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Closed-loop motor imagery EEG
simulation for brain-computer
interfaces

Hyonyoung Shin*, Daniel Suma and Bin He

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States

In a brain-computer interface (BCI) system, the testing of decoding algorithms,

tasks, and their parameters is critical for optimizing performance. However,

conducting human experiments can be costly and time-consuming, especially

when investigating broad sets of parameters. Attempts to utilize previously

collected data in o	ine analysis lack a co-adaptive feedback loop between

the system and the user present online, limiting the applicability of the

conclusions obtained to real-world uses of BCI. As such, a number of studies

have attempted to address this cost-wise middle ground between o	ine

and live experimentation with real-time neural activity simulators. We present

one such system which generates motor imagery electroencephalography

(EEG) via forward modeling and novel motor intention encoding models

for conducting sensorimotor rhythm (SMR)-based continuous cursor control

experiments in a closed-loop setting. We use the proposed simulator with 10

healthy human subjects to test the e�ect of three decoder and task parameters

across 10 di�erent values. Our simulated approach produces similar statistical

conclusions to those produced during parallel, paired, online experimentation,

but in 55% of the time. Notably, both online and simulated experimentation

expressed a positive e�ect of cursor velocity limit on performance regardless

of subject average performance, supporting the idea of relaxing constraints on

cursor gain in online continuous cursor control. We demonstrate the merits of

our closed-loop motor imagery EEG simulation, and provide an open-source

framework to the community for closed-loop SMR-based BCI studies in the

future. All code including the simulator have been made available on GitHub.

KEYWORDS

brain-computer interfaces, EEG simulation, closed-loop systems, motor imagery,

sensorimotor rhythm

Introduction

Brain-computer interfaces (BCIs), particularly ones that can decodemotor intention,

are the subject of active research due to their potential as neural prosthetic systems

capable of improving quality of life for patients suffering from various motor function

impairing conditions such as spinal cord injury, amyotrophic lateral sclerosis, and

stroke (Anderson, 2004; He et al., 2020). One well-established approach is sensorimotor

rhythm (SMR)-based motor imagery BCIs, which allow users to control the movement

of an agent in the physical or virtual world by detecting and decoding SMR patterns
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associated with real and imagined movements (Wolpaw and

McFarland, 1994; Yuan and He, 2014; He et al., 2015).

Generally in a BCI system, the performance of the neural

activity decoder is critical and a significant proportion of

BCI research is dedicated to maximizing it through feature

engineering, signal processing and machine learning, as well

as optimization of the parameters and hyperparameters these

methods depend on. A large proportion of such research

evaluates decoder designs and parameters on pre-recorded

datasets in an offline environment (Chavarriaga et al., 2016). In

contrast, a BCI ultimately aims to provide real-time decoding

of neural activity and enacting of the decoder output [for

example, as a physical movement of a computer cursor (Wolpaw

and McFarland, 1994), a drone (LaFleur et al., 2013), or a

robotic limb (Meng et al., 2016; Edelman et al., 2019)], which

serves as feedback for the central nervous system of the user

to adjust its output (i.e., BCI input) accordingly. A functional

BCI is fundamentally defined by this bidirectionally adaptive

relationship between decoder and user, and almost any example

of a BCI application, clinical or non-clinical, is indeed found in

the domain of online closed-loop usage, rather than an offline

one. Importantly, several studies have successfully highlighted

differences in conclusions obtained from offline and online

analyses of the same range of decoder parameters being tested

(Cunningham et al., 2011; Chavarriaga et al., 2016). Some

studies have recognized this problem and have attempted to

incorporate online control dynamics into offline evaluations

by predicting decoder output in small bins of time (Dose

et al., 2018; He and Wu, 2020; Stieger et al., 2021b). However,

they do not address the fundamental problem with offline

analyses that the subject is absent from the feedback loop.

