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Abstract: The development of smart immune evasion mechanisms is crucial for the establishment of
acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different
causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B,
C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the
hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV
and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms
for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually
escape from the host immune system, revealing another key function of exosomes apart from their
recognised role in intercellular communication. This review will discuss how the hepatitis viruses
exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then,
we will outline the contribution of exosomes in viral persistence and liver disease progression.

Keywords: viral hepatitis; exosomes; immune response; quasi-enveloped; immunosuppression;
HCC; fibrosis; cargo; HCV; HBV

1. Introduction

Liver disease arises from different causes, such as pathogens, metabolic disorders, and
toxic agents [1]. The five hepatitis viruses, hepatitis A (HAV), hepatitis B (HBV), hepatitis
C (HCV), hepatitis D (HDV), and hepatitis E (HEV) are collectively responsible for the
occurrence of viral hepatitis, one of the most common causes of severe liver disease [2,3].

The transmission of HAV and HEV via a faecal–oral route causes self-limiting infec-
tions. Despite the low occurrence of HAV in the developed countries, where anti-HAV
vaccination, proper sanitation, and clean water have made HAV outbreaks quite rare,
people in low- and middle-income countries are still very much at risk, with approximately
100 million cases per year worldwide [4]. HAV does not establish persistency; however, it
was shown to relapse in up to 20% of patients [5]. HEV causes waterborne outbreaks, with
an estimated 20 million new cases every year in both developing and Western countries [4].
HEV was recently recognised as a zoonosis, because it is the only hepatitis virus with an
intermediate animal host, usually pigs and wild boar. Although it causes acute hepatitis,
there have been reports of chronicity in immunocompromised patients [6,7].

On the other hand, infection with HCV and HBV, alone or together with HDV, often
leads to chronic viral hepatitis [3,8], with 59 and 296 million people suffering worldwide, re-
spectively [9,10]. All three viruses are transmitted by bodily fluids and establish persistency
accompanied by aberrant inflammation due to failure of the host to mount a successful
immune response. When the liver becomes unable to heal and regenerate, hepatic fibrosis
occurs, leading to the development of liver cirrhosis and, in some cases, hepatocellular
carcinoma (HCC) [11]. HCC, occurring in the setting of chronic viral hepatitis, is often
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discovered late in its course, as the infection itself goes undiagnosed for years in most
cases. Therefore, liver transplantation is the best option for the patients at this stage [12].
Interestingly, about 20–40% of HCV patients and 90% of HBV ones succeed in clearing the
viruses during the acute phase of infection, depending on whether the host immune system
can successfully thwart the virus-induced immune evasion [13].

The clinical manifestations of acute hepatitis include flu-like symptoms with fever
and anorexia, joint pain, fatigue, and jaundice, although more than 70% of the HBV
infected patients appear asymptomatic and symptoms are even more rare in acute HCV
hepatitis [14,15]. The numbers of asymptomatic cases are considered to be approximately
30% and 80% for HAV and HEV, respectively; however, this could be an underestimation
due to the lack of appropriate testing in the poorer countries [5,6,16].

2. Exosomes: The Faithful Assistants of Hepatitis Viruses

Over the last decade, extracellular vesicles (EVs), including exosomes, have gained
interest in the field of cell communication as important mediators of intercellular com-
munication in viral infections. A connection was established between viruses and EVs
that contributes to viral disease progression. Several studies support that viruses may
exploit the EV biogenesis route to increase their infectivity, transmissibility, and immune
evasion capabilities [17,18]. For example, human immunodeficiency virus (HIV)-infected
cells produce exosomes that incorporate viral proteins such as Nef [19]. In the same
line, Epstein–Barr virus (EBV)-infected cells are known to release EVs containing latent
membrane protein 1 (LMP-1) [20].

The focus of this review paper is to point out the importance of the interactions between
exosomes and hepatitis viruses in the context of viral egress, immune evasion, immune
regulation, and immunosuppression. The consequences of exosomal mediation on the
development of liver disease will also be highlighted. In the next section, we provide current
knowledge on the biogenesis of exosomes, their cargo, and cargo-sorting mechanisms, so
that the reader comprehends the versatility of these organelles as messengers of intercellular
communication and mediators of multilevel regulatory events.

2.1. The Making, the Taking, and the Loading

EVs originate from the endocytic pathway, and they are secreted by a variety of
cells [21]. Based on their size, biogenesis mechanism, and function, they are separated
in (a) apoptotic bodies (50–5000 nm in diameter), (b) microvesicles (100 nm–1 µm in
diameter), and (c) exosomes (30–150 nm in diameter) [22–25]. In this review, we have
decided to exclude the retrovirus-like particles (RLPs) that were previously described as
indistinguishable from EVs in some cases [26,27] and are considered to be a separate EV
subgroup according to the MISEV guidelines [28]. The first vesicles formed in the endocytic
pathway through the invagination of the plasma membrane are the early endosomes. The
biogenesis of exosomes entails vesicle budding into endosomes, followed by release from
multivesicular bodies (MVBs) [24,29]. The proposed model of Fordjour and colleagues [29]
suggests that both plasma and endosomal membranes participate in exosome biogenesis,
indicating a new alternative concept in exosome budding and an explanation for exosomal
marker heterogeneity. MVBs are late endosomes that contain multiple intraluminal vesicles
(ILVs). ILVs are formed by inward invagination of the limiting endosomal membranes, a
process that depends on the endosomal sorting complex required for transport (ESCRT)
machinery. ILV accumulation begins when early endosomes are created and continues
throughout the maturation of late endosomes. MVBs fuse either with the lysosomes or
with the plasma membrane. In the first case, the contents of ILVs are degraded, whereas in
the second case, the ILVs are released as exosomes in the extracellular space [30–32].

