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Abstract

Summary: Familial aggregation analysis is the first fundamental step to perform when assessing

the extent of genetic background of a disease. However, there is a lack of software to analyze the fa-

milial clustering of complex phenotypes in very large pedigrees. Such pedigrees can be utilized to

calculate measures that express trait aggregation on both the family and individual level, providing

valuable directions in choosing families for detailed follow-up studies. We developed FamAgg,

an open source R package that contains both established and novel methods to investigate familial

aggregation of traits in large pedigrees. We demonstrate its use and interpretation by analyzing

a publicly available cancer dataset with more than 20 000 participants distributed across approxi-

mately 400 families.

Availability and implementation: The FamAgg package is freely available at the Bioconductor re-

pository, http://www.bioconductor.org/packages/FamAgg.

Contact: Christian.Weichenberger@eurac.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The investigation of whether a disease or symptom trait recurs more

often among close relatives than in the general population is a deeply

rooted subject in genetic epidemiology, often termed as familial aggre-

gation analysis (Khoury et al., 1993). While segregation analysis was

the tool of choice to identify patterns of Mendelian diseases, there is

no unique method to highlight familial clusters for complex diseases,

especially in situations involving very large pedigrees lacking a regular

family structure. In this setting, more than three decades ago, a com-

putational method was first developed to highlight familial aggrega-

tion of various cancer types (Hill, 1980). The method was based on

the kinship coefficient Uij, which is the probability that two subjects i

and j share the same allele identical-by-descent at one locus, and rep-

resents a suitable measure to quantify the relationship between two

individuals in the pedigree (Malécot, 1948). In this early approach,

the average kinship between all affected pairs was compared to the

mean kinship of multiple sets of randomly selected matched controls

(Hill, 1980). This and other kinship-based methods have been suc-

cessfully applied to very large pedigrees to assess whether diseases

such as autism (Jorde et al., 1990) or Parkinson’s disease

(Sveinbjörnsdottir et al., 2000) showed evidence of familial aggrega-

tion. The kinship-based approach was also extended to be used with

time-to-event data: the presence of familial clustering is assessed

based on disease incidence rates, thus accounting for the time to dis-

ease onset (Kerber, 1995).

Driven by the lack of open access tools for familial aggregation

analyses in large pedigrees, we have developed an R package provid-

ing this functionality. Besides basic pedigree analysis, sub-setting

and plotting methods, it implements the previously published meth-

ods based on average kinship and disease incidence rates as well as

two novel approaches to detect familial aggregation employing stat-

istics based on kinship coefficients combined with Monte Carlo

simulation techniques.
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2 Implementation

The FamAgg package implements five family aggregation detection

methods that can be run on a single family or sets of families and

allow stratification according to different conditions such as gender,

age and generation.

The kinship sum (KS) test assesses whether an affected subject is

more closely related to other affected rather than unaffected cases in

the pedigree. Let A be the set of affected subjects and N the number of

simulation steps. The kinship sum of subject i to all other affected cases

is Si ¼
P

j2A; j6¼iUij, whose null distribution S is obtained by N-time

random sampling of #(A) affected cases from the complete pedigree

without replacement. An empirical p-value for Si is obtained as pi ¼
P(S� Si).

In the kinship group (KG) test, for each affected individual i, its

most distant affected relative k is identified. We then define a group

Gi that includes all individuals j such that Uij � Uik. For each group

Gi, we calculate two null distributions, based on repeatedly random

sampling of #(A) affected individuals from the complete pedigree.

First, for each group Gi we compute the distribution of the number

of affected cases from the random sampling, which allows comput-

ing an empirical p-value pi for finding by chance at least the number

of observed cases in group Gi. Second, we provide a means to detect

clusters of closely related affected family members: for each group

Gi we derive the distribution of kinship coefficients Uia from the ran-

dom sampling for all affected individuals a. From this distribution

we calculate the empirical p-value to find a closer affected relative

than in the observed case.

The genealogical index of familiality (GIF) test (Hill, 1980) is a

pure family-based test. It computes the mean kinship KF (Malécot,

1948) for a selected family F, defined as the average kinship coeffi-

cient between all possible pairs of affected individuals i and j, and

creates a null distribution K of mean kinships of N sets of randomly

selected (optionally matched) controls. An empirical p-value is

derived as pF ¼ P(K � KF).

The familial incidence rate (FIR) approach introduced by Kerber

(1995) concentrates on familial aggregation for individuals in longi-

tudinal studies. It is based on the incidence rate I ¼ C/T, where C is

the number of incident cases and T is the total number of years an

individual was exposed to the risk of disease (person-years). This

measure has been refined by weighting the individual’s contribution

and time spent in the study by the kinship coefficient Uij to arrive at

a measure of familial incidence rate FRi for any individual i.

