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ABSTRACT
Background: Liver metabolite concentrations have the potential to be key biomarkers of systemic metabolic dysfunction and overall health.
However, for most conditions we do not know the extent to which genetic differences regulate susceptibility to metabolic responses. This limits our
ability to detect and diagnose effects in heterogeneous populations.
Objectives: Here, we investigated the extent to which naturally occurring genetic differences regulate maternal liver metabolic response to vitamin
D deficiency (VDD), particularly during perinatal periods when such changes can adversely affect maternal and fetal health.
Methods: We used a panel of 8 inbred Collaborative Cross (CC) mouse strains, each with a different genetic background (72 dams, 3–6/treatment
group, per strain). We identified robust maternal liver metabolic responses to vitamin D depletion before and during gestation and lactation using
a vitamin-D-deficient (VDD; 0 IU vitamin D3/kg) or -sufficient diet (1000 IU vitamin D3/kg). We then identified VDD-induced metabolite changes
influenced by strain genetic background.
Results: We detected a significant VDD effect by orthogonal partial least squares discriminant analysis (Q2 = 0.266, pQ2 = 0.002): primarily,
altered concentrations of 78 metabolites involved in lipid, amino acid, and nucleotide metabolism (variable importance to projection score ≥1.5).
Metabolites in unsaturated fatty acid and glycerophospholipid metabolism pathways were significantly enriched [False Discovery Rate
(FDR) <0.05]. VDD also significantly altered concentrations of putative markers of uremic toxemia, acylglycerols, and dipeptides. The extent of the
metabolic response to VDD was strongly dependent on genetic strain, ranging from robustly responsive to nonresponsive. Two strains (CC017/Unc
and CC032/GeniUnc) were particularly sensitive to VDD; however, each strain altered different pathways.
Conclusions: These novel findings demonstrate that maternal VDD induces different liver metabolic effects in different genetic backgrounds.
Strains with differing susceptibility and metabolic response to VDD represent unique tools to identify causal susceptibility factors and further
elucidate the role of VDD-induced metabolic changes in maternal and/or fetal health for ultimately translating findings to human populations.
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Introduction

Metabolomics provides a snapshot of metabolic processes at a partic-
ular time in a particular tissue of interest. Because the liver operates
as one of the most important organs in nutrient and drug metabolism,

the liver metabolome serves as an assessment of overall health. Using
metabolomics, not only do we have the opportunity to identify biomark-
ers that may be indicative of health or disease status, but the high level
of sensitivity provided by metabolomics studies allows a better under-
standing of the potential mechanisms of disease development (1). In

1

http://orcid.org/0000-0002-2419-0430
http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/cdn/
mailto:folami@email.unc.edu


2 Xue et al.

fact, human studies have identified metabolic profiles that are proposed
for use in diagnoses of diseases such as cardiovascular disease and dia-
betes (2–5).

Past research has demonstrated that genetic polymorphisms sig-
nificantly contribute to the variance in divergent metabolic profiles
in the human population (6–11). Genetic differences control pro-
tein expression, playing a direct role in metabolic enzyme concentra-
tions/availability and downstream metabolite concentrations. Genetic
profiles also serve as a major risk factor for the development of many
health conditions. For example, in well-studied diseases such as breast
cancer, specific genetic profiles are implicated in driving susceptibility
to different forms of the disease in humans (12–14). Furthermore, spe-
cific metabolic phenotypes (metabotypes) related to disease progression
have been defined (15). Collection and analysis of metabolomic data
in genetically divergent populations with known genetic compositions
such as in the study performed here allow the mechanistic link between
the genetic component and the development of the potential disease to
be further understood.

Environment, specifically diet, has a strong influence on the concen-
trations of circulating metabolites and metabolomic profiles (16). Nu-
trients directly entering the bloodstream from the gastrointestinal tract
after a meal almost immediately affect serum metabolite concentrations.
However, there is significant evidence that dietary patterns and long-
term nutritional status can affect one’s developed, consistent metabolic
profile. For example, in rodent studies, high-fat diets have repeatedly
been shown to alter fatty acid metabolites and β-oxidation pathways
(17, 18). Human studies have also provided evidence that micronutri-
ent intake affects metabolic profiles. Vitamin A, vitamin C, vitamin D,
and vitamin E have been implicated in metabolic phenotypes ranging
from enhanced oxidative stress to alterations in major macronutrient
pathways (19–22). Although a growing number of studies are assess-
ing the impact of diet on metabolomics, few studies have sufficiently
addressed whether genetically divergent populations differ in terms of
metabolomic responses. More importantly, the magnitude of genetically
induced differences in the metabolome has rarely been assessed in diet
studies, leaving it unclear whether genetics has a large or inconsequen-
tial impact on the final diet-induced metabolite concentrations and re-
lated health outcomes. Metabolomic studies from human and rodent
research have evaluated metabolite concentrations across genetically di-
vergent individuals and offer valuable insight on gene-by-environment
interactions (23, 24).

This study focuses on the liver metabolomic impact of maternal vi-
tamin D deficiency (VDD), a global health concern with some popu-
lations having VDD rates >80% (25). Maternal VDD has major im-
plications for fetal and maternal health (26). It is well known that
VDD impairs human fetal growth and skeletal and extraskeletal health
(27–29). Epidemiological studies also implicate an emerging role for
VDD in maternal health including increased risk of gestational dia-
betes mellitus and pre-eclampsia (30–34), but the molecular mech-
anisms remain unknown. Metabolomics presents an opportunity to
elucidate molecular mechanisms of adverse maternal health outcomes
of VDD and/or define new, previously undetermined, health conse-
quences. For example, work suggests vitamin D status may also play a
role in the metabolic regulation of pregnant women by modulating spe-
cific metabolites related to oxidative stress and inflammation (35). In
addition, vitamin D supplementation in randomized clinical trials has

been shown to beneficially alter metabolic biomarkers of obesity-related
phenotypes (36). Overall, metabolomics research focusing on maternal
vitamin D status, particularly during perinatal periods, is lacking. Pro-
viding a better understanding of maternal metabolic pathways that are
altered by vitamin D status could provide important clues to the molec-
ular mechanisms underlying maternal health, and potential biomarkers
to assess efficacy of treatment.

