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A Statistical Physics 
Characterization of the Complex 
Systems Dynamics: Quantifying 
Complexity from Spatio-Temporal 
Interactions
Hana Koorehdavoudi1 & Paul Bogdan2

Biological systems are frequently categorized as complex systems due to their capabilities of generating 
spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological 
systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this 
paper, we develop a new paradigm to study a collective group of N agents moving and interacting in 
a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion 
of the group and their associated transition probabilities. This framework enables the estimation of 
the free energy landscape corresponding to the identified states. Based on the energy landscape, we 
quantify missing information, emergence, self-organization and complexity for a collective motion. 
We show that the collective motion of the group of agents evolves to reach the most probable state 
with relatively lowest energy level and lowest missing information compared to other possible states. 
Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, 
self-organization and complexity over time. Consequently, this algorithm can be integrated into new 
frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization 
and complexity.

A complex system refers to a system in which there is a lack of precise relation between the system’s outcomes 
and the original causes of those outcomes1–4. The main characteristics of complex systems are their unpredictable 
and nonlinear dynamics. This complexity in a system is due to the intricate heterogeneous coupling between the 
components of the system, which makes it impossible to analyze the components individually and isolated from 
the rest of the system5. The close coupling and interactions between the units of the complex system cause recog-
nizable collective behavior at larger scales6.

A group of agents or animals moving collectively is an example of a complex system. The collective character-
istics between the agents of a group are regulated by behavioral tendencies, as well as short-range and long-range 
interactions among them. In such a complex system, the group with identical agents’ behavior evolves through 
different states (i.e., spatio-temporal arrangement/configuration of the agents moving in a collective group forma-
tion)7,8. We can encode the dynamics (evolution) of the group among different states by constructing a free energy 
landscape representation9–21. Different factors like the number of members, internal capabilities of the individuals 
(e.g., sensitivity to neighbors, motion speed of individuals, computational/processing capabilities of agents) and 
external properties (e.g., environmental and boundary condition) influence the overall collective behavior and 
the free energy landscape; further, these factors can contribute to various phase transitions in the group structure 
among several possible states in the corresponding free energy landscape.

Despite significant research and progress in studying natural22–30 and engineered31–43 collective systems, the 
field is still trying to quantify the dynamical states in a collective motion and predict the transition between 
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them. Toward this end, in this paper, we develop a new approach, which for the first time identifies and extracts 
the dynamical states of the spatial formation and structure for a collective group. Our mathematical framework 
enables the estimation of the free energy landscape of the states of the group motion and also quantifies the transi-
tions among them. In this approach, we are able to distinguish between stable and transition states in a motion by 
differentiating them according to their energy level and the amount of time the group prefers to stay in each state. 
We noticed the collective group has a lower energy level at stable states compared to transition ones. This could 
be the reason for which the group prefers to stay for a relatively longer time in stable states compared to transition 
states during their motion. Furthermore, the group’s structure may convert to one of the possible transition states 
with higher energy level while reorganizing itself and evolving between two different stable states with different 
spatial organization.

To provide a quantifiable approach for the collective motion complexity, based on the newly described free 
energy landscape, we introduce first the concept of missing information related to spatio-temporal conforma-
tion of a group motion and then quantify the emergence, self-organization and complexity associated with the 
exhibited spatial and temporal group dynamics. We define these metrics for a collective motion based on general 
definitions in information theory presented by Shannon44,45. Our approach enables a mathematical quantification 
of biological collective motion complexity. Furthermore, this framework allows us to recognize and differentiate 
among various possible states based on their relative energy level and complexity measures. Identifying these 
dynamical states opens the avenue in robotics for developing engineered collective motions with desired level of 
emergence, self-organization and complexity. For example, if a particular set of states and their dependent struc-
ture correspond to a highly robust yet agile collective motion, then one can use this information theoretic inspired 
metrics for engineering the agent-to-agent interactions rather than focusing on the highly expensive computation 
strategy for an agent based model to achieve a certain degree of emergence, self-organization and complexity. We 
clarify this further in discussion section of manuscript. This framework can also help to study the evolution of 
the motion of various animal groups in nature to better understand their means to achieve energy efficiency46.

