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sizes of sequence DBs growing exponentially and thus must be improved.

Results: We develop a fast GPU-based pipeline for primer design (GPrimer) that takes
the same input and returns the same output with MRPrimer. MRPrimer consists of a
total of seven MapReduce steps, among which two steps are very time-consuming.
GPrimer significantly improves the speed of those two steps by exploiting the compu-
tational power of GPUs. In particular, it designs data structures for coalesced memory
access in GPU and workload balancing among GPU threads and copies the data struc-
tures between main memory and GPU memory in a streaming fashion. For human
RefSeq DB, GPrimer achieves a speedup of 57 times for the entire steps and a speedup
of 557 times for the most time-consuming step using a single machine of 4 GPUs,
compared with MRPrimer running on a cluster of six machines.

Conclusions: We propose a GPU-based pipeline for primer design that takes an entire
sequence DB as input and returns all feasible and valid primer pairs existing in the DB
at once without an additional step using BLAST-like tools. The software is available at
https://github.com/ghtjrmin/GPrimer.git.
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Background

Quantitative polymerase chain reaction (qPCR) (also known as real-time PCR) is a
standard technique widely used for detecting the mass amplification of specific DNA
molecule in real-time. Its applications include virus detection [1], genetically modified
organism (GMO) detection [2], pathogen discovery [3], and validation of changes in
expression of interested genes [4]. For best results in qPCR experiments, design of high
quality primers is more important than anything. MRPrimer [5] is a MapReduce-based
powerful pipeline that combines both primer design for target sequences and homology
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tests on off-target sequences. In general, high quality primers should not only satisfy sin-
gle and pair filtering constraints (e.g., primer length, melting temperature, GC content)
to amplify target sequence(s) properly, but also pass homology tests not to amplify off-
target sequences. Different from the conventional methods that do homology tests as
an additional step using BLAST-like tools, MRPrimer takes an entire sequence DB and
the filtering constraints as input and returns all feasible and valid primer pairs existing
in the DB without an additional step using BLAST-like tools. In terms of finding all fea-
sible and valid primer pairs existing in the DB at once, MRPrimer is quite different from
the conventional primer design tools such as Primer3Plus [6] and PrimerBlast [7], which
find only primer pairs existing in a single sequence. Due to the effectiveness of prim-
ers designed by MRPrimer in qPCR analysis, many tools including MRPrimerW [8],
MRPrimerV [1] and MRPrimerW2 [9] have been developed based on MRPrimer and
widely used. MRPrimerW is a web-based design tool that allows user to easily obtain
the best set of primer pairs and TagMan probes for batch qPCR experiments that should
satisfy the set of stringent and uniform constraints as well as pass homology tests.
MRPrimerV is a pipeline that can build a database of primers for detection of 1818 RNA
viruses by taking both virus sequence DB and host (e.g., human, camel) sequence DB as
input. MRPrimerW?2 is an enhanced web-based design tool that supports exon spanning
design, avoiding SNP sites, input FASTA sequences, and multi-target designing.

Although the MRPrimer pipeline is used as a core engine for the above primer design
tools, it has a major drawback that its computational speed is too slow to deal with
large-scale sequence DBs. MRPrimer is a MapReduce-based pipeline, and there are also
many other MapReduce-based pipelines for sequence data analysis including Cloud-
Burst [10], GATK [11], DistMap [12], MegaSeq [13], Halvade [14], Halvade-RNA [15],
Rail-RNA [16], MarDRe [17], MEC [18] and KCH [19]. Originally, MRPrimer has been
proposed to be based on the MapReduce framework running on a cluster of machines
for fast and scalable data processing. Nevertheless, as the sizes of sequence DBs are
growing exponentially due to the advancement of the sequencing techniques, MRPrimer
may take too long time to design all primer pairs from the sequence DBs. For instance, in
the study of MRPrimerV [1], MRPrimer takes more than two weeks for 101,684 human
gene sequences even using 40 nodes of a supercomputer (Rank #454 in TOP500 Super-
computer, June 2016).

To alleviate the problem of slow computational speed of MRPrimer, we propose a
GPU-based pipeline running on a single machine for primer design, called GPrimer, that
takes the same input and returns the same output with MRPrimer.

MRPrimer consists of a total of seven MapReduce steps, among which two steps are
very time-consuming due to a large amount of computation. GPrimer significantly
improves the speed of those two steps by exploiting the computational power of GPUs.
Processing the remaining steps using GPUs may rather degrade the performance due
to data communication overhead between main memory and GPUs, and thus, GPrimer
processes those steps only using CPUs. For exploiting GPUs, GPrimer designs data
structures for both (1) coalesced memory access in GPU and (2) workload balancing
among GPU threads and (3) copies the data structures between main memory and GPU
memory in a streaming fashion for hiding data communication overhead. For human

RefSeq DB, GPrimer achieves a speedup of 57 times for the entire steps and a speedup
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of 557 times for the most time-consuming step using a single machine of 4 GPUs, com-
pared with MRPrimer running on a cluster of six machines. There are many GPU-based
methods for sequence data analysis including GPU-BLAST [20], G-BLASTN [21],
H-BLAST [22], SOAP3-dp [23], sBWT [24], gCUP [25], Arioc [26], YAMDA [27], and
NVIDIA Parabricks [28]. But, to the best of our knowledge, there is no GPU-based pipe-
line (or method) for primer design, and GPrimer is the first one.