The objective in this study was to identify robust metabolic signa-
tures of VDD that are dependent on genetic background in order to
1) identify maternal liver metabolites/metabolic pathways that are per-
turbed by VDD and could serve as candidate biomarkers of physiolog-
ical changes; 2) provide evidence for the first time that strain genetic
background plays an important role in metabolic response to VDD;
3) elucidate the extent to which strain genetic background influences
metabolomic response to VDD; and 4) identify strains that are particu-
larly susceptible or resistant to major VDD-induced metabolic changes.

To determine the role of genetic background, we compared
metabolic effects of chronic maternal VDD across 8 genetically diver-
gent mouse strains of the Collaborative Cross (CC) (37). The CC is an
inbred genetic reference population that was designed specifically to
mimic the extent and distribution of genetic variation in human pop-
ulations for the purpose of modeling how genetic differences influence
molecular, physiological, and phenotypic differences for both normal
and disease states (37). CC strains have a high number of naturally
occurring (i.e., not artificially induced or engineered) DNA sequence
differences across the genome, which represents >90% of the genetic
variation among all inbred laboratory mouse strains when all lines are
considered (37). However, CC strains are inbred and thus mice within
a strain are highly genetically similar (up to 99% genetically identi-
cal; http://csbio.unc.edu/CCstatus). This allows for assessing biological
replicates within the study by measuring effects on multiple mice from
each strain. The combination of high genetic diversity between strains
and genetic similarity within a strain is particularly useful for study-
ing gene × environment interactions through repeated measures. The
strain-specific VDD-altered metabolites and metabolic pathways iden-
tified here will help in future studies to more accurately assess the effects
of VDD and identify susceptible populations.

Methods

Animals: housing, dietary treatment, and breeding scheme
Animal handling was performed in a humane and ethical manner
in accordance with the Guide for the Care and Use of Laboratory
Animals under the corresponding animal use protocol at the University
of North Carolina (UNC) at Chapel Hill. CC inbred mouse strains
CC001/Unc (CC001), CC011/Unc (CC011), CC051/TauUnc (CC051),
CC041/TauUnc (CC041), CC004/TauUnc (CC004), CC017/Unc
(CC017), CC032/GeniUnc (CC032), and CC042/GeniUnc (CC042)
were obtained from the UNC Systems Genetics Core Facility (Chapel
Hill, NC) (38). Vivarium temperature was maintained between 21
and 23◦C with a 12-h light cycle. The light source (fluorescent bulbs)
was not filtered, thus all animals were subjected to UV B exposure
(wavelength: 280–315 nm) at a rate of 8.39E−7 W/cm2. Sterilized water
and rodent unpurified diet were fed ad libitum.

As Figure 1 shows, we assessed the impact of chronic VDD dur-
ing pregnancy and lactation on postweaning maternal vitamin D status
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FIGURE 1 Treatment scheme and study design. Mice from 8 CC strains were treated for ∼12 wk (before, during, and after gestation) with
either VDS diet (1000 vitamin D IU/kg) or VDD diet (0 IU vitamin D/kg). Before treatment, mice were on Std Chow: Teklad 8604 (2400 IU
vitamin D/kg). Coat colors of CC strains are indicated by black (black), albino (gray), and agouti (brown). n = sample size. ∗Time/age varies
based on time of conception. CC, Collaborative Cross; Std, standard; VDD, vitamin D deficient; VDS, vitamin D sufficient.

across an experimental population of 8 CC inbred mouse strains. Virgin
females 6–8 wk old were treated with AIN-93G purified rodent diet with
normal calcium and phosphorus concentrations that was either vitamin
D sufficient [VDS; DYET#110700 containing 1000 IU vitamin D3/kg,
Dyets Inc. (39)] or vitamin D deficient [VDD; DYET#119266, identical
to #110700 (39) except containing vitamin-free casein and vitamin mix
#3199255 to achieve 0 IU vitamin D3/kg, Dyets Inc.]. Assuming mean
dietary intake of 3–5 g feed/d, VDS mice consumed ∼3–5 IU vitamin
D/d, which meets the recommended daily intake for laboratory mice
(40). VDD mice received no vitamin D throughout the treatment pe-
riod. AIN-93G provides 14%, 32%, and 54% calories from fat, protein,
and carbohydrate, respectively. Dams remained on the diet for ∼12 wk
including 5 wk before mating, ≥1 wk during mating, 3 wk during ges-
tation, and 3 wk during lactation. Dams that did not get pregnant or did
not maintain pups to weaning were removed from the study. To min-
imize pup lethality due to cannibalism or neglect, litter size was only
recorded at weaning. Metabolomics of pups and sires were not assessed
in this study. All dams in this study were killed while still on experimen-
tal diets (VDS and VDD) at pup weaning at ∼18 wk on average. All mice
were killed by carbon dioxide exposure in accordance with current rec-
ommendations by the 2020 American Veterinary Medical Association
guidelines (www.avma.org).