The remaining of this paper is organized as follows: In the first section of results, we present our framework to 
extract the possible states in the collective motion and the strategy to build the corresponding energy landscape 
for transitions between them. To demonstrate the benefits of our approach, we first apply this strategy to quantify 
the energy landscape of a self-organizing model of a simulated group of agents based on local interactions among 
its individuals. Next, we define the missing information for the group structure. In the second section, we apply 
the same framework to three natural groups of swimming bacteria, flying pigeons and ants and study their energy 
landscapes. We define emergence, self-organization, and quantify the complexity of a collective motion based on 
these newly introduced metrics. For the case of bacteria, we concluded that adding chemoattractant to the envi-
ronment, decreases the number of possible states for the group motion and the free energy landscape is smoother 
compared to the case without chemoattractant. Finally, the discussion section concludes the paper and outlines 
some future research directions.

Results
Estimating the free energy landscape for a collective motion based on identified spatio-tempo-
ral structural states of the group. The agents move coherently within a collective group while interacting 
with their immediate neighbors and determine their overall trajectory of motion with respect to other agents. 
Consequently, the group’s structure evolves among various spatio-temporal structural states. We can identify 
and extract these states of the group moving in three-dimensional space from the individuals’ trajectories using 
our algorithm explained as follow (see the free energy landscape section in the Methods for more details). First, 
we divide the trajectories of all the individuals into equal sub-intervals of a specific lenght. Next, we compute the 
multivariable probability distribution function of the location of all the individuals in every sub-interval (Fig. 1a). 
We use Kantorovich metric (see equation (5) in free energy landscape section in Methods) to cluster these sub-
interval time series based on their similarities and closeness in the probability distribution function (Fig. 1b). 
Each cluster contains subintervals with similar dynamical configuration and can be interpreted as a distinct state. 

Figure 1. Schematic description of the main steps for building the energy landscape for a group of N agents 
moving in a three-dimensional space. (a) First, we subdivide the trajectories of all agents in the group to equal 
sub-intervals centered at time tc with a time window of [ − ∆ + ∆t t/2, /2c c ], where Δ  is the predefined time 
scale. Next, we estimate the three-dimensional probability distribution function of the motion of the group for 
each sub-interval. (b) We use the Kantorovich metric to cluster these sub-interval time series based on their 
similarities in the probability distribution function. Each cluster of sub-intervals can be interpreted as a state for 
the collective motion. (c) In the last step, we estimate the transition probability matrix among the identified 
states of the collective motion.
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In the next step, we estimate the transition probability matrix between the identified states (Fig. 1c) and based 
on these probabilities, we are able to construct the free energy landscape for the transitions between these states 
(see equations (6) and (7) in free energy landscape section in Methods). Our formalism generalizes the method 
of local equilibrium state analysis presented by Akinori Baba and his coworkers13,47 to construct the energy land-
scape of a one-dimensional single molecule time series. To further exploit this free energy landscape description, 
we develop an information theoretic framework for quantifying the degree of emergence, self-organization and 
complexity of a collective group motion.

To analyze our framework, we first use a well-known agent-based model31 which captures different behavior 
of a collection of interactive agents in a three dimensional space (see the simulation section in the Methods for 
more details about the model). This model is based on simplified local interactions between the individuals and is 
able to mimic the spatial dynamics of a group of animals such as bird flocks or fish school. By varying the degree 
of local interactions among the agents in this model, we can observe different types of behavior from the group31. 
The motion of each individual in the group is the outcome of local repulsion, alignment and attraction tendencies 
depending on the location and orientation of the neighboring agents. The individuals tend to align themselves 
with the neighbors, while avoiding collision by keeping a minimum distance between them. Individuals avoid 
being isolated and keep the group to move as a single coherent entity by maintaining an attraction tendency 
between them.

Figure 2. Various collective patterns of a simulated model of a group of agents moving in a three 
dimensional space. (a) Torus: Individuals rotate around a center point within an empty space (See the 
simulation section in the Methods for more details about the model). (b) Swarm: Individuals show attraction 
and repulsion behavior between themselves and there is no orientation behavior consequently no parallel 
motion. (c) Dynamic parallel group: Individuals align with each other and make the group more motile 
compared to two previous cases. (d) Highly parallel group: Individuals are in a highly aligned arrangement and 
the group is more motile compared to previous cases.
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The dynamics of the group can change between four different common collective behaviors depending on 
the width of different zones around the individuals (Fig. 2). These four collective motion behaviors identified 
by Couzin and coworkers31 are: torus, swarm, dynamic parallel group and highly parallel group. The torus con-
figuration emerges when the individuals rotate around an empty space. This happens when the zone of orien-
tation is relatively small compared to zone of attraction. In this case individuals have a tiny zone of repulsion 
around them (Fig. 2a). On the other hand, when individuals exhibit an attraction or repulsion behavior between 
themselves and there is no orientation behavior (consequently no parallel motion), the colony demonstrates a 
so-called swarm collective behavior (Fig. 2b). The dynamic parallel group emerges by increasing the zone of ori-
entation, which causes the individuals align with each other and makes the group more motile compared to the 
above-mentioned two cases (Fig. 2c). The group shifts to a highly parallel group behavior when the zone of orien-
tation is relatively bigger compared to the case of dynamic parallel group (Fig. 2d). In this case, the individuals are 
in a highly aligned arrangement and the group is more motile compared to the previous cases31.