Exosomes are single-membrane vesicles that appear rounded and hollow under ob-
servation with transmission electron microscopy. Exosomes, isolated from body fluids
or cell culture supernatants, mediate intercellular communication in normal physiology
and disease carrying different cargo from recipient to target cells [33]. The exosomal cargo
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encompasses biomolecules such as proteins, lipids, DNAs, RNAs (mRNA, miRNAs and
lncRNAs), cytokines, growth factors, etc. It is either chosen purposefully through active
sorting from the cellular vicinity (endocytic vesicles, cytoplasm, and plasma membrane
of the donor cell), or it is randomly engulfed during exosome formation [34]. Circulat-
ing exosomal mRNAs express new proteins in the target cells, while exosomal miRNAs
and lncRNAs contribute to the post-transcriptional regulation of gene expression, thereby
altering specific gene expression patterns of the target cells [35–38].

Proteins, such as tetraspanins, participate in exosome biogenesis and protein load-
ing. Tetraspanin-enriched microdomains (TEMs) are ubiquitous specialised membrane
platforms for compartmentalisation of receptors and signalling proteins in the plasma
membrane [39]. It was shown that TEMs, together with tetraspanin CD81, play a key role
in sorting target receptors and intracellular components toward exosomes [40]. The most
commonly encountered protein content of exosomes can be divided into two groups. The
first group includes proteins necessary for exosomal structural integrity, such as integral
membrane and membrane-fusion-related proteins, vesicle formation proteins, and proteins
of the major histocompatibility complex (MHC) classes I and II. All these molecules are
derived from endosomes, plasma membrane, and cytosol of the donor cell [41,42]. The
second group contains protein biomarkers commonly detected in exosomes. Exosomal
biomarkers, such as ALG-2-interacting protein X (Alix) and tumour susceptibility gene
101 (TSG101), indicate the endosomal origin of exosomes. Tetraspanins CD63, CD9, and
CD81 are involved in the biogenesis of exosomes [43]. Furthermore, heat shock proteins
(HSPs) such as HSP70 and HSP90 are regularly found in exosomal cargo and used for
the characterisation of exosomes [23]. Notably, the size of exosomes was based on a dy-
namic scaling model using scaling exponents, which characterise the size distributions of
tumour-originating EVs [44]. Smolarz and colleagues reported that EVs isolated from the
serum of healthy donors were divided in two groups of larger vesicles ranging between
50–100 nm and smaller vesicles of 20–25 nm. Western blot analysis indicated that the larger
vesicles were enriched in CD63 and CD81, while CD9 and TSG101 were detected in both
groups [45].

Studies have shown that the the exosomal protein cargo is not limited only to tetraspanin
proteins and exosomal markers. Tetraspanines, for example, interact with proteins, such
as MHC class II proteins [46], immunoglobulin superfamily member 8 (IGSF8) [47], inter-
cellular adhesion molecule-1 (ICAM-1) [48], syndecans (SDC1–4) [49], and integrins [50].
Furthermore, CD63 interacts with different viral proteins, such as the LMP-1, leading to
their secretion via exosomes [51]. Recently, it was demonstrated that exosomes derived
from tumour cells secrete certain proteins known to control the immune response. Pro-
grammed death ligand 1 (PD-L1) is one of the immunosuppressor factors detected in
these exosomes able to provoke T-cell anergy [52]. Signalling proteins are another group
of proteins identified in exosomes, examples being the epidermal growth factor recep-
tor (EGFR), the vascular endothelial growth factor receptor type-2 (VEGFR-2) [53], the
insulin-like growth factor I receptor (IGF-1R) [54], the T-cell receptor (TCR) [55], and G
protein–coupled receptors (GPCRs) [56]. Exosomes also carry a large selection of enzymes,
including RNA editing enzymes, lipases, proteases, glycosyltransferases, glycosidases, and
metabolic enzymes, many of which have the potential to chemically alter exosomal cargo,
as reviewed in [57]. Thus, exosomes may end up carrying daughter compounds of the
original intracellular molecules sorted into them upon exosomal secretion [34].