Quantification of plasma 25-hydroxyvitamin D
Whole blood was collected by cardiac puncture immediately after
killing the animals. Plasma was prepared from heparin-treated blood
and snap-frozen in liquid nitrogen. 25-Hydroxyvitamin D [25(OH)D]
concentrations were measured in the UNC Nutrition Obesity Research
Center Metabolic Molecular Phenotyping Core using ELISA (Eagle Bio-
sciences).

Liver metabolite measurements
At weaning, dams were killed and their livers flash frozen, pul-
verized, divided into aliquots, and sent for metabolomics analyses

(Metabolon, Inc.). Sample preparation was conducted as previously de-
scribed (41). Untargeted metabolic profiling of maternal whole liver
samples was determined using reverse phase ultra-performance liq-
uid chromatography-tandem mass spectrometry (RP/UPLC-MS/MS)
or hydrophilic interaction liquid chromatography ultra-performance
liquid chromatography-tandem mass spectrometry (HILIC/UPLC-
MS/MS). The following 4 platforms were used to capture metabo-
lites with a wide range of chemical properties in the metabolome: 1)
RP/UPLC-MS/MS with acidic positive ion mode electrospray ioniza-
tion (ESI) for hydrophilic compounds, 2) RP/UPLC-MS/MS with acidic
positive ion mode ESI for hydrophobic compounds, 3) RP/UPLC-
MS/MS with basic negative ion mode ESI, and 4) HILIC/UPLC-MS/MS
with negative ion mode ESI. Metabolites were identified by comparison
to a library of entries generated by Metabolon containing the m/z, re-
tention time/index, and chromatographic data (including tandem MS
spectral data). Metabolite names ending in an asterisks (∗) indicate com-
pounds that have not been officially confirmed based on a standard.
Quality control of metabolomics data to account for instrument and
process variability was conducted as previously described and met the
acceptance criteria of Metabolon (42).

Metabolomics data preprocessing
To account for interday differences in instrument tuning, raw data were
normalized by shifting the median of the data for each day to 1 and
correcting each compound proportionately. Data for each compound
were then rescaled to set the median to 1. This maintains variation
between samples in the data while placing compounds with widely
different numerical ranges on the same scale to make them directly
comparable and of equal weighting. This prevents compounds with a
large numerical range from masking compounds with smaller ranges
that may be indicative of class differences and therefore significant to the
multivariate analysis model. Missing values for samples falling below
the limit of detection were imputed with the minimum observed value
for a metabolite.
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FIGURE 2 Strain-specific maternal plasma vitamin D status with and without dietary vitamin D depletion. Maternal plasma 25(OH)D
concentrations measured by ELISA. (A) Box and whiskers plot of maternal 25(OH)D (top panel) and litter sizes (bottom panel) for each diet
(all strains combined). Each dot represents a single female. Main effect of diet P value shown as determined by Wilcoxon test [25(OH)D] or
2-sided t test (litter size). (B) Box and whiskers plot of maternal 25(OH)D concentrations separated by strain. Samples sizes are as follows
for VDS and VDD samples for each strain in order from left to right: n = 2,5 (CC017); 3,4 (CC041); 5,5 (CC001); 4,4 (CC042); 3,4 (CC004);
4,3 (CC051); 5,4 (CC032); 5,5 (CC011). x-Axis denotes strain name. Main effect of strain and strain × diet P value shown as determined by
linear regression (y = strain + diet + strain × diet). Letters denote strains that differ significantly (a �= b = ab) as determined by Tukey’s
honestly significant difference (HSD) post hoc test. (C) Percentage reduction in maternal plasma 25(OH)D concentration caused by VDD
[(VDDSample − VDSMean)/VDSMean], separated by strain. Main effect of strain P value shown as determined by Welch’s ANOVA. Mean
25(OH)D percentage reduction values for each strain listed above each bar. Asterisks (∗) and bold font indicate statistically significant
P values. CC, Collaborative Cross; VDD, vitamin D deficient; VDS, vitamin D sufficient; 25(OH)D, 25-hydroxyvitamin D.

Multiclass orthogonal partial least squares discriminant
analysis to identify metabolites altered by strain and diet
Strain effects.
Orthogonal partial least squares discriminant analysis (OPLS-DA) for
assessing strain effects on metabolite concentrations was performed in
SIMCA 14.1 software (Umetrics). The variable importance to projection
(VIP) score for each metabolite was calculated to quantitatively repre-
sent metabolite feature importance in the fitted model. The VIP score
algorithm is copyright protected by SIMCA (43).

Diet effects.
Ordinary least squares linear regressions for each metabolite (metabo-
lite ∼ diet + strain) were fit using the lm() function in R (44)
with both predictors being categorical variables. The metabolite con-
centrations were then corrected for strain effects by subtracting the
regression coefficients for strain from the corresponding response
variable, except for the regression baseline strain CC011 for which
the response variable remained the same with correction. OPLS-DA
was carried out on the strain-corrected metabolite data using the R
package “ropls (ver 1.16.0).” Statistical significance of diet separation
was assessed through comparing model metrics (R2 Y and Q2) with
those generated from 1000 random permutations to generate the pQ2
value. Root mean squares of the orthogonal and predictive VIP scores

were calculated to represent the importance of the metabolites in the
model.

MetaboAnalyst pathway analyses
Metabolite Set Enrichment Analyses (MSEA) were performed on
all metabolites with a VIP ≥1.5 that matched the database us-
ing the “Pathway-associated metabolite sets (SMPDB)” database in
the MetaboAnalyst software (https://www.metaboanalyst.ca). Pathway
analysis was performed using the “Mus musculus (KEGG)—Previous”
database in the MetaboAnalyst software. Metabolon-derived names
were converted to names recognized by MetaboAnalyst (Supplemen-
tal Tables 1A, 2A, 3A, 4A, 5A). Lipid metabolite names were poorly
recognized and thus these analyses are likely an underrepresentation of
the effects on lipid metabolism (see Discussion). Supplemental Tables
1B, 2B, 3B, 4B, and 5B present pathway results.