We analyze these four types of collective behavior separately using our free energy landscape framework and 
show that: (1) each behavior is a combination of various structural states and (2) the group is transitioning among 
these spatio-temporal states over time. We identify and extract these states as building blocks for each collective 
behavior type. Figure 3 summarizes the transition probabilities between them for each case. We use the esti-
mated transition probabilities to compute the free energy landscape using equation (6) and (7) in the free energy 
landscape section in Methods. Comparison between different cases shows that swarm behavior evolves between 
more possible states and this confirms that there is lower level of arrangement in the group in swarm phase. As 
a result, the transition matrix and correspondingly its energy landscape for this case has more spikes and is less 
smooth compared to the other cases (Fig. 3b). In contrast, for torus and dynamic parallel group behaviors there 
is more structural order due to alignment and parallel motion between individuals. Consequently, the collective 
dynamics of the group is characterized by fewer possible states when compared to swarm behavior and the tran-
sition matrix and energy landscape is smoother (Fig. 3a and 3c). For highly parallel group all the individuals are 
completely aligned with each other and the structure of the group has the highest arrangement compared to the 
other behaviors, so the structure of the group evolves between the lowest number of possible structural states and 
the transition probability matrix is less spiky (Fig. 3d).

Missing information of a group’s structure can be quantified using the transition probability 
matrix among the identified structural states. In what follows, we quantify the missing information 
of the group for different types of collective behavior related to the model presented in the previous section. The 

Figure 3. Transition probabilities among the states identified in different collective behaviors of the 
simulated agent-based model. (a) Torus, the plot shows the transition probability between different states 
in this collective behavior. (b) Swarm, the group of agents has the highest number of states in this collective 
behavior and the landscape has more spikes and is less smooth compared to the other cases. (c) Dynamic 
parallel group, the transition probability looks similar to the torus phase, this similarity is due to preference of 
individuals to align their motion parallel to their neighbors. (d) Highly parallel group, the group has the lowest 
number of possible states in this phase and the landscape is less spiky due to high preference of individuals to 
move parallel with respect to each other.
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missing information has been defined as a way to quantify the number of possible different ways to arrange a 
specific system44,48. Therefore, it estimates the level of disorder in a system. For a collective motion, we consider it 
as a level of missing communicated information between the agents due to their interactions with each other. This 
can be interpreted as the amount of information needed to specify the exact physical state of the group forming 
a specific spatial arrangement. This also means how much internal order or uncertainty a group formation has in 
a specific state. Figure 4a compares the missing information of the swarm for different collective behaviors with 
different number of individuals (see missing information section in Methods). In our analysis, we consider the 
same initial conditions for the individuals’ location and speed. The radii of individuals’ interaction zones gener-
ating similar collective behavior are identical irrespective of the population size of the group. Figure 4a shows the 
transition from a swarm phase to torus, dynamic parallel group and then highly parallel group; corresponding to 
this transition, we observe that the missing information is decreasing due to more alignment among the neigh-
bors and increasing internal order of the group structure.

To further investigate the effect of local interactions on missing information related to the group structure, 
we increase the group density to 100 individuals, we fix the radius of zone of repulsion and zone of orientation, 
and we change the zone of attraction. We consider the same initial condition for the individuals’ location and 
speed in all the cases. We perform the same analysis and quantify the missing information of the collective 
group. Figure 4b (blue line) shows that by increasing the radius of zone of attraction while maintaining the same 
initial condition it results in decreasing the missing information. Increasing the zone of attraction causes the 
individuals to interact more with each other rather than being isolated and as a result the group tends to show 
more collective arrangment. This means there is more structural order and less missing information about 
the group formation. Similarly, fixing the radius of zone of repulsion and zone of attraction and increasing the 
radius of zone of orientation contributes to a reduction in the missing information (red line in Fig. 4b). This 
means that the expansion of orientation zone makes the individuals to align with each other and move parallel, 
which implies an increasing degree of internal order within the group. Consequently, the missing information 
decreases.