Exosomes isolated from biological fluids and various cell lines (tumoural and non-
tumoural) are known to transport lipids, either as a constituent of their external lipid bilayer
or as part of their internal cargo. Cholesterol, phosphatidylserine, phosphatidylcholine,
esters, leukotrienes and prostaglandins, sphingomyelin, phosphatidic acid and other fatty
acids of variable length and saturation, as well as various lipid species spanning up to
eighteen different lipid classes have been described so far [58,59]. Exosomes were shown to
contain higher quantities of certain lipid classes, such as phospholipids, cholesterol, and
ceramides, in comparison with their donor cells. This is due either to the lipid sorting
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and loading process occurring during biogenesis of the exosomes or to de novo synthesis
and modification carried out in situ by activated lipid-related enzymes that are part of the
exosomal cargo [60,61]. Overall, the most recent studies emphatically propose a key role
for the exosomal lipids in the regulation of the lipid metabolism of target cells, including
lipid biosynthesis, transport, clearance, and degradation [62] (and references therein).

There are two different mechanisms of exosomal cargo sorting, depending on whether
the ESCRT machinery is employed. This is a complex protein machinery with four distinct
groups of proteins (ESCRT-0–ESCTR-III) that assists in MVB formation and vesicle budding.
It is also involved in the differential cargo protein incorporation into ILVs and MVBs [63].
The function of these four protein complexes is sequential. The ESCRT-0 complex is
responsible for cargo recognition, and together with the ESCRT-I, they are involved in
cargo recruitment and membrane invagination. The complexes ESCRT-II and ESCRT-III
are responsible for vesicle maturation and vesicle neck constriction. Finally, they carry out
inward membrane scission and liberation of the fully formed ILV into the MVB lumen via
the action of the vacuolar ATPase Vps4 [64,65]. Furthermore, together with the ESCRT-
dependent processes, different complex lipids and proteins are involved in the biogenesis
pathway of exosomes [66]. For example, ceramide participates in the initial formation of
ILVs. Experiments with inactivation of ESCRT components [67] led to the identification of
an alternative pathway for sorting exosomal cargo into MVBs. This mechanism depends
on raft-based microdomains for the lateral segregation of cargo within the endosomal
membrane. It is worth mentioning that not only do ESCRT-independent and ESCRT-
dependent pathways represent alternative routes of exosomal cargo sorting, but they also
act, at least in some cases, synergistically and in a cell-specific manner.

Exosomes are found in bodily fluids, including plasma [68], urine [69], and breast
milk [70]. When exosomes are released from donor cells, they move freely in the extracellu-
lar space and deliver their cargo in different ways. When they reach a target cell, exosomes
can fuse with their plasma membranes through a variety of mechanisms [71]. Exosomes
deliver their cargo to recipient cells through attachment to their cell surface via exosomal
adhesion molecules and fusion with the plasma membrane or via receptor-mediated en-
docytosis [33]. These interactions between target cells and exosomes lead to transfer of
membrane receptors, growth factors bound on the surface of exosomes, delivery of specific
proteins to target cells, and transfer of genetic material [38]. Importantly, intercellular
communication is achieved through the initiation of exosome-mediated signalling cascades
that can alter gene expression in target cells [72].

The origin and status of donor cells may be deduced by the presence of cell-specific ex-
osomal markers. For example, injured liver cells secrete an increased number of exosomes
enriched in carboxylesterase-1 (CES1), alcohol dehydrogenase-1 (ADH1), glutathione S-
transferase, apolipoprotein A-1 (APOA-1), and albumin (ALB) [73]. Furthermore, tumour-
derived exosomes carry large quantities of tumour antigens related to cellular signal
transduction [74,75]. Moreover, exosomes secreted from the central nervous system (CNS)
participate in physiological functions, such as maintenance of myelination, synaptic plas-
ticity, and antigen presentation. In pathological conditions, exosomes are mainly used
for the disposal of accumulating, unwanted biomolecules. For example, it was shown
that in Alzheimer’s disease (AD), CNS-derived exosomes contain amyloidogenic proteins,
such as hyperphosphorylated tau [76–78] and monomeric or oligomeric amyloid β-protein
(Aβ) [79,80], while in Parkinson’s disease (PD), they can carry misfolded α-synuclein [81].

2.2. Hepatitis Viruses Exploit the Exosomal Biogenesis Pathway to Egress

Positive-strand RNA viruses that belong to large viral families, such as the Flaviviridae,
Coronaviridae, and Picornaviridae, take advantage of the intracellular host cell membranes
to form replication organelles, assemble viral proteins and genetic material into viral
particles, and egress through cellular secretion mechanisms [82–87]. Not only does the
rearrangement of membranes of the endoplasmic reticulum (ER), Golgi apparatus, and the
cellular secretory pathway provide scaffolding for viral replication and transcription, but it
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also offers an escape vehicle for viral components from the host immune system [88–90],
thereby facilitating immune evasion. In that context, it has lately been suggested that
viruses, previously identified as non-enveloped, can be released from infected cells in a
non-lytic manner enclosed in small double-layered membranous vesicles that utilise the
exosomal biogenesis pathway. These viruses are now characterised as quasi-enveloped,
and some hepatitis viruses seem to have adopted that route of egress [91–93].