In this paper, we briefly review MRPrimer and present the overview of our GPrimer
about how it can improve MRPrimer. Then, we present the details about algorithms and
data structures to exploit the computational power of GPUs for the two time-consuming
steps. We evaluate the performance of GPrimer compared with MRPrimer and conduct

a few experiments for the breakdown analysis of GPrimer. Finally, we draw conclusions.

Review of MRPrimer

MRPrimer [5] is a MapReduce-based [29] pipeline that consists of seven steps (Fig. 1a).
It takes a sequence DB and a set of filtering constraints as input, and then, after seven
steps, returns all feasible and valid primer pairs that exist in the DB.

Step 1 (candidate primer generation) extracts all possible subsequences of the lengths
between the minimum length and the maximum length from each sequence, as candi-
date primers. The lengths are specified by users (e.g., 19-23 bp) as inputs. This step also
extracts their reverse complementary primers while tagging them with a symbol *. The
candidate primers generated in this step are used not only for Step 2 (i.e., other single fil-
tering) but also for Steps 3 and 4 (i.e., approximate string matching). Thus, this step just
generates all possible subsequences without other single filtering. Step 2 (single filtering)
applies the single-filtering constraints to each primer passed from Step 1 and filters out
the primers that violate any filtering constraint. The constraints include melting tem-
perature, GC content, self-complementarity, 3° end self-complementarity, contiguous
residue, and Gibbs free energy, which are specified by users as inputs. Step 3 (5" cross-
hybridization filtering) eliminates a candidate primer that is the same as any subse-
quence of an off-target sequence at the 3’ end and has only a few mismatches (up to four
mismatches) at the 5’ end, and so, might cross-hybridize with the off-target sequence
due to the high similarity between them, especially at the 3’ end.

Step 4 (general cross-hybridization filtering) eliminates a candidate primer that is
similar with any subsequence of an off-target sequence. This step takes two primer sets,
C1 (output of Step 1) and C3 (output of Step 3). We denote the number of mismatched
residues between two primers as k. For more efficient computation, this step splits each
primer into a set of smaller disjoint pieces (called seeds). According to the theorem in
[30, 31], and [32], a primer of length |P| with at most k mismatches must contain a seed
exactly matched of at least | |P|/(k + 1) residues [1, 5, 8]. All pairs of primers from CI
and C3 having a common seed are collected through the shuffle step of MapReduce
and checked whether a pair of primers is identical except for k residues in the reduce
step of MapReduce. After Step 4, there still might be false-positive primers violating the
general cross-hybridization filtering constraint. This inherently occurs due to the dis-
tributed computation of MapReduce. In order to filter out such primers completely,
Step 5 (duplicate removing) rearranges the result of Step 4 in terms of primer and elimi-
nates the primers that do not pass Step 4 in terms of any seeds. The series of Steps 4 and
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Fig. 1 The pipelines of MRPrimer and GPrimer

5 is performed repeatedly while increasing k from 1 to the maximum number of mis-
match residues (i.e., #maxMismatch), which is usually set to 2 [1, 5, 8].

Step 6 (pair filtering) rearranges the result of Step 5 to a set of groups of primers, where
each group consists of the primers extracted from the same set of input sequences. Then,
it splits the primers of each group into two sets, forward primers and reverse primers,
using tags addressed in Step 1, and performs a self-join between them, which applies the
pair-filtering constraints to each primer pair. The constraints include length difference,
melting temperature difference, product size, pair-complementarity, and 3’-end pair-
complementarity, which are specified by users as inputs. The primer pairs passed from
Step 6 might not be equally effective even if they satisfy all the given constraints and
pass homology tests. Thus, Step 7 (ranking) determines their ranking by calculating a
penalty score for each primer pair. The calculation of penalty scores follows the method
of Primer3Plus [6].

Page 4 of 20
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Fig. 2 Examples of output of Step 1 and hash maps. a Example output of Step 1. b Example hash maps used
in GPrimer

Implementation

Overview of GPrimer

GPrimer is designed to perform the same task with MRPrimer and so return the same
result with MRPrimer. But, different from MRPrimer relying on distributed computa-
tion, GPrimer exploits GPU computation to handle a large-scale computation required
for primer design. Basically, MRPrimer groups a set of values having the same key
through the map and shuffle steps of MapReduce and performs a certain function
against the set of values in the reduce step of MapReduce, which are done by a lot of par-
allel processes having their own main memory spaces (i.e., heaps). In contrast, GPrimer
groups the set of values using hash maps and performs the function using a lot of CPU
or GPU threads within the same main memory space.

GPrimer performs a total of five steps as in Fig. 1b, where Step 4 of GPrimer corre-
sponds to Steps 4 and 5 of MRPrimer, and Step 5 of GPrimer corresponds to Steps 6 and
7 of MRPrimer. Since GPrimer runs in the same memory space, Step 5 of MRPrimer for
removing duplicates is not necessary, and also, Step 7 of MRPrimer (i.e., scoring and out-
put formatting) can be performed together with Step 6 of MRPrimer (i.e., pair filtering)
as a single step (i.e., Step 5) in GPrimer. Since the general cross-hybridization filtering
and pair filtering are the most time-consuming steps, GPrimer performs the Steps 4 and
5 using GPU threads and the remaining Steps 1, 2 and 3 using CPU threads. Performing
the Steps 1, 2 and 3 using GPU threads does not improve the performance much due to
the overhead of copying data back and forth between main memory and GPU memory.