From energy landscape to estimation of missing information, self-organization and complexity  
of three different natural groups. Bacteria. Cellular collective groups can create complex patterns 
based on their simple behavioral rules. Different ways of communication and information transfer between them 
affects their individual behaviors and motion. To investigate and quantify the complexity of cellular groups, we 
study motion of S. marcescens bacteria with density of 108 (bacteria/cm3) moving in vitro. We consider the motion 
of 9 bacteria (our analysis can be extended to a higher number if we are able to track and extract long time tra-
jectories of all the individuals) in the experiments and consider it as a collective group for our analysis (see S. 
marcescens dataset from Methods for details). Next, we identify the possible states for the spatial formation of the 
selected group by analyzing the time trajectories of individuals’ motion. We investigate two different cases with 
and without distribution of chemoattractant in the environment. Considering the case without chemoattractant 
distribution in the environment (Fig. 5a), the analysis identifies four states for the formation of the group motion. 
When the transition probability of one state has higher level, it indicates that the amount of energy needed for the 
group of bacteria to create that formation is relatively lower. Based on our analysis, the first state has the lowest 
energy in the landscape compared to others. This state with the lower energy formation has the highest transition 
probability in the transition matrix, which means it is the most probable state for the group formation over time. 
We can order other states relatively to this state based on energy landscape from lowest energy to the highest. We 
categorize them into two groups of stable and transitioning states. When the group has higher probability to stay 
in the same state over time, we consider it as a stable state, which can be recognized as local equilibrium state for 

Figure 4. Quantifying the missing information of the entire simulated agent-based model for various 
interaction rules. (a) We quantify the missing information from the dynamics of a group of agents considering 
different interaction rules which causes various collective behavior in the group while considering the same 
initial condition for the agents position. This plot shows the transition from swarm phase to torus, dynamic 
parallel group and then highly parallel group and the fact that the missing information is decreasing due to an 
increase in the internal order of the group. (b) The quantified missing information extracted from the group 
dynamics when the population consists of 100 individuals for varying value of the radius of zone of orientation 
while radii of zone of repulsion and attraction is fixed (red line) and in other case varying value of the radius of 
zone of attraction while radii of zone of repulsion and orientation is fixed (blue line).
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Figure 5. Transition probability matrix and complexity analysis for different natural collective motions.  
(a) Transition probabilities among the possible states for a collective group of 9 bacteria selected from a population 
density of 108 bacteria/cm3 moving in an environment without chemoattractant gradient. (b) Complexity analysis 
for different states compared to the first identified state with lowest energy level for a group of 9 bacteria selected 
from a population density of 108 bacteria/cm3 moving in an environment without chemoattractant gradient. This 
plot shows the level of change in missing information when the collective motion leaves each identified state to 
evolve to a new state (Note S1 in Supplementary Documents explains this in more details). It also demonstrates 
the relative emergence and relative self-organization and relative complexity of the swarm when evolving from any 
of the identified state to the first and most probable state. (c) Transition probabilities between the possible states 
for a group of 9 bacteria selected from a population density of 108 bacteria/cm3 moving in an environment with 
chemoattractant gradient. (d) Complexity analysis for different states compared to the first identified state with 
lowest energy level for a group of 9 bacteria selected from a population density of 108 bacteria/cm3 moving in an 
environment with chemoattractant gradient. (e) Transition probabilities between the possible states for a group of 
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the group formation. These stable states have lower energy level compared to others. On the other hand, if it is not 
probable for the group to stay in the same state, we consider that as transient state. Because of the difference in 
the energy level, the group prefers to stay for a relatively longer time in stable states compared to transition states. 
Meanwhile, the group may shape the transition states while evolving between two different stable states.

Figure 5a and 5c demonstrate that adding chemoattractant to the environment, decreases the number of possible 
states for the group dynamics and the free energy landscape is more smooth compared to the case without chemoat-
tractant. The existence of chemoattractant in the environment contributes to the preferable alignment of the bacte-
ria motion with each other and causes the group to get more organized with less oscillatory and scattered motions.

Based on our analysis, we observe that the missing information of the first local equilibrium state is the lowest 
(Fig. 5b and 5d). Accordingly, for the transient state the missing information is higher compared to the stable 
states (see missing information section in Methods). Figure 5 shows the level of change in missing information 
when the collective group leaves any of the identified states to evolve to a new state (Note S1 in Supplementary 
Documents explains this in more details).

