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Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and
maturing in the kidney. In this procedure, they can adopt different phenotypes—
rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic
DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All
the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the
ischemia–reperfusion procedure, although the classification corresponding to different
effects remains controversial. Thus, in this review, we discuss the origin, maturation, and
pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in
renal transplantation: taking both positive and negative stages in ischemia–reperfusion
injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating
surface markers for allograft tolerance via alterations in metabolism. In conclusion, we
prospect that multidimensional transcriptomic analysis will revolute researches on renal
transplantation by addressing the elusive mononuclear phagocyte classification and
providing a holistic view of DC ontogeny and subpopulations.

Keywords: dendritic cells, renal transplantation, rejection, tolerance, ischemic–reperfusion injury
INTRODUCTION

In all tissues, DCs function in a network of mononuclear phagocytes with many innate immune cells
taking center stage (1). This network in the kidney is complex and heterogeneous, highly relying on
macrophages and DCs (2). Discovered by Metchnikoff 150 years ago, macrophages can mediate
fibrosis after renal transplantation, whereas DCs were first described in 1973 by Steinman and Cohn as
even elongated or stellate cells to present antigens. Given that DCs andmacrophages are both involved
in innate immune networks, DCs should have overlapping functionalities as macrophages in tissue
homeostasis, promoting pathogen defense and contributing to acute or chronic rejection (2, 3). But
compared with macrophages, the unique roles of DCs in rejection or tolerance are still ambiguous and
undefined partly because they often share similar surface markers (4–7). Equipped with increasingly
available kidney biopsy data, the recent outbreak in the high-dimensional analysis of single-cell has
sparked instructions for the classification of these immune cells (8–11). In this review, we first describe
the consensus of DC ontogeny encompassing the origins, maturation, and pathological effects of DCs
org May 2021 | Volume 12 | Article 6545401
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in the kidney. We then summarize the major roles of kidney DCs
in three major aspects of renal transplantation, including ischemic
injury when grafts are removed from the donors, rejection
including acute and chronic process, and tolerance including
induced or natural genic tolerance. Finally, we point out certain
obstacles and disadvantages to prospect the value of
multidimensional transcriptomic analysis.
DC-LINKED PATHOLOGICAL
PROCEDURE IN RENAL
TRANSPLANTATION

The Origin and Migration of DCs in Kidney
Allograft Rejection
Like other tissues, dendritic cells in the kidney are derived from
bone hematopoietic stem cells (Figure 1). Traditionally, cell
surface markers were used to subdivide cDCs into cDC1 and
cDC2 (12). Human cDC1 mainly expressed CD11c, CD141,
CLEC9A (C-type lectin domain family 9 member A) and highly
expressed MHC (major histocompatibility complex) class II, while
cDC2 mainly expressed CD11c, high- affinity Fc receptor for
immunoglobin E, CD1c, CD1a and highly expressed CD11c and
Frontiers in Immunology | www.frontiersin.org 2
MHC class II. CD11c, MHC class II, CD26, and interferon-
regulatory factor 8 (IRF8) are highly expressed in murine cDC1,
and CLEC9A, XCR1, and CD103 are also expressed. In mice,
cDC2 expresses high CD11c, MHC class II, CD11b, CD26,
CX3CR1, interferon-regulatory factor 4, dendritic cell inhibitory
receptor 2 but expresses low IRF8 and F4/80 (Table 1).

Moreover, traditional DC subsets are described by lineage-
specific transcription factors including DNA binding inhibitor 2
and interferon regulatory factor 4. In mice, the conventional DC
group 1 (cDC1) express neither SiglecH nor Ly6C, while the
precursor of the conventional DC group 2 (cDC2) express no
SiglecH but Ly6C (21). Based on these transcription factors,
phagocytes expressing major histocompatibility complex (MHC)
class II and integrin CD11c are named cDCs. Another
independent subgroup, unconventional plasma-like dendritic
cells, expressed transcription factor E2-2 and its myeloid
antigen but did not express CD123. Whether they are related
to traditional DC is still doubtable.