This lack of inclusion results in evaluations that fail to take

into account the effect of co-adaptation in the performance of

the BCI system, as well as on the effect of decoder and task

parameters on subject control behavior. This is especially the

case with SMR-based BCIs in which there are large variances in

each subject’s ability, method and rate of learning to modulate

their SMRs to accomplish a BCI task. Therefore, it can be

said that while offline analysis plays an important role in

certain cases or development phases of a BCI system, it is

desirable to evaluate BCI decoders as well as tasks (which are

invariably linked to the decoder in that a decoder’s output

is in terms of a change in the task space) in an online,

closed-loop setting.

We hypothesize that the relative abundance of offline BCI

evaluation studies ultimately stems from the cost and hassle

associated with running live BCI experiments. Indeed, to do

live experiments, one must own, regularly maintain, and be

trained in using signal acquisition equipment(s), recruit human

subjects, train them how to do BCI control in the specific

experimental paradigm(s) being used (Roc et al., 2021), ensure

their safety, deal with confounding factors such as intra-

/inter-session/subject (Scherer et al., 2012; Saha and Baumert,

2020) variability as well as various recording artifacts, and

perhaps most importantly, spend a lot of time compared to

offline analyses, which is a disadvantage from both man-hours

and time-to-data perspectives. Cunningham et al. (2011) has

previously proposed closed-loop neural activity simulations

as a cost-wise middle ground between online and offline

experimentation, and in turn, their online prosthesis simulator

(OPS) and the brain-machine interface simulator by Kwon and

Kim (2010) have attempted to address this important gap. In

the former, artificial spiking activity was generated based on the

kinematics of subject reaches in a hidden 3D volume, which

was decoded by a Kalman filter to provide visual reaching

feedback to the subject. In the latter, artificial spiking activity

was generated from computer mouse movements through a

linear Gaussian model for a discrete reach task paradigm

in a 2D space.

To the best of our knowledge, the two studies mentioned

above are the only examples of original closed-loop BCI

simulators. Notably, both are designed to generate artificial spike

trains and are therefore only suitable for testing decoders of

spike trains, which are also utilized for invasive BCI decoders.

Furthermore, neither of them is open source, making it difficult

to adopt these closed-loop simulation methods in specific

experiments. To address the unfulfilled cost-wise middle ground

in motor imagery EEG BCI experimentation, we have developed

a closed-loop BCI simulator which allows the conduction of

various types of motor imagery EEG-based BCI experiments

through the real-time generation of motor imagery EEG as

a function of intuitive and naturalistic human subject input.

We demonstrate, through a parallel parameter investigation in

live and simulated environments (Figure 1), that the proposed

simulator can serve as a rapid prototyping testbed for BCI

decoder and task designs.

Importantly, closed-loop BCI simulators are distinguished

from the relatively abundant offline simulation methods of

neural activity data (Lotte, 2011; Aine et al., 2012; Krol et al.,

2018; Dinarès-Ferran et al., 2018; Lindgren et al., 2018; Zhang

and Liu, 2018; Aznan et al., 2019; Barzegaran et al., 2019; Fahimi

et al., 2021; Kunanbayev et al., 2021; Ko et al., 2022) which serve

important but different purposes [mainly for neural activity data

augmentation to improve BCI decoder training and/or testing

(Marturano et al., 2020; Ramírez Torres and Daly, 2021), or,

more rarely, to supplement the development and evaluation of

source modeling methods (Aine et al., 2012; Gramfort et al.,

2013)].

In contrast, closed-loop BCI simulators are focused on

providing a controlled environment for testing BCI system

parameters in a specific experimental context while preserving

the aspect of feedback control which is lost in offline analyses.

Although this aspect, combined with the reduced time and

cost compared to live experimentation, is one of the main

motivations for the development of such simulators, there are

other merits to using closed-loop BCI experiment simulations
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FIGURE 1

Overview of the live and simulator experiments. The simulator allows for the running of a closed-loop BCI experiment via real-time generation

of motor imagery EEG, using subject’s naturalistic mouse movements as input to represent motor intention. To verify the proposed simulator’s

capability to replace and/or support live experimentation, we ran the identical experimental paradigm of 1D LR center-out reaching on 10

healthy human subjects in both the live and simulated environments, and analyzed their performance against changes in selected decoder and

task parameters.