Steps 1-3: building hash maps and processing using CPU threads
Step 1 extracts all possible subsequences from a sequence DB for candidate primers as
MRPrimer does. We denote the output of Step 1 as CI, the output of Step 2 as C2, and so
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on. Figure 2a shows an example of C1, where P is a primer, sid is the ID of the sequence
where P occurs, and pos is the position where P occurs in the sequence sid. Each row in
Cl1 is just a concatenation of P, sid, and pos. The symbol ‘4’ is a concatenation operation,
and we just use a character ‘+’ for the operation in this paper. Figure 2a also shows an
example of C1’, which P is a primer, and sidset is the set of IDs of the sequences where
P occurs. The set of IDs are concatenated using another character ‘-. CI’ is generated
together with CI as the outputs of Step 1 by grouping a set of rows of CI having the
same P and removing pos. CI is used for the input of Step 2, while CI’is used for the
inputs of Steps 3 and 4 for cross-hybridization filtering.

Step 2 applies six filtering constraints to each candidate primer in CI. For the candi-
date primers satisfying the filtering constraints, we build two hash maps, primerH and
suffixH. Figure 2b shows the examples of both hash maps. The former hash map, prim-
erH has a primer P as a key and a pair of sidset where P occurs and valid as a value,
where valid indicates whether P is valid or not, and all valid values in primerH are ini-
tialized as 1 (i.e., true). This hash map is used in Steps 3 and 4. At each step, the valid of
the primer that does not pass becomes 0. The latter hash map, suffixH has a suffix of a
primer (i.e., suffix) as a key and a set of primers (i.e., Pset), where suffix occurs, as a value.
This hash map is only used in Steps 3. In addition two hash maps, the set of rows of C1
passing Step 2 is stored as C2, which is used in Step 4.

Step 3 filters out the candidate primers which have a common suffix, but different sid-
set with any other primers. It can be done by performing a binary join between C1’ and
primerH, where CI’ contains all possible subsequences in the DB. In detail, we perform
the binary join by looking up the hash maps suffixH and primerH while reading each row
of CI’. For instance, we assume that we have read a row GCT+3 from CI’in Fig. 2. We
also assume that there is no primer GCT in primerH and suffixH since it has been filtered
out in Step 2. The primer has a suffix CT, and so, we look up the suffix in suffixH and find
a set of primers {*TCT}. By looking up the primer *TCT in primerH, we find the primer
has 4-5 as sidset, which is different from the sidset of GCT, i.e., 3. That means the primer
*TCT may amplify not only the sequences {4, 5} but also the sequence 3 in wet experi-
ments. Thus, we set valid of *TCT to O (false) in primerH. When we read the next row
*TCT+4-5 from CI’, we know that the primer *TCT is not valid by looking up primerH
and so skip looking up suffixH. In terms of implementation, the table C1’is divided into
multiple subtables, and multiple CPU threads read their own subtable and update prim-
erH, where there is no race condition since we use atomic operations for looking up and
setting valid of primerH.

Step 4: building arrays and general cross-hybridization filtering
Step 4 consists of the following two phases: preparing data structures and performing
general cross-hybridization filtering. In the first phase, it builds (1) a hash map called
seedH, (2) a set of arrays built from the result of Step 3 (shortly, arraysC3), and (3) a set
of arrays built from the result of Step 1 (shortly, arraysC1I). In the second phase, it per-
forms general cross-hybridization filtering using seedH, arraysC3, and arraysCI, while
increasing k from 1 to #maxMismatch.

The hash map seedH is built from the set of valid rows (i.e., valid=1) in primerH by
extracting all possible seeds from P. In Fig. 2b, seedH shows an example of the hash map
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Fig. 3 Example of the arrays used in Step 4. a arraysC3: the set of arrays built from the result of Step 3. b
arraysC1: the set of arrays built from the result of Step 1

when k = 1, and so, the length of seed is[3/2] = 1. The key of seedH is a concatenation
of seed, index (position where seed occurs in P), and |P| (length of P). The value of seedH,
i.e., Pset contains a set of primers of length |P| where seed occurs at index. For example,
in the first row of seedH means that the set of primers of length 3 where a seed A occurs
at the position 0 is {AAC, ATG}. Each set of primers having the same key is grouped
in this way. For instance, for human RefSeq DB, a total of 3,309,154 groups are formed
when k = 1, and a total of 77,418 groups are formed when k = 2. seedH is mainly used
for building arraysC3 and arraysCI.

The set of arrays, arraysC3, is composed of four arrays, P3offset, P3, sidset3offset, and
sidset3 as shown in Fig. 3a. To build arraysC3, we first sort the keys of seedH in the
ascending order of the length of Pset, i.e., the number of primers. The order of the keys
is used for handling workload balancing of GPU computation, and we call the order as
the workload order. Then, we build the arrays P3 and sidset3 according to the workload
order. For example, if we assume that T+1+3 has the shortest Pset, and A+0+3 has
the second shortest Pset in the hash map seedH, then P3 starts with Pset of T4+1+3 and
next Pset of A+ 0+ 3. Likewise, sidset3 starts with sidset of T+1+3 in primerH (i.e., 1-2)
and next sidset of A+0+3 in primerH (i.e., 2-3-4). Both P3offset and sidset3offset are
just pointer arrays for P3 and sidset3, respectively, which is used for coalesced memory
access in GPU computation.

The array output is for storing the result of general cross-hybridization filtering,
whose length is the same with P3 since the target of filtering is each primer. It is ini-
tialized as 1 which means valid and updated during general cross-hybridization fil-
tering. In general, there are multiple elements in output for the same primer (e.g., at
least three elements for ATG).