During circulation, the precursor dendritic cells develop and
differentiate into kidney-specific dendritic cells (22). In the
kidney, no more than 5% of dendritic cells are cDC1
expressing CD103; most DCs express CD11b and CX3CR1 and
can be categorized into cDC2. Compared with dendritic cells in
other parts of the body, kidney-specific dendritic cells can be
FIGURE 1 | DCs in the kidney originate from bone hematopoietic stem cells and involve in lymphatic recycling in vivo. When ischemia–reperfusion occurs, immature
DCs start to search for interactions with T lymphocytes and change their surface proteins including CCR2, CCR5 to induce tolerance procedure (expressing PD-L1/2
and CD80/86) or rejection procedure (expressing CCR7 and MHC class II). The activation can be derived from pathogen-associated molecular patterns and danger-
associated molecular patterns in the procedure of ischemia-reperfusion.
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located in the lymph nodes around the kidney and the kidney
itself, which is essential for the control of adaptive immunity (23)
(Figure 1). In the kidney, most of these phagocytes with the
ability to activate T cells are located in the cortex. It can be
confirmed that cDC1 is located near the blood vessels, while
most of these cells near the subcapsular and arterial connective
tissue have the morphology of macrophages. The high osmotic
pressure of transplanted medulla may inhibit the antigen
presentation of DCS to CD8+ T cells, but the specific type of
DCs still needs to be further studied.

Chemokines and corresponding receptors induce the
migration of kidney-specific DCs. Chemokines are detected by
receptors on the surface of precursor DCs and precursor DCs can
migrate along the inverse chemical gradient pathway to the
source. Receptor expression determines the specificity of
kidney DCs. CX3CR1 and CCR2 are incorporated into the
action of leaving the bone marrow, and CXCR4 helps
precursor DCs retention in the marrow (24–26). But the
inflammatory conditions after transplantation possibly alter the
migration mechanism to mediate both rejection and tolerance,
which remain unidentified and might be potential intervention
sites in the future (Figure 1).

The Maturation of DCs in Kidney Allograft
Rejection
With no stimuli, immature kidney DCs inhibit T and B
lymphocytes, which also can coordinate tolerance (25).
Danger-associated molecular patterns occur when ischemia
and reperfusion happen, activating TLR4 (toll-like receptor 4)
and leading to the maturation of DCs (27–29). This maturation
induces inflammation and provokes adaptive immunity to
specific antigens, such as alloantigen and so on (30, 31).
According to Sporri and Reis e Sousa’s report, danger-
associated molecular patterns (DAMPs) cannot make DCs
promote T-helper responses, but exposure to pathogen-
associated molecular patterns can (32). Taken together,
DAMPs are not the most crucial pathway to activate DCs for
allograft rejection (33–36). Furthermore, rejection can happen in
T lymphocyte deficient conditions, implying that the maturation
of DCs might be more than a complex mechanism triggered by
DAMPs or pathogen-associated molecular patterns (37–40).

The Possible Downstream Effects of DCs
in Kidney Allograft Rejection
Conventional hypothesis indicated donor DCs activate anti-
donor rejection via migration to the host second lymphoid
Frontiers in Immunology | www.frontiersin.org 3
nodes providing alloantigen to recipient T cells (41). This
hypothesis resulted from observations on mouse models: T
lymphocytes respond to antigen-presenting cells with non-self-
MHC (major histocompatibility complex) in vivo (42, 43).
Moreover, depleting leukocytes in the allografts drives long-
term survival, whereas injecting donor DCs into the host
restores acute rejection (44–49). Later research established that
donor and recipient DCs play equal roles in mediating the
rejection process, and recipient DCs are even more stable to
present antigens. Deleting recipient DCs prolonged allograft
survival significantly but depleting donor DCs did not (50).
Also, DCs lacking MHC or CD80/86 molecules are killed by
recipient natural killer cells during migration to the lymphoid
nodes (50–53). Recently, donor DCs are viewed as transporters
of antigen rather than presenters of antigen (54). MHC
molecules can be exchanged between the donor and recipient
DCs (55, 56). Therefore, recipient DCs gain non-self MHC from
donor DCs, capable to activate T lymphocytes originated from
recipients through both non-self MHC and self MHC (57–62).

