogenesis of OP
through its involvement in cellular processes related to bone
health.21,22 MMP14, a key player in tissue remodeling and

extracellular matrix degradation, is crucial for understanding the
development of RA and its associated joint degradation.23,24

Dysfunction in ATXN2L could potentially contribute to osteopo-
rosis through disruptions in cellular processes, while altered
MMP14 activity might impact the degradation of articular carti-
lage, influencing RA progression.25 The identification of
ATXN2L and MMP14 as key players in both RA and OP is clini-
cally significant. ATXN2L, involved in RNA metabolism and
linked to neurodegeneration, may also influence bone health
through its role in post-transcriptional regulation, particularly in
processes like apoptosis, which is integral to bone cell turnover.
This makes ATXN2L a promising therapeutic target, especially in
managing osteoporotic bone loss where apoptosis is dysregulated.
MMP14, a member of the matrix metalloproteinase family, is
essential for tissue remodeling and is implicated in extracellular
matrix degradation. Its role in RA is particularly significant, as
the breakdown of articular cartilage and joint tissue is a hallmark
of RA progression. MMP14’s role in cartilage degradation and

FIG. 7. GSEA results; (a) GO analysis results for ATXN2L; (b) KEGG analysis results for ATXN2L; (c): GO analysis results for MMP14; and (d) KEGG analysis results for
MMP14.
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tissue remodeling makes it a strong candidate for therapeutic
intervention, with potential applications in both RA and OP.
Modulating MMP14 activity could slow joint degradation in RA
patients and reduce bone resorption in OP patients.

Our study provides a deeper understanding of how cell apoptosis
influences RA and OP progression by integrating transcriptomic data
with bioinformatics analysis. Our findings corroborate existing
research showing that RA-induced inflammation accelerates bone loss
and increases susceptibility to OP due to periarticular bone degrada-
tion. The identified pathways, such as osteoclast differentiation and
MAPK signaling, are consistent with established mechanisms of bone
metabolism and inflammation. The machine learning techniques that
highlighted ATXN2L and MMP14 as key genes suggest that these
genes could be promising targets for therapeutic interventions.
Targeting these genes may help in developing more effective treat-
ments for RA and OP by addressing the underlying molecular mecha-
nisms. However, the reliance on public datasets introduces potential
biases, and future research should validate these findings through
experimental studies and expanded patient datasets. Overall, our study
offers crucial insights into the molecular mechanisms of RA and OP

and provides new targets for therapeutic strategies, potentially improv-
ing disease management and patient outcomes.

CONCLUSION

The ATXN2L and MMP14 genes may play important roles in the
pathogenesis of osteoporosis and RA, offering new perspectives and
potential therapeutic targets for future research. Further studies are
needed to elucidate the specific roles of these genes and validate our
findings through experimental methods. Our research provides valu-
able insights into the role of cell apoptosis in RA and osteoporosis and
highlights potential new targets for treatment. By enhancing our
understanding of these mechanisms, we can look forward to discover-
ing new therapeutic approaches to more effectively manage these chal-
lenging conditions.

METHODS
Sample sources

Microarray data for rheumatoid arthritis (RA) were obtained
from the Gene Expression Omnibus (GEO) database, which is
GSE12021 dataset,15 including 9 normal and 12 disease samples. For

FIG. 8. Immune infiltration analysis, (a) correlation between ATXN2L and immune infiltration results; (b) correlation between MMP14 and immune infiltration results; and (c) box
plot of immune infiltration results across different groups.
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osteoporosis (OP), the GSE56814 dataset, containing 31 disease and 42
normal samples, was selected for analysis.

Differential analysis

The Limma package in R was employed for differential gene
expression analysis on the GSE12021 (RA) and GSE56814 (OP) data-
sets. The criterion for selecting differentially expressed genes (DEGs)
was set to p< 0.05 to ensure significance.16 These DEGs were used for
subsequent analysis to identify genes with altered expression between
disease and normal samples.