Other statistical analyses
Statistical analyses were performed in JMP Pro software version 12.2.0
(SAS Institute). Where applicable, normality of data distribution was
confirmed by the Shapiro–Wilk goodness-of-fit test and variance tested
by Bartlett’s test. Data that met assumptions of normality were ana-
lyzed by parametric tests (t test, ANOVA, linear regression), whereas
data that did not meet assumptions of normality were analyzed by
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FIGURE 3 Strain effects on dam postweaning liver metabolomic profiles. Orthogonal partial least squares discriminant analysis (top row)
and Principal Components Analysis (PCA) (bottom row) plots for strain stratified by diet: (A) VDS, (B) VDD. Each marker color and shape
denotes a different strain. CC, Collaborative Cross; VDD, vitamin D deficient; VDS, vitamin D sufficient.

nonparametric tests (Wilcoxon/Kruskal–Wallis test) as indicated in
each figure legend. Data with normal distributions but unequal vari-
ance were analyzed by Welch’s t test/ANOVA as indicated. Where ap-
plicable, the Tukey–Kramer honestly significant difference (HSD) post
hoc test was used to determine which strains in the group were signifi-
cantly different from the rest. For all comparisons, P values < 0.05 were
considered statistically significant. Error bars represent standard error
of the mean (SEM) for all bar graphs. Summary values shown in text
represent the mean ± SEM.

Results

VDD reduced plasma 25(OH)D concentrations across all
strains
We assessed the impact of chronic VDD during pregnancy and lacta-
tion on postweaning maternal vitamin D status across an experimen-
tal population of 8 CC inbred mouse strains (Figure 1). To confirm
that dietary vitamin D depletion for ∼12 wk decreases circulating vi-
tamin D metabolite status in this experimental population, total plasma
25(OH)D concentrations for dams treated with VDS diet were com-
pared with those for dams treated with VDD diet. As expected, VDD
dams had significantly lower 25(OH)D concentrations than VDS dams
(∼56% lower on average) (Figure 2A). Despite the reduction in dietary
vitamin D availability during pregnancy there was no significant dif-
ference in litter size between diet groups (Figure 2A). After adjustment

for diet, there remained a significant strain effect on plasma 25(OH)D
concentrations for all samples combined (Figure 2B). Strain CC017 ex-
hibited the lowest mean 25(OH)D concentrations for both diet groups
(VDS: 7.4 ± 1.01; VDD: 3.2 ± 0.60 ng/mL), which were significantly
lower than the 25(OH)D concentrations for CC011 (VDS: 15.9 ±
2.1 ng/mL; VDD: 10.5 ± 2.5 ng/mL) (Figure 2B). The extent of
25(OH)D depletion caused by VDD (percentage decrease) did not differ
significantly among the strains although it varied from −34% (CC011)
to −66% (CC032) (Figure 2C).

CC maternal liver metabolomic profiles were determined
by strain
To assess effects of VDD on maternal liver metabolomics profiles,
we performed untargeted global metabolic profiling via MS through
Metabolon, Inc. on dam livers from the VDS and VDD treatment
groups (Figure 1 lists the sample sizes). We first examined whether
there was a significant strain effect on liver concentrations of the
654 metabolites detected using OPLS-DA applied to samples strati-
fied by diet. Most VDS-treated strains had similar liver metabolomics
profiles (based on clustering), but strains CC011 and CC042 clus-
tered separately from others (Figure 3A). VDD-treated samples ex-
hibited similar strain clustering results including the distinct profile of
CC011. However, the distinctive metabolic signature of CC042 was no
longer present and a new signature was detected for CC017 (Figure
3B). To identify metabolites driving these strain-specific metabolic
signatures, we performed OPLS-DA analyses supervising each model
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FIGURE 4 Metabolite markers of strain-specific metabolomic profiles. Bar graphs with SEMs of metabolite concentrations (y-axis) that
make up strain (x-axis) metabolomic signatures. (A) VDS-CC011 and VDD-CC011 signature metabolites; (B) VDS-CC042 signature
metabolites; (C) VDD-CC017 signature metabolites. Asterisks (∗) and bold font indicate statistically significant P values. n.s., not statistically
significant (P > 0.05). Dashed line separates metabolites in different metabolic pathways. The letter above a bar indicates whether the
strain of interest (shaded in gray) is significantly different (a/b) or not significantly different (-) from ≥1 strain in the group as determined by
Tukey’s honestly significant difference (HSD) post hoc test. CC, Collaborative Cross; VDD, vitamin D deficient; VDS, vitamin D sufficient.

with the following variables: for VDS-treated samples, CC011 com-
pared with other strains (VDS-CC011 signature) and CC042 com-
pared with other strains (VDS-CC042 signature); and for VDD-
treated samples, CC011 compared with other strains (VDD-CC011
signature) and CC017 compared with other strains (VDD-CC017
signature).