Recent studies indicated that the positive-strand RNA viruses HAV and HEV, pre-
viously considered non-enveloped, have lately been found to circulate in the blood as
membrane-associated, quasi-enveloped particles [93–95]. HAV belongs to the Picornaviridae
family and replicates without causing cytopathic effects to host cells [96]. Interestingly,
HAV may assume both forms, either as a non-enveloped virion in the bile and faeces or as
a quasi-enveloped one (qeHAV) in the blood stream. Most virions present in supernatant
fluids of HAV-infected human hepatoma cell cultures are also quasi-enveloped [97]. It
was reported that qeHAV particles are associated with multiple components of the en-
dolysosomal system, including exosome-associated tetraspanins, suggesting an endosomal
origin for qeHAV biogenesis [94]. Feng and colleagues showed that knockdown of ESCRT-
III-associated proteins inhibited the release of both enveloped and non-enveloped HAV.
Conversely, the knockdown of ESCRT-0 and ESCRT-I proteins did not affect enveloped
HAV release. These results suggest that enveloped HAV release is dependent on specific
ESCRT-associated proteins [97]. While the exact location of HAV envelopment is not cur-
rently known, the presence of multiple endosomal proteins in extracellular qeHAV particles
suggests an internal budding process, presumably involving MVBs. Consistent with this
model, HAV-like particles were found in MVB-like structures in liver biopsy samples from
HAV-infected owl monkeys [98].

HEV shares a similar dual lifestyle to HAV; shed in the faeces as a non-enveloped
virion and circulating in the bloodstream as a quasi-enveloped (qeHEV) particle. Thus,
these two phylogenetically unrelated viruses manage to accomplish this unusual envelop-
ment in the same cellular environment. Electron microscopy revealed that HEV capsids
released from infected cells via the exosomal pathway are individually wrapped in lipid
membranes that resemble those of exosomes, while biogenesis of qeHEV is similar to that
of exosomes [99,100]. Equally to qeHAV, the qeHEV particles contain exosomal markers,
such as CD63, CD9, and CD81; epithelial cell adhesion molecule (EpCAM); and phos-
phatidylserine [100]. Using monoclonal antibodies generated against purified qeHEV
particles produced in cell culture, a host membrane protein, trans-Golgi network protein 2
(TGOLN2), was identified on the surface of the qeHEV particle [101], providing further
support for HEV budding from internal membranes. Nagashima and colleagues [102] per-
formed siRNA experiments to show that viral particle levels released from cells depleted of
exosomal secretion markers were reduced compared to controls. Finally, the HEV open
reading frame-3 (ORF3) protein was essential for the interaction with the ESCRT-associated
protein TSG101 and the release of the lipidated form of HEV [103,104].

Apart from the hepatitis viruses that use exosomal biogenesis to egress by forming
quasi-enveloped particles, HCV and HBV use exosomes to transmit whole virions or viral
components. Masciopinto and colleagues identified for the first time HCV RNA in exo-
somes isolated from the plasma of HCV-infected patients [105]. It was later shown that HCV
usurps the exosome secretory pathway to assist with viral budding [106]. Interestingly,
these exosome-transmitted HCV particles were enough to establish productive infection in
naïve hepatoma cells [107]. Virion formation and budding of HBV also require interaction
and fusion of HBV glycoproteins with the plasma membrane and were thoroughly investi-
gated [108,109]. Apart from this canonical route of viral transmission, HBV uses exosomes
to spread. Recent studies have shown that exosomes isolated from sera of chronic HBV
patients or cell cultures contain HBV DNA [110], HBV RNA [110,111], and the viral protein
HBsAg [110,112]. In addition, HBV capsid and envelope proteins were found to co-localise
with CD63, which was deemed necessary for HBV infectivity [113]. The following Figure 1
summarises the role of exosomes in the egress of hepatitis viruses.
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Figure 1. Schematic representation of the role of exosomes in the egress of hepatitis viruses. HBV,
HCV, HAV, and HEV hijack the cellular endocytosis pathway to export intact virus, viral genetic
material proteins packaged in exosomes. Key: EE: early endosomes; LD: lipid droplets; ?: unknown
cellular events.

Finally, several studies so far have identified a subgroup of hepatitis viruses that pos-
sess viral defective genomes (VDGs) devoid of the genes coding for the envelope proteins.
The resulting defective viral particles resemble the quasi-enveloped virions. Defective viral
particles were detected in the serum of infected patients. These structures enclose VDGs
that can replicate but cannot be packaged into viral particles unless the infectious wild type
(WT) helper virus provides the necessary missing envelope proteins, so that fully functional
virions are generated. So far, VDGs have been identified in HBV [114,115], HCV [116,117],
and HAV [118]. In the case of HCV, published data from our laboratory demonstrated
that HCV defective genomes isolated from the sera of chronic HCV patients contributed to
increased viral replication and egress. In addition to the HCV WT genome, defective HCV
genomes were identified in exosomes isolated from the same sera. [117]. In chronic HBV
infection, there is a correlation between the expression of defective HBV genomes (dHBV)
and HBV replication. Additionally, the presence of dHBV detected in the sera of chronic
HBV patients was related to liver disease severity and progression [115]. Interestingly,
recent data confirmed the presence of pregenomic (pg) RNA-containing viral-like particles
in the sera of chronic HBV patients and in cell cultures, which then hijacked the MVB
secretory pathway for cellular egress [119].