The basic function of mouse cDC1 is to use MHC class I
molecules on its surface to extract antigens from CD8+ cytotoxic
T cells and induce them to kill target cells. This plays a decisive
role in the process of renal transplantation and may be directly
related to cellular immunity. Also, mouse cDC1 can induce
regulatory T cells in lymphatic circulation (63, 64). The
function of human cDC1, which is different from that of mice,
needs further study. However, compared with cDC1, cDC2
generally does not have the aforementioned antigen targeted
by cytotoxic T cells (65–67). Therefore, in renal transplantation,
cDC2 will not be killed by cytotoxic T cells but can induce B cells
to respond through helper T cells, which may be the mechanism
of antibody-mediated immune rejection (68). Finally, it has been
revealed that cDC2 cells induce T helper cells to stimulate the
production of pro-inflammatory mediators in the chronic renal
inflammation model, so in the same chronic rejection, cDC2 may
also be the center of inflammation and participate in the
pathogenesis of immune effectors including antibodies.
DCs IN IRI

IRI happens frequently following renal transplantation via
recruitment of immune cells including DCs by pro-
inflammatory cytokines like tumor necrosis factor derived from
hypoxic endothelial cells (13, 69) (Figure 2). The DCs involved in
IRI have not been completely defined. Current studies tend to
TABLE 1 | Remarkable features of three different types of DCs in renal transplantation.

Clinical subsets General functions Key markers References

DCs in IRI Promotion of both inflammation and anti-
inflammation

CD45, CD11c, MHC-II, TNF-a, CD80, CD86, CD40, CD54, C1d, CD8 a, but not
CD4 and CD205

(13, 14)

Rejection-related
DCs

Promoting acute rejection and chronic
rejection via different interaction with T cells

CD11c, MHC class II, CD1c, FcϵRI (15)

Tolerogenic DCs Inducing anti-rejection effects via
suppressing various types of T cells and
activating Treg cells

poor expression of MHC, T cell co-stimulatory molecules like CD40, CD80/86,
and T cell co-inhibitory ligands (e.g., programmed death ligand-1 and death-
inducing ligands)

(16–20)
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claim that DCs involved in IRI express CD45, CD11c, MHC-II,
TNF-a, CD80, CD86, CD40, CD54 (ICAM), C1d, CD8 a, but not
CD4 and CD205. All the markers might be useful in further
investigations (Table 1). Then hypoxia-inducible factor 1a
induces kidney DC maturation, damaging renal functionality
(70–72). DCs can promote harmful activations of immune
effects in vivo, but they are also associated with protecting renal
function from IRI. Since immature DCs are less stimulatory than
mature DCs, some researchers supposed that kidney DCs’ role is
to harm allograft (73–76). DCs feature in IL-10 as well as single Ig
IL-1-related receptor, therefore, exhibiting the inhibiting effects on
inflammation in IRI (77). On the contrary, immature kidney DCs
can serve as an adverse player to mature DCs, preventing IRI (78,
79). Thrombin could release IL-12, IL-17, and C3a thus causing T
helper-1 bias to influence kidney DCs’ behaviors and determine
the outcomes of IRI (80). High concentrations of tissue factors in
the kidney may also contribute to IRI (81). Further studies are
warranted to clarify the discrepancy about kidney DCs, especially
the relationship between rejection-related DCs and tolerogenic
DCs (Figure 2).
Frontiers in Immunology | www.frontiersin.org 4
REJECTION-RELATED DCs IN
ALLOGRAFTS

The traditional function of DCS is to mediate the rejection of
harmful non-autogenous substances or abnormal autogenous
materials, so the research on rejection-related DCs mostly
employs traditional surface markers of cDCs. Although it is
not recommended to judge the types of DCs based on only one
surface marker, the comprehensive use of different surface
markers can still accurately define rejection-related DCs
(Table 1 for specific markers).

Acute Rejection Based on the
DC-Dependent Mechanism
The interaction between DCs and T lymphocytes triggers a so-
called acute rejection through the conventional pathway—donor
DCs present alloantigen to recipient T cells directly (82, 83)
(Figure 2). At first, the ischemia–reperfusion condition drives
donor DCs to induce acute rejection (14). Secondly, active DCs
search for immature or memory T cells attracted by the chemical
FIGURE 2 | Immature DCs can be activated by antigens derived from ischemia-reperfusion and act as the role of powerful antigen-presenting cells to trigger
antibody-mediated rejection and cell-mediated rejection. The result of antibody-mediated rejection is activated B cell releasing harmful antibodies while active
cytotoxic T cells kill donor cells forming cell-mediated rejection. On the contrary, when treated by specific drugs, immature DCs can also maintain their surface
markers to suppress possible inflammation caused by transplantations via signal pathways activation regulating metabolism alterations. The signal pathways include
NF-kB and mTOR summarized in the section The Generation of Tolerogenic DCs. The metabolism alterations involve glycometabolism and lipid metabolism with
more details in the section The Generation of Tolerogenic DCs.
May 2021 | Volume 12 | Article 654540
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gradient of CCR7 to present the allografts (84). Early studies
usually located this process in second lymphoid organs (85),
while later observation indicated that second lymphoid organs
are not necessary for acute rejection: acute rejection occurs even
when lacking secondary lymphoid organs (86, 87). The identical
role of DCs in acute renal rejection could be separated into
interaction with memory T cells and naive T cells, which
happens in many different places including the second
lymphoid organs. Taken different DCs into consideration,
recipient DCs may be germane to the acute rejection as well as
donor DCs (88).