The VDS-CC011 signature was primarily defined by 80 metabo-
lites selected by VIP ≥1.5 (Supplemental Table 1A). Using MSEA
in the MetaboAnalyst (45) software, we determined potential en-
richment for metabolites in the glucose–alanine cycle [P = 0.009,
False Discovery Rate (FDR) >0.5], α-linolenic acid and linoleic acid
metabolism (P = 0.037, FDR >0.5), and the urea cycle (P = 0.045,

FIGURE 5 Diet effects on dam postweaning liver metabolomic profiles. Orthogonal partial least squares discriminant analysis plots for
strain stratified by diet: (A) metabolite concentrations run without strain adjustment; (B) residuals of metabolites run after strain adjustment
(see Methods). Marker color denotes diet. Ellipses denote 95% CIs. VDD, vitamin D deficient; VDS, vitamin D sufficient.
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FIGURE 6 Liver metabolic pathways altered by chronic VDD. Bar graph of the number of liver metabolites altered by VDD for each
super- and subpathway. For each metabolic subpathway, the number of affected metabolites are listed in the corresponding bar.
Metabolites with <1.5-fold change in concentrations are shown as light gray bars and those with ≥1.5-fold change in concentrations are
shown as dark gray bars. Left panel (green) shows number of metabolites that increased with VDD. Right panel (red) shows metabolites
that decreased with VDD. VDD, vitamin D deficiency.

FDR >0.5) (Supplemental Table 1B). Because the FDR was >0.5
for these pathways we did not consider these results statistically sig-
nificant. Among the top 20 metabolites with the greatest fold dif-
ference between VDS-CC011 and other VDS-treated strains were
4 acylcarnitines, 4 metabolites involved in tryptophan metabolism,
and N-acetylglutamate. All were substantially elevated in VDS-CC011
samples (Figure 4A).

For the VDD-CC011 signature, we identified 70 metabolites with
VIP ≥1.5 (Supplemental Table 2A). Not surprisingly, the VDD-CC011
signature included 41 metabolites also found in the VDS-CC011 signa-
ture. Similarly, this included potential enrichment for metabolites in-
volved in α-linolenic acid and linoleic acid metabolism (P = 0.023,
FDR >0.5), the urea cycle (P = 0.025, FDR >0.5), and ammonia recy-
cling (P = 0.037, FDR >0.5) (Supplemental Table 2B). Again, because
the FDR was >0.5 for these pathways we did not consider these results
statistically significant. Acylcarnitines, tryptophan metabolites, and N-
acetylglutamate were again among the top 20 metabolites when ranked
by fold change. These were significantly elevated in VDD-CC011 sam-
ples compared with other strains (Figure 4A).

For the VDS-CC042 signature, we identified 63 metabolites with
VIP ≥1.5 (Supplemental Table 3A). Although no metabolic pathways
showed potential enrichment (P < 0.05) (Supplemental Table 3B), we
observed a high number (12) of upregulated dipeptides (Figure 4B).
Further assessment showed these dipeptides were seemingly also ele-
vated in VDD-CC042 samples but partially masked from being a unique

signature of VDD-CC042 owing to upregulation of several other VDD-
treated strains, most notably CC017 and CC051 (Figure 4B).

The presence of a VDD-CC017 signature represents VDD-
induced metabolite concentrations unique to the CC017 genetic back-
ground, suggesting that this strain may be particularly metaboli-
cally responsive to VDD compared with other strains. We identified
66 metabolites for the VDD-CC017 signature with VIP ≥1.5 (Supple-
mental Table 4A), including potential enrichment for metabolites in-
volved in pantothenate (vitamin B-5) and CoA biosynthesis (P = 0.005,
FDR >0.5) and glutathione metabolism (P = 0.027, FDR >0.5) (Sup-
plemental Table 4B). Because the FDR was >0.5 for these pathways
we did not consider these results statistically significant. Among the
top 20 metabolites with the greatest fold difference between VDD-
CC017 and other VDD-treated strains were metabolites derived from
dipeptides (Figure 4B), one-carbon metabolism, and vitamin B-5 and
CoA metabolism (Figure 4C). Concentrations of these metabolites were
slightly higher in VDD-treated CC017 mice than in VDS-treated mice
but not statistically significant (Figure 4C). Therefore, these metabo-
lite changes were strain specific but likely independent of diet. Simi-
larly, 2 metabolites derived from one-carbon metabolism and 3 metabo-
lites involved in vitamin B-5 and CoA metabolism were higher in both
VDS- and VDD-treated CC017 samples (Figure 4C). On the other hand,
dipeptide concentrations were higher in VDD-treated CC017 samples
than in other strains and VDS-treated CC017 samples, representing a
strain-specific diet effect (Figure 4B).
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FIGURE 7 Strain-specific effect of VDD on liver concentrations of fatty acids. (A) Metabolite names, metabolic subpathways, fold changes,
and VIP scores. Green fold change cell indicates increased concentrations in VDD samples compared with VDS. (B) Bar graphs and SEMs
of liver concentrations of metabolites by diet. ∗P < 0.05; P < 0.1 shown above bar, determined by Wilcoxon test. n.s., not statistically
significant (P > 0.05). (C) Bar graph of mean change in metabolite concentrations calculated as ratio of VDD/VDS. Dotted line indicates
mean metabolite concentrations of VDS samples used as relative control values for calculating VDD response. Mean values above dotted
line indicate increased metabolite concentrations in VDD samples compared with VDS; Mean values below dotted line indicate decreased
metabolite concentrations in VDD compared with VDS. ∗Strain effect P < 0.05 as determined by ANOVA. Letters (a and b) below graphs
indicate strains with significantly different VDD-induced fold change in metabolite concentrations compared with other strains in the group
as determined by Tukey’s honestly significant difference (HSD) post hoc test. CC, Collaborative Cross; EPA, eicosapentaenoate; rmsVIP,
root measure of the orthogonal and predictive variable importance to projection; VDD, vitamin D deficient; VDS, vitamin D
sufficient.