The set of arrays, arraysCl, is composed of four arrays, Ploffset, P1, sidsetloffset,
and sidset] as shown in Fig. 3b. Both PI and sidset] arrays are also built in the same

workload order mentioned above. Following the same order is for performing a binary
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join between arraysC3 and arraysCI quickly and massively using GPU computation.
PI and sidsetl are built using P and sidset in CI’ (output of Step 1), respectively, while
P3 and sidset3 are built using Pset in seedH and sidset in primerH, respectively. In
detail, we extract a set of pairs of key (i.e., seed+index+|P|) and value (i.e., Pset) from
each row in CI’, if the corresponding key exists in seedH, and build PI and sidset1 so
as to follow the workload order (e.g., the first T+143 and the second A+0+3). The
information in arraysCI1 becomes to include that in arraysC3 since the former is built
using the result of Step 1, while the latter is built using the result of Step 3.

All the data structures, seedH, arraysC3 and arraysCI need to be constructed for each
k in Fig. 1b. That is, GPrimer performs the first general cross-hybridization filtering
using the data structures constructed for k = 1 and then the second filtering using the
data structures constructed for k = 2. After the first filtering using k = 1, primerH is
updated based on output such that, if an element in output for a primer is 0, valid of the
corresponding primer in primerH is also set to 0 (false). A new seedH should be con-
structed for k = 2 since the length of a seed in seedH becomes shorter as k increases.
Accordingly, arraysC3 and arraysCI should be newly constructed based on the new
seedH and the updated primerH. The output array also should be initialized.

If the size of input sequence DB is small enough to be processed only with a single
GPU, the procedure of Step 4 is relatively simple: preparing data structures in main
memory, copying both arraysC3 and arraysC1 to GPU memory, and executing a GPU
kernel function for general cross-hybridization filtering. However, if the size of DB
is too large to be processed even with multiple GPUs at a time, the procedure needs
to be more complicated. GPrimer exploits the streaming processing functionality of
GPU to make Step 4 scalable in terms of the size of DB and the number of GPUs.

Figure 4a shows the flow of data structures of GPrimer among disk, main memory;,
and GPUs. Basically, GPrimer splits the whole arraysC3 into multiple disjoint chunks
and copies each chunk to each GPU (called chunk-copy). We assume that the number of
chunks is equal to the number of GPUs (denoted as Q). We denote the chunk assigned to
the y-th GPU (simply GPUY) as arraysC3. In Fig. 3a, each key (i.e., seed+index+|P|)
and its corresponding subarrays in P3offset, P3, sidset3offset, and sidset3 is the smallest
unit of independent workload. Thus, arraysC3 is split at the boundary between keys into
multiple chunks which are almost equal in size. GPrimer splits output into chunks and
copies each chunk to each GPU in a similar way.

In case of arraysCl, the table C1’is divided into multiple subtables C1’%, and we
denote the part of arraysCI built from CI’; so as to follow the workload order as
arraysCl,. We can again split each arraysCl, into multiple disjoint chunks arraysC1 fcy )
such that the range of keys of armysC],(cy) is the same to that of arraysC3%). GPrimer
copies armysC]éy) to GPUY (0 < y < Q), copies armysCliy) to GPUY (0 <y < Q) and
so on (called streaming-copy).

Here, streaming-copy means that the GPU kernel function for a pair of arraysC3%
and arraysCl ,(cy ) is executed in a GPU simultaneously during arraysCI ;y is prepared and
copied to the GPU (x < z). For streaming-copy, we need to use multiple GPU streams,
where a GPU stream means an ordered sequence of the following three types of opera-
tions: H2D copy, kernel execution, and D2H copy [33]. Figure 4b shows the timeline of
multiple GPU streams in GPUY. The green H2D boxes correspond to streaming-copying



Bae et al. BMC Bioinformatics (2021) 22:220

GPUM’s memory

a
Main memor
-
--» streaming copy | seedH
— output sync
,»| arraysC1,() |
arraysC3
output GPU@’s memory
Disk arraysC1,
arraysC1,
\*>| arraysC1,@ |
b v
! time R
stream 0 | H2D | H2D | H2D [kernel | D2H

stream 1 kernel
stream M kernel

Fig. 4 Data flow and tileline in Step 4. a Data flow among disk, main memory, and GPUs. b Timeline
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arraysCl ,(cy ) to GPU and the purple boxes executing the GPU kernel function. Once the
kernel function has processed arraysCI ,(Cy ) its result (i.e., validity of primers) is in out-
put? in GPU memory. Thus, we need to synchronize output by copying output? from
GPUY to main memory while merging them (orange D2H box). After completing Step 4
for a specific k, primerH is updated based on output in main memory. We have assumed
so far that the whole arraysC3 can fit in the memory of multiple GPUs, and it actually is
for all input DBs we have tested. If it does not fit in, GPrimer divides arraysC3 into mul-
tiple parts such that each part can fit in and repeats the above procedure like a nested
loop method.

Algorithm 1 presents the pseudo code of the GPU kernel function for Step 4, which
may seem complicated, but actually is simple. The function mainly relies on coalesced
memory access in GPU memory for efficiency, and so, most of its lines are about iden-
tifying memory addresses to be accessed. In the function, the basic processing unit is a
GPU thread, and the basic data unit to be processed is a key (i.e., seed+index+|P|). For
simplicity, we denote arraysC3Y, arraysCl ,(Cy ), and output?), as arraysC3, arraysCl, and
output, respectively. Both arrays, arraysC3 and arraysC1, can be divided by each key. For

Page 9 of 20
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example, in Fig. 2a, the blue part corresponds to the key 7' + 1 + 3, and the red part to
the key A 4 0+ 3. The function takes workloadThreshold and k as inputs and updates
and returns the output array as output. The parameter workloadThreshold is the bound-
ary that determines whether each thread processes a single key (each-thread mode), or
all threads of a thread block process a single key (block-threads mode). The set of keys
having smaller index than workloadThreshold (e.g., the index of A 4+ 0 + 3 is 1 in Fig. 2a)
is processed in the each-thread mode using Algorithm 1. We will explain how to deter-
mine workloadThreshold later in more detail.