3. Exosome-Driven Regulation of the Host Immune Responses in Viral Hepatitis

The immune responses in the liver are initiated by parenchymal cells (hepatocytes),
non-parenchymal liver cells (Kupffer cells (KCs), hepatic stellate cells (HSCs)), as well as
circulating immune and non-immune cells (monocytes, macrophages, dendritic cells (DCs),
natural killer cells (NKCs), and platelets), which constantly infiltrate the liver. All these
cells work in perfect harmony to balance immune responses against pathogen-induced
immune evasion and immune suppression [120,121]. Exosomes, as intercellular mediators,
participate in several physiological functions, including cell apoptosis, proliferation, dif-
ferentiation, blood clotting, and tissue repair, as reviewed in [43,122–125]. Lately, it has
been proposed that exosomes also play crucial roles in pathological conditions, such as
tumourigenesis, tumour metastasis [126,127], and the development of neurodegenerative
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diseases [128]. One of the key aspects of exosome-driven disease initiation and progression
is the multilevel regulation of the innate and adaptive immunity, as shown for exosomes
produced by the tumour microenvironment [129–132]. This is especially true in viral infec-
tions, where the net effect of exosome-directed attenuation of the host immune response
results in viral immune evasion, establishment of persistence, and eventually, chronicity.

3.1. Exosome-Mediated Immunomodulation of the Host Cellular Environment in Viral Hepatitis

Virus-related exosomal cargo were shown to modulate the immune response and ac-
tively promote infection establishment and chronicity, leading to liver disease progression
through the transmission of exosomal immunoregulatory factors [111,133–136]. MiRNAs
are among the most powerful such factors. HCV infection produces miRNA-bearing exo-
somes that were shown to skew innate immune responses through inhibition of NKCs by
miR-122-5p, miR-146a-5p, and others [137]. Direct-acting antivirals (DAAs) are able to cure
chronic HCV infection, achieving sustained virological responses (SVR) to approximately
95% of the patients [138]. These treatments have managed to reduce HCV-related exoso-
mal miRNAs and reinstate host NKC immune responses [139]. New findings from our
laboratory revealed that post-DAA treatment, chronic HCV patients at all fibrosis stages
exhibited differential exosomal expression of the immunoregulatory cytokine transforming
growth factor-β (TGF-β). Despite DAA-mediated HCV eradication, the presence of im-
munosuppressive factors in the exosomal cargo supports the notion of a remaining “viral
fingerprint” that could promote liver disease in individuals suffering from advanced viral
hepatitis C [134].

During HBV infection, exosomes separated from EVs by density gradients were
endocytosed by DCs and macrophages following their incubation with total peripheral
blood mononuclear cells (PBMCs). This led to increased PD-L1 expression on the surface
of monocytes and macrophages that, in turn, weakened adaptive immunity via T-cell
exhaustion. Notably, HBV reverse transcriptase inhibitory drugs were shown to alter
the exosomal cargo of HBV nucleic acid species, thereby lowering its immunoregulatory
potential [140].

3.2. Exosome-Mediated Immune Evasion of Hepatitis Viruses

Hepatitis viruses have developed mechanisms for evasion of the host immune re-
sponse in order to establish successful infection [141]. Even as early as the 1980s, when
the concept of exosomes was unknown, it was observed that HAV was resistant to neu-
tralising antibodies. Experiments at the time revealed that the HAV virion was enveloped
by lipids, and a vital protective relation with cell membranes was assumed [142]. Much
later, exosomes released from the infected hepatic cellular milieu and characterised with
the exosomal markers CD63, CD9, TSG101, and ALIX were found to transmit infective
HCV components [107], masking them from the immune system. HCV-related exosomes
carry a specific repertoire of miRNAs, some of which aim to make the host cell tolerate
completion of the viral life cycle. The abundantly expressed liver-specific miR-122 regu-
lates genes involved in hepatic lipid metabolism and homeostasis [143]. Importantly, a
past study suggested that HCV RNA may be masked from serum neutralising antibod-
ies when complexed with miR-122, argonaute-2 (ago2), and Hsp90 and hidden within
exosomes [144]. Upon entry, miR-122 and Ago2 enhanced HCV RNA stability through
base-pairing with the 5′-untranslated region (UTR) of the viral RNA, thereby leading to in-
creased translation and HCV replication [145,146]. Interestingly, recent findings suggested
that HCV-related exosomes carry large amounts of replication-competent double-stranded
HCV RNAs, which can escape hepatocyte-specific toll-like receptor-3 (TLR-3)-mediated
innate responses, ensuring viral propagation [147].