VDD-induced CC maternal liver metabolomic profiles were
masked by strain effects
To determine the extent to which strain effects on metabolite concen-
trations might mask the effects of diet in this genetically divergent pop-
ulation (as they might confound a standard metabolomic analysis that
focused on diet), we assessed the effect of diet with and without ad-
justment for strain. As expected, OPLS-DA analyses of VDD effects
before adjustment for strain did not result in significant separation of
sample metabolic profiles by diet (pQ2 = 0.11) (Figure 5A). How-
ever, after adjustment for strain (see Methods), we detected a signif-
icant diet effect on metabolite profiles (pQ2 = 2.2 × 10−3) (Figure
5B). Owing to this confounding by strain of diet effects in this popu-
lation of mice, we assessed diet effects by OPLS-DA only after adjust-
ment for strain effects. Using a VIP threshold of ≥1.5, we detected 78
VDD-altered liver metabolites (Supplemental Table 5A) primarily up-
regulated and involved in lipid, amino acid, and nucleotide metabolism
(Figure 6).

VDD disrupted maternal liver metabolism of fatty acids and
glycerophospholipids in a strain-dependent manner.
Using Metaboanalyst (45), we determined that for the 78 metabo-
lites altered by VDD (VIP ≥1.5) there was significant enrichment for
metabolites in pathways for biosynthesis of unsaturated fatty acids
(P = 6.4 × 10−5, FDR = 5.2 × 10−3) and glycerophospholipid
metabolism (P = 8.2 × 10−4, FDR = 3.3 × 10−2) and potential en-
richment for linoleic acid metabolism (P = 9.3 × 10−3, FDR = 0.25),
fatty acid biosynthesis (P = 2.3 × 10−2, FDR = 0.42), and arginine
and proline metabolism (P = 2.5 × 10−2, FDR = 0.42) (Supplemental
Table 5B). Of the 13 metabolites involved in biosynthesis of unsaturated
fatty acids (Figure 7A), after adjustment for strain, only eicosenoate
(20:1), 10-heptadecenoate (17:1n–7), 10-nonadecenoate (19:1n–9), and
oleate/vaccinate (18:1) were determined to have significantly higher
concentrations for VDD dams (Figure 7B). Stratification by strain re-
vealed the population-level effect for this pathway was primarily driven
by the response of a single strain (CC017), with small effect size (if any)
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FIGURE 8 Strain-specific effect of VDD on liver concentrations of glycerophospholipid metabolites. (A) Metabolite names, metabolic
subpathways, fold changes, and VIP scores. Green fold change cell indicates increased concentrations in VDD samples compared with
VDS. (B) Bar graphs and SEMs of liver concentrations of metabolites by diet. ∗P < 0.05; P < 0.1 shown above bar, determined by Wilcoxon
test. (C) Bar graph of mean change in metabolite concentrations calculated as ratio of VDD/VDS. Dotted line indicates mean metabolite
concentrations of VDS samples used as relative control values for calculating VDD response. Mean values above dotted line indicate
increased metabolite concentrations in VDD samples compared with VDS; Mean values below dotted line indicate decreased metabolite
concentrations in VDD compared with VDS. ∗Strain effect P < 0.05 as determined by ANOVA. n.s., not statistically significant (P > 0.05).
Letters (a and b) below graphs indicate strains with significantly different VDD-induced fold change in metabolite concentrations
compared with other strains in the group as determined by Tukey’s honestly significant difference (HSD) post hoc test. CC, Collaborative
Cross; GPC, glycerophosphorylcholine; GPE, glycerophosphoethanolamine; GPG, glycerophosphoglycerol; GPI, glycerophosphoinositol;
rmsVIP, root measure of the orthogonal and predictive variable importance to projection; VDD, vitamin D deficient; VDS, vitamin D
sufficient.

contributions from other strains. There was a significant strain effect
on the fold change of all 13 fatty acid metabolite concentrations in re-
sponse to VDD treatment, with CC017 mice seemingly the most re-
sponsive to VDD-induced changes in fatty acid metabolism, exhibiting
significantly and substantially (≤4.5-fold) higher concentrations for all
13 metabolites (Figure 7C). Other strains were less responsive (<2-fold)
(Figure 7C).

For metabolites involved in glycerophospholipid metabolism with
VIP ≥1.5, VDD-treated dams exhibited increased concentrations of
11 metabolites and decreased concentrations of 4 metabolites
(Figure 8A). Concentrations of 13 of the 15 metabolites were de-
termined to be significantly altered by VDD (Figure 8B). After
stratification by strain, a similar directional trend of response to VDD
was detected for most strains (Figure 8C). We determined a significant
difference among strains in the fold change of most of the glycerophos-
pholipid metabolites, in this case driven mostly by changes in strain
CC032 (Figure 8C). Overall, CC032 mice were seemingly the most
responsive to VDD-induced glycerophospholipid metabolite changes,
with the greatest number of metabolites with significant changes,

including an ∼9-fold increase in 1-oleoyl-glycerophosphoglycerol
concentrations (Figure 8C).

VDD had a robust impact on maternal liver metabolites that are
putative biomarkers of uremic toxemia, lipid metabolites, and
dipeptide metabolites in a strain-dependent manner.
Twenty-five of the 78 VDD-altered metabolites identified by OPLS-DA
exhibited a robust change (≥1.5-fold) (Supplemental Table 5A). These
included 8 uremic solutes [implicated as biomarkers of uremic toxemia
(38)] (Figure 9A), 6 acylglycerols (Figure 10A), and 8 glycerophospho-
lipids (Figure 8A) (as aforementioned).