Algorithm 1 GPU Kernel Function for Step 4

Input: workloadThreshold, k > k: the number of mismatch residues
1: for all threads parallel do

2 keyldx = threadldx + blockDim x blockldx > one thread per key
3 while keyldx < workload Threshold do

4 P3start = P3offset[keyldx]; > start index in P3
5: P3end = P3offset[keyldx + 1]; > end index in P3
6: Plstart = Ploffset[keyldx]; > start index in P1
7: Plend = Ploffset[keyldx + 1]; > end index in P1
8 for i = P3start to P3end do

9: primer3 = P3[];

10: for j = Plstart to Plend do

11: primerl = P1[j];

12: s3 = sidset3offset[]; > start index in sidset3
13: e3 = sidset3offset[i + 1]; > end index in sidset3
14: s1 = sidsetloffset[j]; > start index in sidsetl
15: el = sidsetloffset[j + 1J; > end index in sidsetl
16: if sidsetl[sl:el] ¢ sidset3[s3:e3] then

17: if countMismatches(primerl,primer3) < k then

18: atomicSet(output[i], 0);

19: break;
20: end if
21: end if
22: end for
23: end for
24: keyldx += gridDim x blockDim;
25: end while
26: end for

Since it is a GPU kernel function, all GPU threads execute the same entire func-
tion (Line 1). At Line 2, each thread gets the index of a key that it processes based on its
own index (i.e., threadldx), the size of a thread block (i.e., blockDim) and the index of the
block (i.e., blockIdx). After a thread processes its own key (Lines 4—23), it gets the index
of the next key (Line 24) and repeats processing the key. The thread gets the start and
end indices in P3 (Lines 4-5) and the start and end indices of in P1 (Lines 6—7). Then, it
checks every pairs of primers between P3[P3start : P3end] and P1[Plstart : Plend] (Lin
es 8—11). For a specific pair of primer3 and primerl, it gets the start and end indices in
sidset3offset (Lines 12—13) and the start and end indices of in sidsetIoffset (Lines 14—15).
Then, it sets output[i] for primer3 to 0, i.e., invalid, (Line 18), if primer3 is similar to
primerl with up to k mismatch residues (Line 17), and at the same time, primerl
amplifies any target sequences that primer3 does not amplify (Line 16). The logic in
Lines 16—19 has been presented in the previous studies [1, 5, 8].

Table 1 shows the amount of computation of Step 4 in terms of the number of pairs
of primer3 and primerl to be processed, i.e., the number of executions of Line 12-21
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in Algorithm 1. It exceeds 1.4 trillions for human and mouse, which indicates Step 4 is
indeed compute-intensive.

Now, we explain about the parameter workloadThreshold, which is the boundary
that determines whether each thread processes a single key (each-thread mode), or all
threads of a thread block process a single key (block-threads mode). The set of keys hav-
ing smaller index than workloadThreshold (e.g., the index of A + 0+ 3 is 1 in Fig. 3a) is
processed in the each-thread mode. The distribution of the numbers of primers per key
in the array P3 (or PI) is highly skewed. For instance, the minimum number of primers
per key is 1, while the maximum number is 8786 for human RefSeq DB (k = 2). That
means some GPU threads process a few keys, while some other GPU threads process
thousands keys. The former threads do nothing until the latter threads complete the
execution of the function, which may severely reduce the utilization of GPU computa-
tion and so degrade the performance of Step 4. The hybrid approach that uses either
the each-thread mode or the block-threads mode depending on the workload (i.e., the
number of primers per key) can alleviate this problem. Since P3 is already sorted by
workload, and P1 is also almost sorted by workload, we can just perform the each-thread
mode for the keys having smaller indices than workloadThreshold and the block-threads
mode for the other keys. In the block-threads mode, we usually set the number of blocks
to 1024 and the size of a block to 1024 threads. That is, up to 1024 keys are processed in
parallel using 1024 threads per key.

The number of primers per key tends to be increased as k increases since the number
of unique seeds is decreased as k increases. Thus, we set workload Threshold to a smaller
percentile when k = 2 compared to when k = 1. We heuristically set workloadThreshold
to the 85th percentile for k = 1, while setting it to the 20th percentile for k = 2. That is,
if there are a total 100 keys, workloadThreshold becomes 85 for k = 1. For human RefSeq
DB, the number of primers of the key of the 85th percentile is 22 (k = 1), and that of the
20th percentile is 164 (k = 2). That means the keys having up to 22 and 164 primers are
processed using a single thread when k = 1and k = 2, respectively.