We define emergence for a collective group as being proportional to the structural order gained by the sys-
tem and quantified in statistical terms with respect to ambiguity of the initial state49. Based on this definition, 
changing the system dynamics from one state to another can be interpreted as a way to transform or propagate 
the information. Figure 5b and 5d show the relative emergence of all possible states with respect to the most 
probable state, which has the lowest amount of missing information (see emergence section in Methods). Based 
on our analysis, high emergence means more dependencies in the group as a result of stronger interactions. This 
indicates that the group has more interdependent components in stable states with lower level of missing infor-
mation compared to transition states. On the other hand, low emergence shows the group has more independent 
components, which represents the group in transition states.

We define a group to be self-organized when the internal dynamics of the group increases its organization over 
time. This could be a measure for collective group intelligence and we plan to investigate further in our future 
work. Our proposed free energy landscape analysis shows that the group is naturally attracted to be in stable 
states with lower energy compared to transitioning states with higher energy level. By considering these attractor 
stable states as organized states, the group will be self-organized through time (see self-organization section in 
Methods). Figure 5b and 5d show the level of increase in self-organization of the swarm going from any possi-
ble state to the first stable state with lower energy level (i.e., each point shows the amount of increase in group 
self-organization evolving from the corresponding state to the first stable one). The figure shows that the group 
gets more self-organized when it evolves from any possible state to the first and most probable one with the lowest 
level of energy. This shows that the bacteria group gets more self-organized over time.

The final purpose of our analysis is studying the complexity of a group motion. To quantify the degree of com-
plexity for a group with specific types and possibly unknown or impossible to detect agent-to-agent interactions, 
we compute a complexity metric as the product between emergence and self-organization (see complexity section 
in Methods). Figure 5b and 5d show the relative complexity of all the possible states with respect to the first and 
the most stable state. Each point in this plot shows how complexity changes by evolving from the corresponding 
state (i.e., the states represented by that point) to the first stable one. This figure shows that the complexity metric 
exhibits an increasing tendency when the group evolves from transition states to stable ones. This shows that over 
time, the group tends to stay more in the stable states with higher complexity compared to other ones.

Flying Pigeon. Next, we analyze two different types of flying pigeon groups: free flight and home flight (see the 
Pigeon dataset from Methods for details). In free flight case, the pigeons are flying freely in the sky while in the 
home flight they are migrating from one region to another region. Figure 5e–h show that for free flight we have 
more dominant states compared to the home flight. This demonstrates that when the group has a destination 
and its goal is to reach its destination rather than just flying freely in the sky, it oscillates between less number of 
dominant spatial state formations.

Our analysis of the proposed information metric (see the results in Fig. 5f and 5h) demonstrates that the 
stable states have a lower degree of missing information and higher degree of emergence, self-organization and 
complexity compared to transition states. This means that over time, the group of pigeons, independent of their 
flight type, tends to have spatial formation/structure related to stable states which has lower energy, higher degree 
of complexity compared to the transition states.

Ant. Insect’s societies can be considered as an example of complex systems. For instance, a group of ants exhibit 
emergent characteristic at a higher level compared to the sum of emergent corresponding to all individuals sep-
arately. This means the group reacts like a single coherent entity in different situations (e.g., presence of attack 
to different part of the group)50. Therefore, scientists consider a group of ants as a single super-organism51. The 
individual ants in a group tend to form spatial organized structure (i.e. spatio-temporal states) with respect to 
each other. Using our framework, we can identify these spatio-temporal states, build their energy landscape and 
quantify their complexity. Regarding this, we analyzed a group of eight ants with identical role inside their pop-
ulation with our algorithm (see Ant dataset from Methods for details). Figure 5i shows the transition probability 

9 pigeons in free flight. (f) Complexity analysis for different states compared to the first identified state with lowest 
energy level for a group of 9 pigeons in free flight. (g) Transition probabilities between the possible states for a 
group of 8 pigeons in home flight. (h) Complexity analysis for different states compared to the first identified state 
with lowest energy level for a group of 8 pigeons in home flight. (i) Transition probabilities between the possible 
states for a group of ants. (j) Complexity analysis for different states compared to the first identified state with 
lowest energy level for a group of ants.
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matrix. In this figure, the high peak points correspond to the lower energy levels in the landscape, meaning that 
the transition of the group among these states consumes less energy. Figure 5j shows the missing information and 
complexity analysis. We can see the same pattern meaning that the stable states have lower missing information 
and higher emergence, self-organization and complexity compared to transition ones.

It has been shown that the spatial organization of ants with different duties in a group strongly depends on 
their role50. Consequently, depending on the roles they play in the group they may form different structural states. 
One of the potential applications of our framework in the future can be studying the performance of ants with the 
same role inside their colony under different environmental conditions (e.g., attack to different parts of the group, 
migrating to new nest). We can also quantify the information transfer among members of different species inside 
a colony and compare the dependency of communication between them based on the role they are playing inside 
the group. These two potential applications of our framework remains for the future work due to lack of access to 
required data for these analyses.