Chronic Rejection Based on the
DC-Dependent Mechanism
Owing to a longer lifespan, recipient DCs are more likely to
mediate the chronic rejection rather than donor DCs. According
to observations in mouse kidney grafts, the recipient DCs replace
most of the donor DCs within 24 h after surgery, and over 90%
DCs are derived from recipients on the 7th day after
transplantation (57). Subsequently, these DCs originated from
monocytes in the host, but a few donor DCs still survive to
activate T cells (57). The interaction between DCs and T cells has
been more stable and prolonged since DCs reach into the renal
cortex to arrest antigen-specific T cells around the endothelium
with no regard to the chemical gradient. Independent of the
chemical gradient, interruption of the protracted connection
with T cells induces tolerance (89, 90). Also, infiltrating DCs
activate B cells to promote chronic allograft rejection with the
assist of T helper cells. This procedure depends on recipient DCs
presenting antigen to recipient T helper cells, but the molecular
mechanism remains elucidated (91–94). A few clinical trials are
targeting this approach, whereas more current studies are paying
attention to mediate tolerance taking advantage of the
tolerogenic DCs and Tregs (95).
TOLEROGENIC DCs IN RENAL
TRANSPLANTATION

Remarkable Features of Tolerogenic DCs
As a pivotal part of innate immunity, tolerogenic DCs are usually
defined as immature rejection-related DCs (96, 97). Tolerogenic
DCs, also called DCregs, circulate in the body quiescently
responding to endogenous or exogenous stimuli, for example,
endogenous alarmins. These tolerogenic DCs exhibit poor
expression of MHC, T cell co-stimulatory molecules like CD40,
CD80/86, as well as T cell co-inhibitory ligands (e.g.,
programmed death ligand-1 and death-inducing ligands),
presenting non-phagocyte properties (16–20) (Table 1).
Meanwhile, these DCs express a larger amount of the
macrophage inhibitor cytokine than rejection-related DCs (98).
Moreover, tolerogenic DCs can change the amount of C1q on its
surface approaching the mature state with the assistance of
globular C1q receptors (99, 100). C1q, a complement subunit,
mediates IL-10 secretion involved in the interaction between
DCs and myeloid or lymphoid cells (101–103). Besides,
Frontiers in Immunology | www.frontiersin.org 5
tolerogenic DCs confine promoting inflammatory factors
including IL-12p70 into a low level while producing a high
level of anti-inflammatory molecular-like transforming growth
factor b as well as IL-10 (104) (Figure 3).

According to transcription analysis, the Wnt/b-catenin
pathway programs tolerogenic DCs to maintain a series of
unique molecular markers (105–108), and tolerogenic DCs
specifically express some genes, including CNGA1, CCL18,
C1QB, MUCL1, MAP7, C1QC, CYP7B1, and CYP24A1 (109).
Compared to immunologic DC, tolerogenic DCs possess a steady
oxidative phosphorylation program and favor fatty acid
oxidation associated with decreased reactive oxygen species
(110). Based on these features, tolerogenic DCs stimulate T
cells weakly or even suppress the function of T cells via anergy
or apoptosis for long-term immaturity (111). Additionally,
tolerogenic DCs can spare, expand, and induce Tregs as shown
in Figure 3 (111–113). The interaction between tolerogenic DCs
and divergent T cells results in conditions such as allograft
rejection, hematopoietic stem cell transplantation, graft-versus-
host diseases, and autoimmune disorders (111, 114–116). But the
specific mechanism buried in these phenomena remains elusive.
Therefore, an increasing number of studies incorporate
tolerogenic DCs into clinical trials in organ transplantation
and autoimmune diseases (117–119).