Step 5: pair filtering and ranking
GPrimer processes Step 5 as well as Step 4 by exploiting coalesced memory access
using arrays, hiding PCI-E communication overhead using multiple asynchronous GPU
streams, and load balancing using workloadThreshold. At the end of Step 4, GPrimer
simply reads each row of C2 and writes the row into C4 if its valid is 1 in primerH. Step 5
takes the result of Step 4, i.e., C4, as input, and groups it by sid. For constructing arrays,
GPrimer counts the number of forward (or reverse) primers for each sid group in C4 and
sorts the groups in C4 in the ascending order of the number of primers per group (i.e.,
workload order). Figure 5a shows an example of C4 sorted by the workload order.
GPrimer constructs two kinds of arrays, one for forward primers and the other for
reverse primers, using C4 and applies five pair filtering constraints to all possible pairs
between forward primers (FPs) and reverse primers (RPs). Then, for all valid pairs of
FP and RP satisfying the constraints, GPrimer calculates their scores, sorts the pairs by
their scores, and stores the formatted result of the pairs as output. In detail, it constructs
three arrays, FPoffset, FP and Fpos, for forward primers, and three arrays, RPoffset, RP
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Fig.5 Example of data structures used in Step 5. a Sorted C4. b Arrays for forward primers. ¢ Arrays for
reverse primers. d Arrays for the scores of pairs of primers

and Rpos, for reverse primers, according to the workload order. For example, FP starts
with CGT for the group sid:7 and next {ATG, AAC} for the group sid:2 in Fig. 5b.
Likewise, RP starts with {CAA, GAC} for sid:7 and next {TCA, TCG} for sid:2 in
Fig. 5¢c. GPrimer also prepares the array called score for storing the scores of all possible
pairs between FPs and RPs (Fig. 5d). By scanning both FPoffset and RPoffset once, we
can construct scoreoffset, i.e., the pointer array for score. It is initialized with —1.0, which
means the corresponding pair is invalid. If a pair of primers is valid, i.e., satisfies the pair
filtering constraints, its score is calculated and assigned to the corresponding element in
the array score.

The GPU kernel function for Step 5 processes pairs of primers between FP and RP.
For instance, in Fig. 5b—d, the first GPU thread (keyldx=0) processes two pairs of
primers in blue, and the second GPU thread (keyldx=1) processes four pairs of prim-
ers in red. The exact workload should be the number of primer pairs, but we regard
the number of forward primers as the amount of workload for simplicity. The distri-
bution of the workload in Step 5 is more highly skewed than that in Step 4. Figure 6a,
b show the distributions of workload per group for human and mouse, where x-axis
is keyldx (i.e., group), and y-axis is the number of forward primers per group (i.e.,
workload). The figures indicate that a lot of sequences (groups) have relatively small
workload, while a few sequences have very large workload. Figure 6¢, d show the
detailed distributions for human and mouse, where x-axis is workload, and y-axis
is the number of sequences per workload. Based on this observation, we use two
workload thresholds,smallThreshold and largeThreshold for Step 5, instead of a sin-
gle threshold used in Step 4. We perform the each-thread mode for the groups hav-
ing smaller indices than smallThreshold and the block-threads mode for the groups
having the indices between smallThreshold and largeThreshold. For the groups having
larger indices than largeThreshold, we make all the threads of a GPU process a single

Page 12 of 20
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Fig. 6 Distribution for workload in Step 5. a and b represent the distributions of workload per group for
human and mouse RefSeq DBs, respectively. ¢ and d represent the distributions of the number of sequences
per workload for human and mouse RefSeq DBs

group (all-threads mode). We usually set the number of blocks to 1024 and the size of
a block to 512 threads for both the block-threads and all-threads modes. For human,
the groups of keyldx[0:114] are processed in the each-thread mode, the groups of key-
Idx[114:51925] in the block-threads mode, and the groups of keyldx[51925:] in the
all-threads mode. The last group contains 17767 forward primers and 17713 reverse
primers, and a total of more than 300 million pairs of the primers are processed using
512 thousand threads in the all-threads mode.

In Step 4, GPrimer streaming-copies arraysC1 to GPUs if it does not fit in GPU
memory. Likewise, in Step 5, GPrimer streaming-copies six arrays for FPs and RPs
and two arrays for scores to GPUs if they do not fit in GPU memory. Since each group
is an independent workload in Step 5, GPrimer streaming-copies the arrays for dis-
joint sets of groups to different GPUs. The resultant score array in each GPU is copied
back to main memory for synchronization. Ranking (i.e., sorting) of the pairs by their

scores is done by CPU threads.

Result

Experimental setup and data sets

MRPrimer [5] was evaluated using MapReduce on a cluster of six server machines:
one master and five slaves. Each machine is equipped with two Intel Xeon 10-core
CPUs, 512 GB main memory, and 6 TB disk. We used 40 Map processes and 40
Reduce processes per machine (i.e., a total of 200 Map and 200 Reduce processes).

GPrimer was evaluated using a single machine equipped with the same CPUs, the
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same main memory, but eight NVIDIA GTX 1080 ti GPUs having 11 GB device
memory.

For data sets, we used the mRNA sequence DBs for six species—human, mouse, rat,
zebrafish, cow, and pig—from the NCBI Reference Sequence (RefSeq) database (http://
www.ncbi.nlm.nih.gov/refseq/). The RefSeq DBs used contain a total of 138,375 mRNA
sequences that have NM as the prefix of GenBank accession number (the version that
updated at 21 November 2018 for human, and 7 November 2018 for others). Table 2
summarizes the size of data in each step. The number of rows in output becomes much

larger than that in C4 since each row is not a single primer, but a pair of primers.