Discussion
Animals moving in a group are influenced by their social context meaning they adjust their motion in response 
to interactions with their neighbors and environment52. They keep a minimum distance from each other to avoid 
collision. Meanwhile, they have a long range attraction to others, which keeps them united as a group and prevent 
their isolation from the rest of the group. At the same time, they tend to align the direction of their motion with 
the ones near them to move in a synchronous fashion. These interactions between agents in the group are due to 
their sensory systems including vision, smell detection/chemical processing and sound. These multi-modal heter-
ogeneous interactions among the agents cause the motion of the group to evolve through various spatio-temporal 
structures while moving as a synchronized and coherent entity without having a centralized controller.

Such synchrony and structural patterns in the group helps the individuals to amplify their sensitivity and 
reactions/agility to the environmental conditions while they have limited individual sensing and processing 
capabilities. This proves critical for their survival52,53. As an example, when a predator attacks the group, a small 
portion of the group senses the attack prior to the rest of the group. The efficiency of achieving a high degree of 
collective behavior helps to adapt faster to perturbation and decreases the reaction time of the whole group to the 
dangerous situations. In this case, they transform to a specific structural pattern to align more strongly with each 
other helping them to escape faster from the threat. As another example, such synchrony between them helps the 
group to identify the resources in the environment more efficiently. Hence, the spatial structuring within groups 
has important and evolutionary consequences31,46. From this perspective, it is crucial to be able to study the whole 
group considering their structure and to develop a mathematical framework for identifying and quantifying the 
information flow within the group.

Our mathematical framework helps to analyze various types of collective behavior exhibited by a group and 
identify/extract the possible spatio-temporal states that correspond to the highly interdependent group dynamics. 
Estimating the transition probability matrix between different states helps us to construct the energy landscape of 
the collective group evolving among these possible states over time. Relaying on this probabilistic characteriza-
tion of the interdependency structure among various states, we quantify the missing information corresponding 
to the structural formation of a particular collective behavior for the first time. We show that when local inter-
actions among individuals increase in strength, the individuals tend to align more with their neighbors and as 
a result the swarm gains more internal order. Therefore, the group structure does not change too much through 
time and as a result the number of possible states decreases and the missing information of the group structure 
decreases as well. We believe that this will help us understand how group of moving agents overcome the infor-
mation bottleneck and plan to design new real experiments54.

We also quantify the missing information, emergence, self-organization and complexity of the group corre-
sponding to each of its possible structural states. We show that over time the group tends to stay in stable states 
with lower level of energy; this corresponds to higher degree of self-organization and complexity compared to 
other possible states. Our analysis demonstrates that the complexity of the group formation increases over time, 
which could be attributed to the fact that the interactions are evolving or adapting to external cues. Our mathe-
matical framework can help us understand the evolution of behavior of various complex systems, from human 
microbiome to road traffic and potentially also economic and social networks. An important applicability domain 
of the proposed framework is represented by the need for a robust mathematical formalism for quantifying the 
efficiency, adaptivity, robustness and agility of a swarm of artificial learning cells and comparing how two artificial 
groups with different heterogeneous interactions and learning capabilities can perform on different environments 
with various degrees of uncertainty.

Our framework could also serve as an initial step towards a solution to one of the main challenges in collec-
tive motion optimization and control. Communication between agents enables a decentralized control strategy 
for collective motion optimization. This causes the group of agents to self-organize and creates spatio-temporal 
patterns and ordered structures while following a good path at a specific time for their motion. This optimization 
observed in the group motion is a sign of intelligent behavior. According to Gerardo Beni53 an intelligent group 
can be considered as a large parallel computational system, which performs computation and motion in parallel. 
Computation and simulation time for an agent based model, which predicts the group performance from its 
initial state scales with the number of agents. If the number of agents is large enough then the computation time 
increases exponentially and also the possible outcome after a certain finite number of steps of evolution of the 
group is a NP-complete problem32,42,55,56. Therefore, control of such group with decentralized controllers is still 
a fundamental challenge, because there is often no obvious relation between the individual’s behavior and the 
final behavior of the whole group32. Our algorithmic strategy can be integrated into an engineering framework 
to be used to set the parameters that governs the dynamic of one agent and its corresponding interactions with 
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other agents to achieve a certain degree of emergence, self-organization and complexity. For instance, one could 
combine an agent based model22,31 (where the characteristics and behavior of each individual are driven by several 
knobs) and macroscopic analytical model42,57 to describe the collaboration in a group of reactive robots. In the 
next step, use our framework and quantify the emergence, self-organization and complexity as a function of the 
control knobs and size of the group. This combined analysis can enable the identification of the critical design 
considerations. Consequently, by playing with the local interactions between the agents, we can regulate the 
system to evolve towards desired states and control the corresponding free energy landscape. Controlling over 
the energy landscape implies following a few rules of interaction that contribute to a particular set of states with 
desired degree of self-organization and complexity. This remains for future work.