Tolerogenic DCs Possible Anti-Rejection
Effects
DCs inducing tolerance was first discovered in 1995/1996 (120,
121). Tolerogenic DCs have the potential to suppress allograft
rejection because DCs with CD16− markers exist in transplant
recipients compared with healthy people using single-cell RNA
sequence (122). Also, infusion of tolerogenic DCs appears to be
reliable and acceptable with or without immunosuppressive
agents, which probably provides anti-rejection therapy in the
future (111, 123). Ezzelarab et al. infused donor-derived
tolerogenic DCs processed by vitamin D3, IL-10 into rhesus
macaque models, showing that graft survival prolonged with no
evidence of host sensitization (124). Autologous tolerogenic DC
infusion could also lengthen the survival time of grafts, and
murine IL-10-induced DCs can function as rejection inhibitors
in vivo and in vitro expressing lower levels of MHCII, CD40,
CD86, CD205 (125–127).

Donor-derived tolerogenic DCs can interact with alloreactive
memory T cells including CD8+ and CD4+ cells (128, 129)
(Figure 3). In specific, tolerogenic DCs increase allograft
survival time relying on co-inhibition of cytotoxic T
lymphocyte antigen-4 (CTLA-4) downregulation (128)
(Figure 3), and coinhibitory CTLA-4 blocker treatment has the
potential to improve prognosis in renal allografts (130, 131).
Moreover, DC-induced CD95+ memory T cells could be an
immunosuppressive phenotype with increased expression of
programmed death-1 as well as coinhibitory CTLA-4 via
Eomesodermin (an essential transcription factor maintenance)
(124, 128, 132). Thereafter, the infusion of coinhibitory CTLA-4
immune globulin and tolerogenic DCs promotes transplant
tolerance (129, 133). In this promotion, high expression of
May 2021 | Volume 12 | Article 654540
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immune-globulin-like transcript 3 and immune-globulin-like
transcript 4 causes CD4+CD45RO+CD25+ T cells to become
Tregs mediated by the enzyme indoleamine 2, 3-dioxygenase in
allografts (134) (135). As a result, the identical indoleamine-2,3-
dioxygenase and immunoglobulin-l like transcript 3 as well as
high expressions of both MAP7 and MUCL1 genes occur in the
mechanism of vitamin D3 inducted tolerogenic DCs (136–140)
(Figure 3).

Donor-derived tolerogenic DCs can prolong graft survival
time: treatment of these DCs ensures graft survival another 50
to 300 days (125). Donor tolerogenic DCs regulate CD8+ as well as
CD4+ memory T cell responses, and this regulation prevents
potential rejections (141–145). These DCs capture vesicles
containing allograft antigens but choose an anti-inflammation
phenotype: the number of donor-reactive IL-17+ T cells remains
low (125, 146). Further, donor-derived tolerogenic DCs induced
by vitamin D3 and IL-10 moderate IL-17 associated inflammation
and maintain stability even exposed to inflammatory molecules
(124, 147). Most importantly, humans produce no specific
antibody against injecting tolerogenic DCs (124). Moreover,
Frontiers in Immunology | www.frontiersin.org 6
without active recipient T cells, harmful antibodies derived from
B cells will be reduced (148). Besides, multiple subsets of freshly
isolated human DCs, including non-conventional plasmacytoid
DCs, can regulate immune responses as well (107, 108, 149).
Table 2 summarizes the versatile roles of DCs targeting solving
rejection problems in renal transplantation, implying future
evaluable clinical advances (153).