Next, serum exosomes from chronic HCV patients at different disease stages of HCV-
associated HCC that contained CD81, one of the major HCV entry co-receptors [148], were
shown to carry the virus as cargo. This either allowed the shielding of the virus from
the host immune response, or held it bound to the exosomal surface through an HCV
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E2-exosomal tetraspanin complex. The level of enrichment of HCV in CD81+ exosomes
was correlated to the HCC stage, thus, mirroring disease progression [149]. Importantly, the
E2-CD81 association was demonstrated to expose E2 towards the exosomal surface [105]. It
was proposed that HCV E2 protein contains a TCR inhibitory motif able to reduce T-cell
activation [150]. In addition, E2-CD81 protects B-cells from activation-induced cell death,
leading to weak antibody production [151], and inhibits human NKCs [152]. Neutralisa-
tion assays carried by Liu and colleagues demonstrated that a mixture of exosomal and
particular HCV virus was neutralised four times less than particular HCV alone, showing
that exosomes potentiate HCV immune escape against serum neutralisation [153]. Thus,
the E2-CD81 association masks E2 antigenic regions against which neutralising antibodies
are raised during natural infection [154]. Finally, the key sorting protein syntenin facil-
itates E2 exposure on the exosomal surface, thereby protecting HCV from neutralising
antibodies [155].

The role of exosomes in HBV-mediated immune regulation has started to emerge from
data reported by Yang and colleagues. The HBV DNA-carrying exosomes isolated from
serum of chronic HBV patients and characterised by the presence of CD63 and CD81 were
incubated with primary NKCs from healthy donors leading to suppressed interferon-γ
(IFN-γ) production, reduced retinoic acid-inducible gene I (RIG-I) expression and inhibition
of p38, and nuclear factor kappa B (NF-κB) activation. The exosome-mediated attenuation
of the NKC immune response was even more pronounced upon addition of TGF-β into the
NKC culture [110]. In addition, exosomal immunoregulatory miR-21 and miR-29 produced
by HBV-infected hepatocytes reduced macrophagic pro-inflammatory interleukin-12 (IL-12)
levels, thus, blunting macrophage activation [156]. Recently, Yang and colleagues reported
the presence of a virus-encoded miRNA that proved to be an important transcriptional
regulator of host and viral gene expression. HBV-miR-3, expressed in HBV-infected tissues,
cells, and patient sera, was detected in HBV-containing exosomes and within HBV core par-
ticles. It plays a key role in attenuating HBV replication, translation, and virion production
and keeping viral titres at very low levels so that the virus has the opportunity to bypass
the host immune system and achieve persistence [157].

As far as HEV exosomes-mediated immune evasion is concerned, recent data have
suggested that HEV open reading frame protein 2 (ORF2), which is the capsid protein of
HEV responsible for virion assembly and encapsidation of viral RNA, was co-purified with
CD63, demonstrating the dependence of HEV egress on exosomal biogenesis. Still, ORF2
remained hidden from the outer exosomal membrane, thereby protecting the viral particle
from capture by ORF2 neutralising antibodies [99].

3.3. Exosome-Mediated Immunosuppression in Viral Hepatitis

Hepatic immunotolerant mechanisms have evolved to allow entrance of non-pathogenic
antigens into the liver, protecting it from continuous injury. However, what is highly de-
sirable under physiological conditions may lead to devastating liver disease upon viral
infection. Such immunoprotective systems are exacerbated in chronic hepatitis, thereby
initiating aberrant inflammation, liver fibrosis, cirrhosis, and eventually HCC develop-
ment [158]. Chronic viral hepatitis sets in when the virus suppresses host immunity long
enough for the infection to become persistent. Recent studies have shown that exosomal
cargo is implicated in deregulated immune responses, as reviewed in neoplastic [159] and
autoimmune diseases [160] characterised by aberrant inflammation. Exosomal cargo in
infected hepatocytes could mirror the inflammatory state imposed by hepatitis viruses in
the liver, as damaged parenchymal hepatic cells secrete exosomes containing inflammatory
and immunosuppressive factors and miRNAs.

The homeobox (HOX) gene cluster expressed in the myeloid lineage, generates a class
of transcripts named HOX antisense intergenic RNA (HOTAIR) lncRNAs with transcrip-
tional regulatory functions in myelopoiesis [161]. The HOXA transcript antisense RNA
myeloid-specific 1 (HOTAIRM1) is an intergenic lncRNA up-regulated during granulocyte
differentiation and myeloid cell maturation [162]. Infiltrating myeloid-derived suppressor
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cells (MDSCs) are pathologically activated granulocytes and monocytes with potent im-
munosuppressive activity that inhibits T-cell functions in viral infection [163]. Although
MDSCs contribute to immune homeostasis by limiting excessive inflammatory processes,
their expansion may be at the expense of pathogen elimination, resulting in persistent
infection [164]. During chronic HCV infection, an mRNA array analysis in myeloid cells
derived from HCV patients showed concurrent up-regulation of HOTAIRM1 and its target
gene HOXA1. In parallel, miR124 was inhibited and negatively correlated with HOTAIRM1
expression. HCV-containing exosomes induced the HOTAIRM1–HOXA1–miR124 axis,
thereby leading to enhanced immunosuppressive MDSC functions [165]. Gene expression
analysis in MDSCs isolated from HCV-infected individuals showed that there was a si-
multaneous up-regulation and positive correlation between expressions of the runt-related
transcription factor 1 overlapping RNA (RUNXOR) and runt-related transcription factor
1 (RUNX1). Furthermore, it was demonstrated that miR-124, a downstream target of the
RUNXOR–RUNX1 pathway in MDSCs, was regulated through a signal transducer and
an activator of transcription 3 (STAT3) and promoted the immunosuppressive role of this
pathway in MDSCs [166].