Using our framework can help to build, characterize and optimize a group of robots with much simpler com-
ponents with a decentralized control characteristic and replace the complex centralized control systems to per-
form the same task. By comparison, simplicity of the agents and decentralized control characteristics of the group 
make it possible for the group to adapt dynamically better to the environment and recover from different dis-
turbances in the environment53. Therefore, the collective group systems can be more reliable to survive through 
disturbance compared to centralized control systems.

Methods
Simulation. The simulations are based on a well-known agent-based model proposed by Couzin and his cow-
orkers31. The details of the model are as follow. Consider N individuals in a group (i =  1, 2, 3,… , N) with position 
vector pi(t) and direction vector di(t) at each time. The desired direction of each individual for the next time step 
based on local interaction between them is wi(t +  τ) with τ representing the time step. This model considers three 
different zones around each individual (Fig. 6). The first spherical zone called zone of repulsion and the individual 
is located at the center of it. If there are other neighbors in the zone of repulsion of an individual, the individual 
moves away from them to keep a minimum distance and prevent collision. The second spherical zone is the zone 
of orientation. If there is no other neighbor in the zone of repulsion of an individual, then the individual tries to 
align itself with other neighbors in its zone of orientation. The third spherical zone is the zone of attraction. The 
attraction between an individual and its neighbors in this zone results in the coherence of the group. Considering 
these three regions, there is a blind volume behind the individual in which the individual does not sense and 
respond to other neighbors in this zone.

In this model, variables nr, no and na represent correspondingly the number of neighbors in zone of repulsion, 
orientation and attraction of the agent. Variable wr(t +  τ) represents the desired direction of individual i with 
respect to repulsion from others in repulsion zone.
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Figure 6. Different zones of interaction around each individual in a group of agents moving in three-
dimensional space in a model proposed by Couzin and his coworkers31: Zone of repulsion, zone of 
orientation and zone of attraction. There is a blind zone behind each individual, in which they do not sense and 
react towards other neighbors in that area.
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When there are some neighbors in zone of repulsion (nr ≠  0), the individual i only reacts with respect to them. As 
a result, the desired direction wi(t +  τ ) =  wr(t +  τ ) can be quantified from equation (1) and equation (2). If there 
is no individual in the zone of repulsion, then the desired direction will be defined based on neighbors in zone of 
orientation and attraction ( τ τ τ+ = × + + +w t w t w t( ) ( ( ) ( ))i o a

1
2

). wo(t +  τ ) and wa(t +  τ ) can be quanti-
fied from equation (3) and equation (4).
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Considering the desired direction vector at each time step, if wi(t +  τ) is less than maximum turning rate θ, 
then di(t +  τ) =  wi(t +  τ ). On the other hand, if desired direction vector exceeds the maximum rate, then the indi-
vidual rotates by angle of τ × θ  towards the desired direction.

Free energy landscape. Our framework generalizes the method presented by Akinori Baba and cowork-
ers13,47 and constructed the strategy to estimate the free energy landscape for a group of N agents moving in a 
three-dimensional space. In the following, we provide a brief overview of the procedure we used to identify and 
extract the states from time series of agents in the group. First, we divide the time series containing the location of 
all the agents denoted by r(t) to sub-intervals centered at time tc with time window [ − ∆ + ∆t t/2, /2c c ], where 
Δ  is the preferential time scale (Fig. 1a). In the next step, we construct the probability density function of the 
location of all the agents in the group corresponding to each sub-interval (i.e. pi) and based on that we find cumu-
lative distribution function (CDF) of the agents’ location in the space. We also estimate the CDF corresponding 
to the position for the entire group through the whole time in the same way. Based on Kantrovitch distance dK we 
compare the CDF of sub-intervals with whole time series CDF and cluster the sub-intervals based on the similar-
ities (equation (5))58.