Performance comparison with MRPrimer

We evaluated the elapsed times of GPrimer and MRPrimer. Figure 7a shows the
speedup of GPrimer compared to MRPrimer for all steps for all species. In the figure,
the speedup using eight GPUs is higher than that using four GPUs, but the difference
is not much, which will be explained in the next section. The speedup also becomes
larger as the size of an input sequence DB increases, for example, from pig to human.
We can say that it is a desirable property that the speedup is more improved for a
larger sequence DB. Figure 7b shows the speedup for Steps 1-3, where GPrimer only
uses CPU threads as MRPrimer does. GPrimer improves the performance about
twice compared to MRPrimer, even though GPrimer exploits 20 CPU cores, while
MRPrimer exploits a total of 100 CPU cores. The performance improvement is mainly
due to that the threads in GPrimer compute in the same memory space, while those
in MRPrimer compute in different memory spaces with some overhead of network
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Fig. 7 Speedup of GPrimer compared to MRPrimer. a speedup for all steps; b speedup for Steps 1-3 (not
utilizing GPUs); ¢ speedup for Step 4; d speedup for Step 5
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communication. Figure 7c shows the speedup for Step 4, i.e., general cross-hybrid-
ization (GCH) filtering step. We performed GCH filtering twice, i.e., for k =1 and
k =2, and summed both elapsed times for evaluation. The speedup is quite large, in
particular, up to 607 times for human. In terms of elapsed times, for human, GPrimer
took about only 11 minutes using four GPUs, while MRPrimer took about 100 h. This
indicates that our method for Step 4 described in Implementation is quite effective to
exploit the computational power of GPU. Figure 7d shows the speedup for Step 5, i.e.,
pair filtering and ranking step, where the speedup is about 10. Thus, Step 5 is more
compute-intensive compared to Steps 1-3, but much less compute-intensive com-
pared to Step 4.

Performance of GPrimer varying the number of GPUs

Figure 8a shows the elapsed times of Step 4 of GPrimer for human while varying
the number of used GPUs. Step 4 is carried out in the order of five substeps: build-
ing seedH, preparing arraysC3, probing arraysC1 against arraysC3, updating prim-
erH, and writing C#4. In the figure, the substep of probing arraysC1 includes not only
the time of executing the GPU kernel function, but also the time of building each
chunk of arraysCI in main memory using CPUs and streaming it to GPU memory.
In fact, three different types of operations, i.e., building, streaming, and executing,
for arraysCI overlap much in the timeline. The time of probing arraysCI decreases
as the number of GPUs increases, since the substep is executed in GPUs. But, the
time is not much decreased for four or eight GPUs, since the overhead of building
and streaming arraysCI gets larger. The time of only executing the GPU kernel func-
tion decreases in inverse proportion to the number of GPUs, as in Table 3. Here, the
reason why the time decreases by more than twice sometimes when the number of
GPUs becomes twice is that the memory usage for arraysC3 in each GPU is reduced
as the number of GPUs increases, and so we can reduce the number of executions of
the GPU kernel function by increasing the size of a chunk of arraysC1. The substep
of preparing arraysC3 means building arraysC3 in main memory and chuck-copying

building seedH preparing arraysC3 building arrays filtering & scoring
probing arraysC1 updating primerH writing & ranking
writing C4
1500 2000
g 2
o © 1500 897
o 1000 °
£ 930 £ 1000 926
3 3 927 939
2 500 569 3 843
o 418 384 9 500
g 195 107 54 % © .
181 179 184 :I%
1 2 4 8 1 2 4 8
# of GPUs # of GPUs
a Step 4. b Step 5.
Fig. 8 Elapsed times of the substeps in Steps 4 and 5 of GPrimer while varying the number of GPUs for
human RefSeq DB. Each bar in graphs indicates the total elapsed time. The probing C1 phase in a and
filtering and scoring phase in b are the phases that perform GPU operations
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Fig. 9 Elapsed times of four different versions of GPrimer while turning on and off two techniques, workload
balancing (B) and streaming-copying (S). The experiments are performed for human and mouse RefSeq
DBs (indicated in x-axis)

Table 1 The amount of computation of Step 4 for six species.

k=1 k=2 Sum
Pig 310,393,843 21,607,890,291 21,918,284,134
Cow 4,457,131,080 313,019,951,055 317,477,082,135
Zebrafish 6,835,870,424 435,727,302,462 442,563,172,886
Rat 9,058,344,862 625,330,936,147 634,389,281,009
Mouse 21,172,185,165 1,458,103,349,355 1,479,275,534,520
Human 19,851,609,914 1,392,486,084,329 1,412,337,694,243

Table 2 The size of data in each step (input: the number of sequences, C1-C4: the number of rows,
output: the number of pairs of primers)

Pig Cow Zebrafish Rat Mouse Human
Input 4,180 13,382 15,876 17,639 35,349 51,979
@ 77M 308M 344M 414M 1119M 1831M
(@) 3.1M 11.7M 16.8M 18.9M 48.5M 65.9M
C4 2.8M 9.6M 13.3M 14.7M 35.1M 47.5M
Output 21M 64M 1M 107M 234M 278M

it GPU memory. As the number of GPUs increases, the size of the chunk of arraysC3
assigned to each GPU decreases, and so, the time of this substep also decreases. The
times of other three substeps are almost the same regardless of the number of GPUs.
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Table 3 Elapsed times of executing the GPU kernel function for human RefSeq

1GPU 2 GPUs 4 GPUs 8
GPUs
Step 4 (k=1) 69s 26s 195 9s
Step 4 (k=2) 8365 452 s 250s 118 s
Step 5 828's 415s 204 s 103s

Table 4 Memory usage for major data structures (MB)

Mouse Human

k=1 k=2 k=1 k=2
primerH 9808 11,664
suffixH 5530 5125
seedH 3649 1812 3390 1721
arraysCl 34,308 64,412 40,191 77,200
arraysC34-output 1979 3921 1967 2848
FPoffset+FP+Fpos 1431 1936
RPoffset+RP+Rpos 1430 1937
score+scoreoffset 112,026 143,407

Figure 8b shows the elapsed times of Step 5 of GPrimer. Step 5 is carried out in the
order of three substeps: building arrays, filtering & scoring, and writing & ranking.
In the figure, the substep of filtering & scoring is processed by GPUs, and so its time
decreases approximately in inverse proportion to the number of GPUs. On the con-
trary, the elapsed times of the other two substeps are almost the same regardless of
the number of GPUs, since they are not related to GPU computation.