Finally, we provide a convenience interface to compute the

exact probability of familial clustering (PFC) of phenotypes as pro-

vided in the gap R package (Yu et al., 2002). It contrasts the num-

ber of affected cases against family sizes in a contingency table but

the estimation of an exact p-value is possible only for families of

limited size, due to the high computational demand. The method is

based on the exact test for multinomial distributions, and therefore

its application to large pedigrees is possible only with the aid of

pedigree splitting software such as for example Jenti (Falchi et al.,

2008).

With the exception of the GIF method, which identifies aggrega-

tion of a trait in the full pedigree all kinship-based methods are

applied at the level of individuals and thus allow to identify either

individuals in families with significant aggregation (KS test), or

groups of highly clustered affected individuals within families (KG

test), or assess the risk for individuals given their relation to affected

individuals in the pedigree (FIR).

In addition to these familial aggregation methods, FamAgg pro-

vides functions to sub-set pedigrees, to identify common ancestors for

any given list of individuals, to identify matched controls within pedi-

grees and to convert pedigrees into graphs, which opens the whole

world of graph-theory methods to pedigree analyses. It uses the kin-

ship2 R package (Sinnwell et al., 2014) for kinship coefficient calcula-

tion and plotting, and provides a transparent interface to Haplopainter

software (Thiele et al., 2005). The open, object-oriented software archi-

tecture of the FamAgg package invites contribution of additional tests

from the research community. Extensive documentation and ex-

amples are distributed with the FamAgg package, which is available as

supplementary material.

3 Applications

We applied the KS, GIF, KG and FIR tests from the FamAgg pack-

age to the publicly available Minnesota Breast Cancer dataset

(Sellers et al., 1999), which contains genealogical information

from 426 unrelated affected founders whose families entered a

Fig. 1. Familial aggregation in the Minnesota Breast Cancer dataset. (A) Scatter

plot of –log10(p-values) from the KS test (x-axis) and the GIF test (y-axis) com-

puted for all 426 families. Given the KS test provides a p-value for each affected

subject, the lowest p-value in each family is displayed. At a significance level of

0.05 (dashed lines), the GIF test identifies 34 families whereas the KS test identi-

fies 42 families. Filled circles and family identifiers are provided for the 14 fami-

lies when tests are jointly significant. For example, family 432 is top-ranked by

both tests: p-value ¼ 1.3 � 10�3 and 9.6 � 10�5 with the GIF and KS test, re-

spectively. Non-significant family clusters are gray shaded. (B) Pedigree of fam-

ily 13, which is ranked second by the GIF test (p-value ¼ 2.4 � 10�3). The family

comprises 29 phenotyped members and includes five affected females. If

known, age of cancer onset (cases) or age of demise is indicated below individ-

uals’ identifiers. For subject 410, Si ¼ 1.0 (0.25� 3 affected sisters þ 0.25� 1 af-

fected daughter), with p-value ¼ 1.3 � 10�2. Sisters 406, 408 and 409 have

equal Si ¼ 3 � 0.25 þ 0.125 ¼ 0.875 (p-value ¼ 2.4 � 10�2), as they are aunts of

subject 419. The familial incidence rate of individual 410 is FRi ¼ 8.7 � 10�3,

which is in the top percentile of all computed values in the Minnesota Breast

Cancer dataset
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longitudinal study on cancer in the state of Minnesota (USA) in

1944. There are 1376 cases spread over these 426 families with a

median family size of 53 members, the largest family comprises of

382 individuals in six generations. The performed tests did not

utilize sampling stratification and the null distributions were calcu-

lated with N ¼ 50 000 sampling steps. Runtimes on a single

2.4 GHz processor of a MacBook Pro with 16 GB of memory are

as follows: FIR test, 2 s; GIF test, 7 min; KS test, 23 min; and KG

test, 3 h. At a significance level of 0.05, the KS test and the GIF test

identified 42 and 34 families with a significant enrichment of

cases, respectively. Figure 1A highlights the 14 families with filled

symbols where both the KS and the GIF tests identified significant

familial aggregation. Figure 1B provides an example of a smaller

family with breast cancer aggregation. The p-values are 2.4 � 10�3

for the GIF test and 1.3 � 10�2 for individual 410 according to the

KS test.

Figure 1 demonstrates that there is a certain agreement between

the methods. However, differences in the results from distinct meth-

ods are expected as each method is based on a slightly different ap-

proach to identify familial aggregation and therefore reports

different families at a specified significance level. We recommend

bearing in mind the underlying statistical test when interpreting the

results of a specific method.
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