∫ ∫= ′ − ′ ′
−∞

∞

−∞( ) ( )d p p p r p r dr dr( ) ( )
(5)K i j

r

i j

We consider each of the clusters as a spatio-temporal state for the group dynamics (Fig. 1b). We calculate the 
escape time of each state, meaning the time between when the system enters and leaves each cluster.

We calculate the residential probability Pi of the ith state and transition probabilities Pij from the ith state to the 
jth state (Fig. 1c). Based on these probabilities, we estimate the free energy landscape by quantifying the energy 
level in each state (Fi) from equation (6) and energy barrier for the group while evolving from state i to state j (Fij) 
from equation (7) 47.

= −F k T Pln( ) (6)i B i

= −
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ij B
B
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In equation (6) and (7), symbol kB represents Boltzman constant. Symbols h and T are Plank constant and 
temperature, respectively. Based on these energy levels we can estimate the free energy landscape of the group 
evolving between different states.

Missing Information. In general, missing information can be defined as quantifiable structure or pattern in 
a system38,48,59. It can be used as a measure of internal order of a system and uncertainty. According to Shannon, 
missing information can be defined from equation (8).

∑= −I P Plog
(8)i

i i

We define missing information for a collective motion as the level of missing communicated information 
between the agents due to their short-range and long-range interactions. This can be interpreted as the amount 
of information needed to specify the coupling between the agents and as a result the exact structural state of the 
group forming a specific spatial arrangement.

In our framework, we find the dominant states for a collective motion dynamics from energy landscape anal-
ysis. Based on the landscape, we quantify: (1) missing information of each state (2) missing information of the 
entire motion of group combining all the possible states. To compute the missing information for each state we 
find the probability transition matrix P of the swarm evolving from one state to the others. Then we find the miss-
ing information related to each state i (Ii) from this probability transition matrix using equation (9):

∑= −I P Plog
(9)

i
j

i j i j, ,
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Next, we find the missing information related to the entire group motion considering all the possible states. 
We define matrix Q containing the probability of all the possible cases of transitioning from one state to the other, 
independent of the initial state in the transition. The missing information for entire group motion (I) can be 
quantified by equation (10):

∑∑= −I Q Qlog
(10)i j

i j i j, ,

It is important to emphasize the difference between matrix P from Q. In probability transition matrix P the 
sum of all the elements in each row is equal to one, while in probability matrix Q the sum of all the elements in the 
entire matrix is equal to one. The difference is due to the way of normalizing the probability matrix.

Emergence. Emergence in a system generally refers to some information or characteristics of a system that 
appear in some states while they are not present in other states of the system48,49,60. Emergence of a system can be 
quantified by equation (11).

=

=
−

= −
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E I I
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I
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)/(
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For a collective motion, we define emergence as being proportional to the structural order gained by the 
system and quantified in statistical terms with respect to the ambiguity of the initial state. Therefore, higher 
emergence shows more interdependence in the group due to stronger interactions between the agents. This shows 
the transferred information between the agents results in the dependencies of their motion in the group. In our 
framework we find the relative emergence in each identified state with respect to first state with the highest prob-
ability and lowest level of energy in the landscape.

Self-organization. We call a system self-organize when the internal dynamics of a system increases its 
organization in time48. Equation (12) quantifies the self-organization of a system48.

= −S I I (12)in out

For a collective motion, we consider self-organization as a measure for the transformed information between 
the agents into the internal order of the group structure. This could be considered as a measure for group intel-
ligence. In our framework we find the level of increase in self-organization of the group going from any possible 
state to the first and most probable state to be able to compare the self-organization of different states in a collec-
tive motion.

Complexity. In general, Complexity represents the balance between emergence (presents variety) and 
self-organization (presents order) of a system48,59,61,62. In other words, it is a balance between ordered and chaotic 
dynamics. Complexity of a system can be quantified by equation (13)48.

= ×C E S (13)

We consider the complexity for a collective motion as a combination of interdependency between the 
agents and internal order in the group structure as a result of transferred information between the agents due to 
short-range and long-range interactions. In our framework, we quantify the relative complexity of each state in a 
collective motion with respect to the complexity of the first possible state from emergence and self-organization 
corresponding to that state.

S. marcescens dataset. We obtain the data for a group of S. marcescens moving in three-dimensional space 
from Edwards et al.63 and Zhuang et al.64.

Pigeon dataset. We obtain the data for group of Pigeons Flying in three-dimensional space from Nagy et al.65.

Ant dataset. We obtain the data for ant trajectory from Queen Mary University database directory from the 
following link66: ftp://motinas.elec.qmul.ac.uk/pub/mtt_results/ant_tracking_res.zip\
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