Effectiveness of workload balancing and streaming-copying

To fully exploit GPUs, GPrimer relies on coalesced memory access within GPU, work-
load balancing among GPU threads, and streaming-copying data between main memory
and GPU memory. Among three techniques, we check the effectiveness of workload
balancing and streaming-copying in this section. It is hard to turn on and off coalesced
memory access, and so we skip checking its effectiveness. Figure 9 shows the break-
down of performance of GPrimer, in particular, the substeps using GPUs, i.e., probing
arraysC1 in Step 4 and filtering & scoring in Step 5. We evaluated the elapsed times
of the following four versions of GPrimer: only using streaming-copying (S), only using
workload balancing (B), using neither workload balancing nor streaming-copying (noth-
ing), and using both (S+B). Not using streaming-copying means synchronous copying
after completing the execution of the GPU kernel function. Not using workload balanc-
ing means processing keys or groups only in a single mode, in particular, only the each-
thread mode for Step 4 and only the block-threads mode for Step 5, without considering
thresholds. We could not use only the each-thread mode for Step 5 due to lack of GPU
memory. In Fig. 9a, we can see workload balancing is more important than streaming-
copying for performance. In Fig. 9b, workload balancing and streaming-copying in
Step 5 are less effective than those in Step 4. In detail, streaming-copying is less effective
since the size of streaming-copied data is smaller, and the data flow of streaming-copying

Page 17 of 20
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is simpler. Workload balancing is also less effective since the block-threads mode is over-
all the best single mode among three modes, each-thread mode, block-threads mode,
and all-threads mode, in terms of handling the skewness of workload.

Memory usage

Table 4 shows the memory usage for major data structures in GPrimer (in MByte).
The hash maps, primerH, suffixH, and seedH, are in main memory. The remaining data
structures all are in GPU memory. As you can see, the size of arraysC3+output is small
enough to fit in GPU memory even for human and mouse, and so streaming arraysCI to
GPUs needs to be done only once. The biggest data structure is a pair of score and sco-
reoffset, but no memory problem occurs since they are allocated, calculated, and copied
back to main memory in a small size enough to fit in GPU memory.

Table 5 shows the memory overhead of MRPrimer and GPrimer for mouse RefSeq DB.
Since MRPrimer does not maintain separate major data structures, we have measured
the peak main memory usage of both in each step. For MRPrimer, we sum the memory
usage of six machines used. We note that the peak memory of GPrimer in Steps 6 and
7 (i.e., about 85 GB) is smaller than the size of the data structures of score and scoreoff-
set (i.e., 112 GB) in Table 4. This is because GPrimer does not generate score and scoreoff-
set at once, but rather generate them step by step in a smaller size that can fit into GPU

memory.

Conclusions

In this paper, we have proposed a fast GPU-based pipeline for primer design called
GPrimer that can significantly improve the performance of the existing MRPrimer
pipeline based on MapReduce. GPrimer takes the same input data and returns the
exactly same output with MRPrimer. That is, GPrimer has the exactly same specificity
of primer design with MRPrimer. The only difference between GPrimer and MRPrimer
is the speed of primer design. MRPrimer is a MapReduce-based pipeline, but GPrimer
is a GPU-based pipeline. Due to the proposed data structures and algorithms in this
paper, for human RefSeq DB, GPrimer achieved a speedup of 57 times for the entire
steps and a speedup of 557 times for the most time-consuming step, i.e., homology test
step, using a single machine of 4 GPUs, compared with MRPrimer running on a clus-
ter of six machines. GPrimer not only significantly outperforms MRPrimer, but also its
improvement is more marked as the size of sequence DB increases. Since GPrimer has
the exactly same specificity of primer design with MRPrimer, GPrimer also outperforms
other primer design software that MRPrimer has outperformed, in terms of specificity.
Therefore, we believe GPrimer can be significantly used for web-based primer design
tools and primer databases for detecting RNA viruses to deal with the sizes of sequence
DBs growing exponentially.

Table 5 Peak memory usage of MRPrimer and GPrimer in each step for mouse RefSeq DB (in MB)

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

MRPrimer 44,527 239,306 214,869 310615 43,664 35,404 312,558
GPrimer 266 16,240 16,342 77,978 84,972
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Availability and requirements

Project name: GPrimer.

Project home page: http://github.com/qhtjrmin/GPrimer.

Operating system: Linux Ubuntu 16.04 LTS or higher.

Programming language: C++11, CUDA.

Other requirements: CUDA toolkit version 8 or higher. Nvidia driver (v384 or
higher), GCC/G++ 4.8.x or later.

License: BSD-3-Clause.

Restrictions to use by non-academics: Not applicable.

Abbreviations
PCR: Polymerase chain reaction; DB: Database; CPU: Central processing unit; GPU: Graphical processing unit; CUDA:
Compute unified device architecture.
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