Concentrations of 3 uremic solutes were determined to be signif-
icantly increased by VDD and 1 significantly decreased (Figure 9B).
After stratification by strain, a similar directional trend of uremic so-
lute response to VDD was detected for most strains; however, there was
a significant difference among the strains in the fold change in con-
centrations for several metabolites (Figure 9C). Strain CC032 seem-
ingly was the main driver of VDD-increased uremic solute metabo-
lite concentrations including an ∼9-fold increase in p-cresol sulfate
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FIGURE 9 Strain-specific effect of VDD on liver concentrations of putative biomarkers of uremic toxemia. (A) Metabolite names,
metabolic subpathways, fold changes, and VIP scores. Green fold change cell indicates increased concentrations in VDD samples
compared with VDS. (B) Bar graphs and SEMs of liver concentrations of metabolites by diet. ∗P < 0.05, determined by Median test. (C) Bar
graph of mean change in metabolite concentrations calculated as ratio of VDD/VDS. Dotted line indicates mean metabolite
concentrations of VDS samples used as relative control values for calculating VDD response. Mean values above dotted line indicate
increased metabolite concentrations in VDD samples compared with VDS; Mean values below dotted line indicate decreased metabolite
concentrations in VDD compared with VDS. ∗Strain effect P < 0.05 as determined by Welch’s ANOVA. Letters (a and b) below graphs
indicate strains with significantly different VDD-induced fold change in metabolite concentrations compared with other strains in the group
as determined by Tukey’s honestly significant difference (HSD) post hoc test. CC, Collaborative Cross; MTA, S-methylthioadenosine; n.s.,
not statistically significant (P > 0.05); rmsVIP, root measure of the orthogonal and predictive variable importance to projection; SAM,
S-adenosylmethionine; VDD, vitamin D deficient; VDS, vitamin D sufficient.

(Figure 9C). Interestingly, the 2 VDD-decreased uremic solutes exhib-
ited strain differences driven by increased concentrations in CC051
(4-hydroxy-nonenal-glutathione) and CC041 (homoarginine), demon-
strating that strains also have an inverse response to VDD for some
metabolites (Figure 9C).

Four acylglycerol metabolites were determined to be significantly in-
creased by VDD, although all 6 followed a similar trend of increased
concentrations (Figure 10B). Similarly to the strain-specific VDD-
induced changes in fatty acid metabolism (Figure 7C), stratification
by strain revealed that the population-level effect for acylglycerols was
also primarily driven by the response of CC017, with only small effect
size contributions from other strains (Figure 10C). CC017 mice were
the most responsive to VDD for this pathway, with fold changes sig-
nificantly different from other strains, including ∼10-fold increase in
1-linoleoylglycerol (Figure 10C).

We also detected a ≥1.5-fold change in 1 dipeptide (pheny-
lalanylalanine) and 1 cysteine derivative (S-carboxymethyl-l-cysteine)
(Figure 11A), both of which were significantly increased in VDD-
treated samples (Figure 11B). For both metabolites, CC017 was the most
responsive strain with fold changes significantly higher than for other

strains, including an ∼6-fold change in S-carboxymethyl-l-cysteine
(Figure 11C). This CC017-specific response to VDD is in addition to
the VDD-induced increase in dipeptides shown in Figure 4B.

Discussion

This study used a combination of comparative approaches to
demonstrate that liver metabolic response to VDD is strongly deter-
mined by genetic background. In this genetically divergent population
of CC strains, VDD induced significant changes in maternal liver
metabolism of fatty acids, glycerophospholipids, putative biomarkers of
uremic toxemia, acylglycerols, and dipeptides. Interestingly, all of these
effects were highly strain dependent, with 1 or 2 strains at most robustly
affected whereas other strains showed mild or no effects. In addition to
strain differences in extent of susceptibility to VDD-induced metabolic
changes, different strains also exhibited dysregulation of different
metabolic pathways in response to VDD. It remains to be determined
whether these VDD-induced metabolite changes are detrimental or
protective responses.
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FIGURE 10 Strain-specific effect of VDD on liver concentrations of acylglycerols. (A) Metabolite names, metabolic subpathways, fold
changes, and VIP scores. Green fold change cell indicates increased concentrations in VDD samples compared with VDS. (B) Bar graphs
and SEMs of liver concentrations of metabolites by diet. ∗P < 0.05; P < 0.1 shown above bar, determined by Wilcoxon test. n.s., not
statistically significant (P > 0.05). (C) Bar graph of mean change in metabolite concentrations calculated as ratio of VDD/VDS. Dotted line
indicates mean metabolite concentrations of VDS samples used as relative control values for calculating VDD response. Mean values
above dotted line indicate increased metabolite concentrations in VDD samples compared with VDS; Mean values below dotted line
indicate decreased metabolite concentrations in VDD compared with VDS. ∗Strain effect P < 0.05 as determined by ANOVA. Letters (a
and b) below graphs indicate strains with significantly different VDD-induced fold change in metabolite concentrations compared with
other strains in the group as determined by Tukey’s honestly significant difference (HSD) post hoc test. CC, Collaborative Cross; rmsVIP,
root measure of the orthogonal and predictive variable importance to projection; VDD, vitamin D deficient; VDS, vitamin D sufficient.

Although all strains tested exhibited similar (not significantly dif-
ferent) depletion of 25(OH)D when placed on VDD diet, there was
a significant strain effect on overall 25(OH)D concentrations. We
identified several strains that were particularly susceptible to VDD-
induced changes in specific metabolic pathways. CC017 exhibited a
strain-specific metabolomic signature when exposed to VDD that in-
cluded upregulation of metabolites involved in dipeptides, one-carbon
metabolism, vitamin B-5 and CoA metabolism, fatty acid synthesis,
acylglycerol, and cysteine metabolism. These could be indicators of
severely impaired fatty acid metabolism, which has been previously
demonstrated for VDD rodent studies (46).