WGCNA analysis

The WGCNA package was employed for the WGCNA analysis
of GSE12021, examining the correlation between modules and disease
status. The parameters included power¼ 6, TOMType¼ “signed,”
minModuleSize¼ 30, recreateThreshold¼ 0, and mergeCutHeight
¼ 0.25. Genes selected for further analysis had a standard deviation
greater than zero, excluding outliers. The most relevant modules to
PMOP were identified, and the “pickSoftThreshold” function from the

“WGCNA” package was used to set the optimal soft threshold, divid-
ing the data into different modules, with b¼ 19 serving as the power
for constructing an unscaled network. To merge similar modules in
clusters, the threshold was set at 0.25, and the minimum number of
modules was set to 30. Each module contained genes with similar co-
expression characteristics.17

Identification of key genes

To identify key genes involved in both rheumatoid arthritis (RA)
and osteoporosis (OP), we analyzed gene expression data from multi-
ple sources. We intersected differentially expressed genes (DEGs) from
the GSE12021 dataset (RA) with genes from RA-related Weighted
Gene Co-expression Network Analysis (WGCNA) modules and com-
pared these with DEGs from the GSE56814 dataset (OP). This inter-
section highlighted genes potentially involved in both diseases. To
further refine our focus, we cross-referenced these genes with an apo-
ptosis gene set to pinpoint those specifically related to apoptosis, thus
identifying key genes implicated in the progression of both RA and OP
through apoptotic pathways.

FIG. 9. Key protein ROC and interaction networks. (a) ROC graphs of key proteins. (b) Protein–protein interaction (PPI) network of key proteins. (c) miRNA interaction network
of MMP14. (d) miRNA interaction network of ATXN2L
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Enrichment analysis

For functional enrichment analysis of the intersecting genes from
rheumatoid arthritis (RA) and osteoporosis (OP), we utilized the
“clusterProfiler” R package (v4.0). This analysis included Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment to identify significant biological pro-
cesses, molecular functions, and pathways related to apoptosis and
immune regulation. We clustered keywords based on similarity and
selected the most representative terms with the highest enrichment.
Statistical significance was determined with a threshold of p< 0.05.26

Machine learning screening

Lasso regression, a machine learning method, was employed for
apoptosis-related gene selection using the glmnet package, applied to
both GSE12021 (RA) and GSE56814 (OP) datasets. Lasso helps to
refine gene selection by applying a regularization penalty, effectively
identifying key genes related to apoptosis, which minimizes overfitting
and reduces irrelevant gene contributions.27 The datasets were normal-
ized, and cross-validation determined the optimal regularization
parameter (lambda). The genes with non-zero coefficients were con-
sidered significant for further analysis. To validate their discriminatory
power, Receiver Operating Characteristic (ROC) analysis was con-
ducted, plotting the sensitivity and specificity to evaluate their predic-
tive accuracy in distinguishing disease from normal states. The AUC
(Area Under the Curve) values quantified the ability of each gene to
differentiate between classes, with higher AUC values indicating better
performance.28 Following this, Single-Gene Gene Set Enrichment
Analysis (GSEA) was performed to explore the functional relevance of
these key genes. GSEA helps to reveal how each gene influences biolog-
ical processes by identifying enriched pathways in the dataset.
Statistically significant enrichment (p< 0.05) provided insight into the
genes’ involvement in pathways crucial to RA and OP pathophysiol-
ogy, such as immune response, inflammation, and bone metabolism,
further emphasizing their potential as diagnostic markers or therapeu-
tic targets.28

Immune infiltration analysis

The CIBERSORT analysis technique was used to analyze the lev-
els of immune cell infiltration between disease and normal samples in
GSE56814, with the “PERM” parameter set to 1000 and the cutoff
value at p< 0.05.29 Additionally, the proportions of each immune cell
type in the samples were calculated and displayed using bar graphs.
The “pheatmap” package was used to create heatmaps of 22 immune
cells, and the “vioplot” package was employed to display their abun-
dance. Using the “corrplot” package, a correlation heatmap was cre-
ated to visualize the relationships between 22 different infiltrating
immune cells. Predictions were also made for miRNA regulatory genes
related to key genes.30
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