Virus-specific T-cell responses control the fate of HCV during HCV infection [167],
because depletion of either CD4+ or CD8+ T-cells disturbs HCV clearance and promotes
viral persistence [168,169]. Immunosuppressive mechanisms in chronic HCV infection
involve high expression of several exhaustion markers, including PD-1 [170], T-cell im-
munoglobulin mucin-3 (Tim-3), and cytotoxic T lymphocyte-associated antigen-(CTLA-4),
which restrict T-cell multifunctionality, ability to proliferate, and degranulate in response
to cognate antigens [171]. Up-regulation of these negative co-stimulatory molecules is
mediated by IL-2, IFN-γ, and tumour necrosis-α (TNF-α), as well as the degranulation
marker CD107a, all of which prevent terminal differentiation of long-lived CD127+ memory
T-cells [172,173]. Importantly, exhausted T-cells are unable to secrete antiviral cytokines and
become tolerant to HCV. On top of that, T-regulatory cells (Tregs) play an important role
in HCV persistent infection as they inhibit T-cell-mediated IFN-γ secretion, together with
proliferation and activation of CD8+ T-cells in an antigen non-specific manner [174,175].
Recent studies demonstrate that exosomes hold a prominent role in HCV-mediated reg-
ulation of adaptive immune responses, since treatment of T-cells with CD63+ exosomes
from HCV-infected hepatocytes was shown to increase a subset of CD4+-originating Tregs
found in HCV-infected liver, the T-follicular regulatory cells (Tfr), in a TGF-β-specific way.
In turn, Tfrs produced elevated levels of IL-10 and CTLA-4, thereby suppressing Tf helper
and possibly B-cell functions [176].

HBV clearance by the host depends greatly on successful IFN-α-mediated antiviral
responses. However, by using the HBV precore-p22 viral protein to block IFN-α pathway
activation via inhibition of phospho-STAT1 nuclear translocation, the virus suppresses host
innate immunity and achieves persistence [177]. Exosomes among other proteins carry
numerous interferon-stimulated gene (ISG)-encoding proteins to recipient cells, triggering
downstream signalling pertinent to the immunomodulation of innate host responses [178].
Interferon-induced transmembrane protein 2 (IFITM2) is considered to be an ISG molecule
with both pro- and anti-viral activities [179]. In this case, IFITM2 was shown to act as a
negative regulator of IFN-α signalling, which curbed anti-HBV responses upon external
administration of IFN-α. Furthermore, IFITM2 was identified as an exosomal cargo of
CD63+ exosomes derived from HBV-infected hepatocytes, which could afterwards be
taken up by DCs, thereby increasing the inhibitory effect of IFITM2 on endogenous IFN-α
synthesis [180]. Another study used a proteomics analysis approach to characterise the
exosomal content of exosome release by an in vitro HBV replicating system. They suggested
that HBV-related exosomes mediate the transmission of proteasome subunit proteins to
monocytes in order to suppress pro-inflammatory IL-6 expression, thus, stressing the
immunosuppressive role of exosomes in HBV infection [112].
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4. Exosome-Mediated Disease Progression on Viral Hepatitis Background

Malignant transformation induced by oncogenic viruses, such as HCV and HBV, is
a very complex procedure with multiple steps at different cellular levels. Differential
protein expression, genetic instability, chronic inflammation, and immunosuppression are
the major virus-orchestrated cellular events that elicit tumourigenesis in the host [181,182].
Despite the fact that hepatitis viruses are hepatotropic, extrahepatic viral replication has
been suggested to exist and implies that other cell types except hepatocytes contribute
to pathogenesis of viral hepatitis [183,184]. This is especially relevant to viruses capable
of establishing chronicity, such as HCV, HBV, and HEV, which may replicate in PBMCs
and use them as viral reservoirs [185–191], although this issue is still debated by some
researchers. Nevertheless, extrahepatic cancers have been observed only in chronic HCV
patients [192].

Exosomes are evolving into key regulators of tumourigenesis and tumour progres-
sion outcomes [193]. Exosomes isolated from cancer cell lines and exosomal fractions
obtained from cancer patient plasma confirm the expression of various immunosuppressive
molecules, including death receptor ligands such as FasL and TNF-related apoptosis-
inducing ligand (TRAIL), checkpoint receptor ligands such as PD-L1, inhibitory cytokines,
such as IL-10 and TGF-β, and non-coding RNAs [194]. These immune checkpoint molecules
modulate immune responses and elicit a tolerogenic immune state able to promote carcino-
genesis [195]. In turn, exosomes derived from such immunocompromised macrophages
and T-cells can then infiltrate tumours and promote cancer progression, thereby closing the
immunosuppressive loop [196–198].