The Generation of Tolerogenic DCs
Various cytokines and similar materials serve as triggers in vivo.
Exposure to donor blood and immunosuppressive mediators,
rapamycin, for example, might be a useful method in a non-
human primate model (124, 129). Also, effective tolerogenic DCs
can be endogenous. However, recipients’ natural killer cells tend
to kill donor-derived DCs that can mediate Tregs. Addressing
this issue, Morelli and colleagues deleted host DCs to protect the
donor-derived DCs from being killed (154). Through this
method, recipient DCs acquired exosomes released by the
donor tolerogenic DCs and amplified the effect of tolerance via
the third mechanism mentioned in The Possible Downstream
FIGURE 3 | In response to specific factors including DAMPs, recipient cDCs and pDCs change into recipient rejection-related DCs. If rapamycin, IL-10, Vit D, or a
low dose of GM-CSF is employed to treat recipient rejection-related DCs, recipient tolerogenic DCs can be generated. Under the control of recipient rejection-related
DCs, naive T cells differentiate to CD8+ T cells with the help of IL-2 and differentiate to CD4+ T cells assisted by IL-6 and IL-4. Memory T cells (Tm cells) also originate
from naïve T cells, and this alteration is associated with IL-2 and IL-15. Treg cells can occur when IL-10 and TGF-b are secreted by recipient rejection-related DCs.
Besides, tolerogenic DCs reduce CD4+ T cell activation, and they can impair active CD8+ T cells. Furthermore, Tm cells tend to be anti-inflammatory promoted by
tolerogenic DCs. Treg cells survive for a longer period with tolerogenic DCs than with rejection-related DCs.
May 2021 | Volume 12 | Article 654540
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Effects of DCs in Kidney Allograft Rejection (60). A few cytokines
are able to induce tolerogenic DCs in vitro, for example, IL-10
and TGF-b (optimal inducible factors) (155) (Figure 4). IL-10
decreases MHC-II expression and costimulatory molecules in
DC (156, 157). TGF-b increases the expression level of
programmed death-ligand 1 and Fas-ligand on DC, inducing T
cell apoptosis, and Treg differentiation (158, 159). Also, valuable
methods can be used to produce tolerogenic DCs in vitro such as
soluble Schistosoma Mansoni egg antigen, tumor necrosis factor
a-induced protein 8 like-1, human soluble CD83, and
prostaglandin E2 (PGE2). Soluble Schistosoma Mansoni egg
antigen increases IL-10 level and suppresses Il-12p40 secretion,
implying a novel method of tolerogenic DC generation (160).
Except for IL-10 and TGF-b, tumor necrosis factor a-induced
protein 8 like-1 could control the T cell activation procedure
(161, 162). Human soluble CD83 alone achieves kidney allograft
tolerance (>100 days) involving tolerogenic DC generation and
indoleamine 2,3-dioxygenase activation (163). Mature DCs
treated with PGE2 could inhibit inflammation via IL-10
secretion (164, 165). Traditional immunosuppressants can also
serve as inducers of tolerogenic DCs, for instance, rapamycin and
dexamethasone (166–170). Tolerogenic DCs generated from
Frontiers in Immunology | www.frontiersin.org 7
dexamethasone exhibit few costimulatory molecules or pro-
inflammatory cytokines (171). Besides, metastasis-associated
lung adenocarcinoma transcript 1, mesenchymal stem cells,
nuclear paraspeckle assembly transcript 1, LF 15-0195, and
pluripotent stem cells have a potential capacity to facilitate the
tolerogenic DCs since they have been proven in other organ
transplants (172–174).

Tolerogenic DC activation relies on adenosine triphosphate
derived from glycolysis and tricarboxylic acid. Thus, control of
glycolysis regulates DCs in renal transplantation especially in a
few key active sites (175, 176). For instance, insufficient energy
support causes morphological alteration and disorders in
migration to lymph nodes (177). Lipopolysaccharide,
complement component C1q subcomponent-binding protein,
2-deoxyglucose, and 1,25-dihydroxy vitamin D3 are associated
with oxidative phosphorylation, fatty acid oxidation, and reactive
oxygen species. In glycolysis, lipopolysaccharide mediates fatty
acid synthesis forming adenosine triphosphate to trigger DC
activation (178). C1q subcomponent-binding protein
participates in the tricarboxylic acid cycle via regulating
pyruvate dehydrogenase as a chaperone protein (179). 2-
deoxyglucose plays an essential role in reducing CD40, CD86,
TABLE 2 | Versatile roles of DCs in renal transplantation.

Animal
Models

Interventions Results Functional roles or mechanisms References

Rat i.v. tolerogenic DCs derived from donors increasing content of CD4+CD25
+Foxp3+Tregs and up-regulated
secretion of Th2 cytokines

The enzyme indoleamine 2, 3-dioxygenase in
tolerogenic DCs may induce allograft immunotolerance.

(135)

Monkey i.v. CTLA-4 immunoglobulin and tapered
rapamycin

Graft median survival time
prolongation as well as IL-17
production attenuation combined
with no circulating anti-donor
antibody

The beneficial effect of donor Ag-pulsed autologous
tolerogenic DC on nonhuman primate graft survival may
be modest but not statistically significant.

(125)

Monkey i.v. donor-derived regulatory dendritic cell Tolerogenic DC-mediated
tolerance with or without
cytotoxic T-lymphocyte-
associated antigen activation.