Compared with other strains, CC017 had the lowest mean concen-
trations of basal (VDS) circulating 25(OH)D and exhibited on average
∼58% depletion in 25(OH)D when placed on VDD diet. In contrast,
CC032, the strain with the highest mean concentrations of circulating
25(OH)D for VDS samples and on average ∼66% depletion of 25(OH)D
on VDD diet, also exhibited a strain-specific VDD signature. How-
ever, CC032 was instead more susceptible to VDD-altered metabolism
of glycerophospholipids and uremic solutes implicated in uremic tox-
emia. Increased concentrations of uremic solutes in the blood impli-
cate impaired kidney function and failure to excrete potentially toxic

metabolites that could build up and go back into the circulation and
cause illness (47). The consequences of increases of these metabolites
in the liver are unclear because they have primarily been measured in
blood and urine.

We have also identified several new strain-specific liver metabolomic
profiles that were independent of diet and can be used to define the basal
metabolic status of these CC strains. Compared with other strains, VDS-
and VDD-treated CC011 mice exhibited higher concentrations of acyl-
carnitines, tryptophan metabolites, and N-acetylglutamate. Acylcar-
nitines help transport fatty acids into the mitochondria for β-oxidation
and upregulation could indicate increased β-oxidation for energy pro-
duction (48). Increased acylcarnitines are biomarkers of metabolic dis-
ease such as obesity and diabetes (49). Tryptophan is a key upstream
precursor of several important neurotransmitters, including serotonin.
However, the tryptophan metabolites detected in this study are gen-
erated in an alternate pathway and have anti-inflammatory proper-
ties. Upregulation of anti-inflammatory tryptophan metabolites has
been proposed to divert tryptophan from neurotransmitter-generating
pathways, an outcome associated with intestinal inflammation (50).
CC011 mice exhibit spontaneous colitis (51). Although the mice as-
sessed here are younger than the previously shown age of onset, these
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FIGURE 11 Strain-specific effect of VDD on liver concentrations of phenylalanylalanine and S-carboxymethyl-l-cysteine. (A) Metabolite
names, metabolic subpathways, fold changes, and VIP scores. Green fold change cell indicates increased concentrations in VDD samples
compared with VDS. (B) Bar graphs and SEMs of liver concentrations of metabolites by diet. ∗P < 0.05, determined by Wilcoxon test. (C)
Bar graph of mean change in metabolite concentrations calculated as ratio of VDD/VDS. Dotted line indicates mean metabolite
concentrations of VDS samples used as relative control values for calculating VDD response. Mean values above dotted line indicate
increased metabolite concentrations in VDD samples compared with VDS; Mean values below dotted line indicate decreased metabolite
concentrations in VDD compared with VDS. ∗Strain effect P < 0.05 as determined by ANOVA. Letters (a and b) below graphs indicate
strains with significantly different VDD-induced fold change in metabolite concentrations compared with other strains in the group as
determined by Tukey’s honestly significant difference (HSD) post hoc test. CC, Collaborative Cross; rmsVIP, root measure of the orthogonal
and predictive variable importance to projection; VDD, vitamin D deficient; VDS, vitamin D sufficient.

could represent early markers of the disease. N-acetylglutamate is syn-
thesized in the mitochondria and is a key metabolite in the liver urea cy-
cle responsible for activating carbamoyl phosphate synthetase 1 in mi-
tochondria (51, 52). High N-acetylglutamate could indicate increased
amino acid catabolism. Another strain effect independent of diet was
found for VDS-treated CC042 mice which had higher concentrations
of dipeptides than other strains. The cause is unclear but it could be
indicative of incomplete protein catabolism.

This study has provided novel and highly valuable information to
our understanding of the role of gene × diet interactive effects on
liver metabolic processes. However, the relatively small sample size
limits power to detect metabolite changes and thus what is presented
here is an underrepresentation of the true magnitude of the effect of
VDD on the metabolome. We also focused primarily on robust differ-
ences in metabolite concentrations (VIP ≥1.5 and fold change ≥1.5),
which means many more subtle changes were not explored. This was
done for the purpose of limiting false-positive outcomes due to our
limited sampling of the populations. As noted in the Methods, lipid
metabolite names are particularly challenging to map to currently

available databases owing to the wide variety in nomenclature. Many
of our Metabolon-designated lipid metabolites were not found in the
MetaboAnalyst databases used and therefore we were likely unable to
completely define the true impact of VDD on lipid metabolism in the
liver. As database matching improves, this limitation will become less of
an issue.

It is important to point out that many of these VDD-induced
metabolic changes would likely not have been possible to detect in this
genetically divergent population without the ability to adjust for strain
effects. This brings to question whether many metabolomic effects are
confounded for genetic background and either go undetected in pop-
ulations where differences are unidentified (false negatives) or are false
positives for a treatment effect when they are actually caused by genetic
differences. This study provides a premise for further investigating this
potential issue and highlights the need for studies that integrate the im-
pacts of genetic and environmental differences on the metabolome.

Taken together, these data show that VDD can have substantial ef-
fects on maternal liver metabolism, particularly disrupting lipid and
amino acid metabolism. Furthermore, these responses to VDD are
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strain specific, possibly due to genetic differences in enzymes respon-
sible for the metabolic pathways affected. Our finding of VDD-induced
upregulation of several uremic solutes that are putative biomarkers
of uremic toxemia demonstrates the potential for VDD to affect liver
and/or kidney function in a manner that could adversely affect maternal
and fetal health. Further studies are necessary to identify the genes and
genetic variants responsible for the strain differences and to determine
the consequences of upregulation of these potentially toxic metabolites.
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