Chronic HCV infection is characterised by a perpetual cycle of cell death and regenera-
tion for the hepatocytes. Liver inflammation, oxidative stress, deregulated host homeostasis
and metabolism, altered signalling, and skewed host immune responses collectively mani-
fest as hepatic steatosis, fibrosis, cirrhosis, and hepatocarcinogenesis [199–203]. Exosomes
foster the transition from one disease stage to the other through specific immunoregulatory
exosomal cargo. For example, during an HCV-induced inflammatory state, infected hepatic
cells secrete exosomal factors, such as TGF-β and the profibrotic miR-19a, resulting in HSC
activation through modulation of the SOCS–STAT3 axis [133]. Similarly, miR-192, a liver
injury biomarker, was identified in HCV-related exosomes and induced HSC activation
into myofibroblasts through TGF-β up-regulation [204]. Interestingly, multiple miRNAs
play synergistic roles in HCV-induced hepatocarcinogenesis and have been shown to be
able to distinguish between liver disease progression stages in HCV infection, as reviewed
in Nahand and colleagues [205].

Chronic HBV infection progresses from liver fibrosis to HCC, mostly without the
cirrhotic background [206]. This is because “stealth” HBV replication possesses great onco-
genic potential as it exerts constant genetic and epigenetic pressure to the host genome
via insertion of the viral DNA into host chromosomes [207]. HBV viral proteins, such as
HBx and HBV core, play a crucial role in the development of HBV-associated HCC through
interactions with the host [208,209]. Modulation of proliferation, transformation and the
hepatocytic cell cycle, induction of hepatic inflammation and oncogene expression, oxida-
tive stress, and deregulation of the DNA damage repair mechanisms are all parts of the HBV
oncogenic programme [210,211]. On its way to chronicity, HBV propagation advances by
reprogramming the cell innate and adaptive immune responses towards reduced immuno-
surveillance, immunotolerance, unresponsiveness, and finally, exhaustion [212], eventually
promoting the HCC-inducing mechanisms described above. In the light of this, late research
identified an exosomal miRNA-related mechanism through which HBV-induced tumours
secrete exosomal miR-142-3p that promotes M1 macrophage cell death through ferroptosis,
thereby restricting tumour surveillance by infiltrating macrophages [213]. Similarly, the HB-
VeAg viral protein was shown to up-regulate the exosomal lncRNA MAPKAPK5-antisense
RNA 1 (MAAS) in M2 macrophages, which was then implicated in increased proliferation
of HBV-induced tumour cells [214].
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5. Conclusions

Exosomes are masters of intercellular communication and potent regulators of im-
mune responses at all levels of immune regulation. Recently, their role in viral hepatitis
has started to emerge. Hepatitis non-enveloped viruses hijack the exosomal biogenesis
pathway to achieve efficient viral egress through decoration of viral capsids with exosomal
membranes and components. At the same time, both enveloped and non-enveloped hepati-
tis viruses utilise exosomes as transporters of sensitive viral genetic material and proteins.
By doing so, they effectively escape host immune responses in the form of neutralising
antibodies. Exosomal cargo containing immunosuppressive viral and host proteins, as well
as small RNAs, are redirected to replication permissive sites and immune sentinel cells to
achieve their reprogramming, promoting persistence and chronicity. Constant immune
dysfunction coupled with virus-orchestrated deregulation of cellular and molecular home-
ostasis ultimately lead to exacerbation of liver disease and progression to liver cancer. A
summary of the key concepts discussed in this review is graphically presented in Figure 2.
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(truncated cone) and may exert its immunoregulatory capacity on all immune cells, down-regulat-
ing antiviral responses whilst up-regulating tolerance. Eventually, constant immune response dys-
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Figure 2. Enveloped (HCV, HBV) and non-enveloped hepatitis (HAV, HEV) viruses infect primarily
hepatocytes. The non-enveloped viruses may potentially use the exosomal biogenesis pathway for
egress, producing quasi-enveloped virions (bottom-right circle). All hepatitis viruses can exploit
exosomes to egress and transfer their genetic material, together with viral proteins involved in
replication, into permissive cells, as the exosomes grant them invisibility from host neutralising
antibodies (top-right circle). However, if the host mounts efficient immune responses, as in the case
of HAV and HEV, the viruses are cleared at the acute phase of infection (dashed red arrow). For
viruses that achieve persistence, such as HCV and HBV, exosomes may be used for independent
or consecutive (red arrow on the left) deregulation of the innate (top circle) and adaptive immune
responses (bottom-left circle), leading to sustained immune evasion, immunotolerance, and im-
munosuppression. The exosomal cargo consists of immunoregulatory proteins, lipids, enzymes, and
small RNAs (truncated cone) and may exert its immunoregulatory capacity on all immune cells,
down-regulating antiviral responses whilst up-regulating tolerance. Eventually, constant immune
response dysfunction, together with misdirected signalling and deregulated cellular homeostasis,
lead to initiation of liver fibrosis and promote malignant transformation and HCC development
(top-left circle). Key: Mono: monocytes; Mϕ: macrophages; CD4+/CD8+ T: T-cells; red arrows:
inhibitory action; green arrows: inducing action.
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