Pre-transplant DCreg infusion promotes tolerance after
transplantation with no regard to CD28 blockade.

(129)

Mouse Renal DCs were studied in collagenase-
digested mouse kidneys

DCs migrate from the renal
interstitial to renal lymph node
within 48 h accompanied by
increased DCs

Renal DCs respond to localized or systemic acute
kidney injury by increasing the transport of protein
antigens from the kidney to lymph nodes.

(74)

Mouse Antigen coupled to an anti-CD205 antibody Antigen-specific CD8 T-cell
deletional
tolerance

DEC-205 provides an effective receptor mechanism for
DCs to deal with MHC class I presentation in vivo,
which makes DCs produce stable immune tolerance
and immune response after maturation.

(150)

Rhesus
monkey

i.v. MD-3 anti- intercellular adhesion
molecule antibody combined with low dose
rapamycin and CD154

Long-term survival of pig
xenoislets

The maturation of DCs relies on intercellular adhesion
molecule-1 and anti-intercellular adhesion molecule-1-
induced antigen-specific T cell tolerance.

(151)

Humanized
mouse

i.v. MD-3 antibody before transplantation Xenospecific T-cell tolerance;
prevention of xenoislet rejection

The maturation of DCs relies on intercellular adhesion
molecule-1 and anti-intercellular adhesion molecule-1
-induced antigen-specific T cell tolerance.

(151)

Cynomolgus
monkey

i.d. immunization with antigen fused to anti-
DC-asialoglycoprotein receptor antibody
every 5–6 weeks after the flu virus

Ag-specific, IL-10 producing
Tregs in vivo

human DCs can generate antigen-specific suppressive
CD4 T cells that produce interleukin 10 via DC-
asialoglycoprotein receptor but not Dectin-1 or DC-
specific intercellular adhesion molecule-3-grabbing
nonintegrin.

(152)

Rhesus
macaques

i.v. DCreg + B7-CD28 costimulation
blocking agent cytotoxic T-lymphocyte-
associated antigen immunoglobin, 7 days
before renal transplantation and for up to 8
weeks

Median graft survival time was
39.5 days in control monkeys
and 113.5 days in tolerogenic
DCs treated animals

Tolerogenic DCs generated from cytokine-mobilized
donor blood monocytes in vitamin D3 and IL-10
moderate combined T cell- and antibody-mediated
rejection.

(124)
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and MHC-II expression and secreting IL-6, IL-12p70, and TNF,
which can be defined as features of tolerogenic DCs (178).
Oxidative phosphorylation and fatty acid oxidation can be
regulated by paracrine-derived Wnt5a protein linked
tolerogenic DC generation, vitamin D3 or 1,25-dihydroxy
vitamin D3 induction of tolerogenic DCs, and dexamethasone
mediated tolerance (109, 180, 181). Specifically, these materials
generate tolerogenic DCs through inducible nitric oxide
synthase, nuclear factor E2-related factor 2: inducible nitric
oxide synthase reduces oxidative phosphorylation and fatty
acid oxidation, but nuclear factor E2-related factor 2 decreases
the amount of inducible nitric oxide synthase expression (182,
183). As for the relationship between oxidative phosphorylation
and fatty acid oxidation, miR-142 links to carnitine
palmitoyltransferase-1a and induces more active fatty acid
oxidation and further increases glycolysis promoting pro-
inflammatory cytokines (184). Fatty acid inhibits oxidative
phosphorylation and facilitates reactive oxygen species leading
to more severe inflammation (185–187).

In addition to general metabolism, it is accurate and stable to
induce tolerogenic DCs employing regulating signal pathways.
The most well-known pathway that has been focused on is
mTOR (mammalian target of rapamycin) involving mTOR
complex 1 (mTORC1) as well as mTOR complex 2 (mTORC2)
(Figure 4). The inhibition of mTOR produces tolerogenic DCs
associated with glucose metabolism. GM-CSF, IL-4, rapamycin,
alum, and graphene quantum dots have effects on mTOR
mediating potential tolerance via lower adenosine triphosphate
generation (167, 188–190). Specifically, mTORC2 decreases
adenosine triphosphate generated from mTORC1 mediating
Frontiers in Immunology | www.frontiersin.org 8
glycolysis, and mTORC1 takes crucial tasks in DC maturation
(191) (Figure 4). Also, the upstream and downstream molecules
contribute to the generation of tolerogenic DCs (Figure 2). An
upstream complex called adenosine monophosphate-activated
protein kinase can be suppressed by polyphenol resveratrol
causing poor expression of mTOR (192). A downstream
complex named after the peroxisome proliferators-
activated receptor plays a metabolic role in DC maturation
through targeting at mTORC1 and hypoxia-inducible factor-
1a as a downstream complex serves to reprogram glycolysis
for DC maturation via mTOR activation (177, 193–195).
Reprogramming glycolysis in DCs can be finished by another
kinase known as spleen tyrosine kinase depending on the
production of IL-1b through a different mechanism compared
with infection (196, 197).

STAT and NF-kB have also been incorporated into the
maturity of DC as a family containing STAT1, STAT2,
STAT3, STAT4, STAT5a, STAT5b, STAT6 as well as
inhibiting STAT1, STAT2, and STAT5, and activating STAT3
induces tolerogenic DCs (198, 199) (Figures 2, 4). Targeting at
STAT1, flavonoids decrease the expression of programmed
death-ligand 1 to enable DCs more mature (200, 201).
Silencing STAT1 with small interfering RNA in DCs causes
low expression of CD83 and CD86, implying anti-
inflammatory effects (202). STAT2 functions as a co-worker
with STAT1 mediating cross-presentation of DC, and thus
STAT2 should be suppressed when tolerogenic DCs are
needed (203). STAT3 activation provides tolerogenic DCs
because IFN-a-induced programmed death-ligand 1
expression is inhibited by suppressed STAT3, and STAT3-
FIGURE 4 | Tolerogenic DCs are usually generated via specific substances. These stimulations derived from cytokines (IL-10, TGF-b), immunosuppressants
(Rapamycin, Dexamethasone), and others (PEG2, DAMPs) mediate signal pathways involving NF-kB and mTOR activation, causing surface protein expression
alterations (highly expressing PD-L1/2, CD80/86, FasL C1QBP while decreasing MHC expression) and metabolism changes (from glucose to pynuvate). All these
procedures happen in the donor kidney and the immune organs including the thymus, spleen, lymph node, and bone marrow.
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deficient DC could increase pro-inflammatory cytokines,
promote antigen-dependent T cell activation (204, 205). With
STAT5 inhibited by JQ1 in lipopolysaccharide-mediated DCs,
the level of IL-12p70 secretion is decreased (206). Moreover,
materials preventing NF-kB like small interfering RNA and
Bay11-7082 have the potential to generate tolerogenic DCs in
that they can serve as immunosuppressive tools in other organ
transplants (207, 208) (Figure 4).
CONCLUSIONS AND POSSIBLE
THERAPEUTIC PROSPECTS

Compared with macrophages in kidney transplantation, renal
DCs’ roles in ischemia–reperfusion, rejection or tolerance still
need to clarify. For further investigation, a unified standard to
separate kidney DCs from macrophages must be established
based on the current level, since macrophages and DCs are
both essential parts of innate immunity and they often
function together inducing rejection or tolerance. This
objective can be promoted by high-dimensional analysis of
single-cell because increasing kidney biopsy samples provide
an opportunity for revealing the markers and transcription
different from macrophages. Additionally, the comparison of
normal kidney and rejected kidney engenders valuable
hypothesis and remarkable conclusions analyzed by artificial
intelligence. In some respects, researchers tend to establish
mouse models in experiments and this choice produces
numerous discoveries and hinders translational medicine.
Kidney transplantation saves tens of thousands of patients’
lives every year and costs millions of dollars handling
Frontiers in Immunology | www.frontiersin.org 9
rejection-associated problems meanwhile. Although donor
DCs might mediate tolerance in vivo, patients still rely on
traditional glucocorticoids and non-specific immunosuppress
drugs. As a result, translational medicine should be
emphasized immediately after the roles of DCs in renal
transplantation being clarified. Finally, the relationship
between rejection and tolerance and DCS is relatively clear,
but the relationship between DCs and other complications of
renal transplantation is still in a vague state. For example,
infection related to renal transplantation may be related to
intestinal flora, and the effect of intestinal flora on host
immune status is likely to be achieved through DCs. In
addition, the lifespan of donor DCS is not as long as that of
recipient DCs, so the details of the interaction between the two
DCS will also be the key to anti-rejection intervention at
different time points after renal transplantation. On this
basis, the understanding of the interaction between DCs and
T cells of each transcript will also provide support for the
development of anti-rejection drugs after transplantation.
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