when compared to live BCI experimentation which are often

overlooked. Here we suggest a few of them. Firstly, due to

the fact that the neural activity is generated by a well-defined

encoding model that maps intention input to neural activity,

the effect of parameters on metrics of interest (such as but not

limited to decoding performance) can safely be attributed to

the changes in the parameters themselves, rather than subject-

to-subject or session-to-session variability in subject behavior

or recording. In other words, a closed-loop BCI simulator may

be used to observe the performance ceiling of a BCI system,

and assess algorithms and system design choices. Secondly,

by using a pre-defined encoding model, human subjects who

are unable or take longer to develop BCI control skills (often

termed “BCI illiterate” subjects) are able to participate in

simulated experiments without restrictions. Lastly, a ground

truth of the subject’s intention is captured over every time

sample of the experiment as an input into the system: this

is a unique type of data that cannot be collected from live

BCI experiments, although it can be estimated by making

assumptions—for example, by assuming that the shortest vector

between a cursor and a target is the subject’s motor intention

in a 2D motor imagery paradigm (as done in Gilja et al., 2012;

Willett et al., 2019), although this may not actually be the control

policy/behavior adopted by subjects (see Section Discussion in

Suma et al., 2020).

As this work, to the best of our knowledge, is the first

closed-loop motor imagery EEG simulated experimental study

for continuous cursor control paradigms (Edelman et al.,

2019), we first set out to define the design philosophy for the

simulation method. The closed-loop design of the simulator

necessitates the generation of the EEG to: (1) be sufficiently

simple to be computed in real-time, and (2) result in EEG

similar enough in features to real motor imagery EEG such

that an online decoder can be plugged in and still result in

reasonable prediction of motor intention. In this sense, the

EEG generator part of the simulator can indeed be viewed as a

kind of a human simulator for the purposes of a specific BCI

experimental paradigm. Broadly, there would be two possible

approaches to EEG simulation that would fulfill both of these

requirements. One approach would be to prepare large sets of

multi-class EEG epochs according to the intention class (e.g.,

in motor imagery: left/right/up/down (L/R/U/D), or potentially

finer classes that include non-cardinal directions), using pre-

recorded and labeled data, offline generative models, or a mix

of both. Then, the system would continuously output sequences

of these pre-generated and pre-labeled epochs depending on

the input class (intended movement direction). Although this

would certainly work in streaming intention-dependent EEG in

an online setting, we decided against this approach as it would

not necessarily result in EEG that contains information about
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FIGURE 2

Example configurations of the encoding model, providing di�erent mapping of the subject intention input v′
a
to amplitude modulation factors

Ah,a. In the perturbed configuration, previously recorded subject EEG is used to fit the encoding functions, and an example output is shown here.

the intensity of the intention, which meant that continuous

cursor (or more generally, agent) control task paradigms would

not work with such a simulation without making undesirable

assumptions such as constant/randomized/discretized cursor

velocity. The alternative is to attempt to parameterize typical

EEG signals in some systematic and continuous manner, and

map the intended movement intention into those parameters.

Such an approach would inherently result in continuous

variation of the synthetic EEG according to the input movement

intention with the intensity information preserved. The two

challenges with this approach would then be to come up with

a reasonable system to parameterize EEG signals, as well as a

reasonable encoding model to mapmovement intention to these

EEG-controlling parameters. It can be said that addressing these

challenges is critically linked to the realism and practicality of

the resulting closed-loop EEG simulation.
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Methods

With the above in mind, we decided on a forward

solution-based generative approach inspired by offline EEG

simulation methods such as SEREEGA (Krol et al., 2018)

and EEGSourceSim (Barzegaran et al., 2019) in that some

customized time-series activation signals assigned to source

locations in a 3D head model are projected onto the scalp

through a lead field matrix. The lead field, which can

be accurately estimated using modern numerical solutions,

dictates how the source-level activation signals, given their

source locations and orientations, are detected as scalp-level

potentials at each electrode location (He et al., 2018). However

unlike offline simulation methods, our closed-loop simulator

automatically controls the shape of the activation signals using

the subject’s computer mouse control as an input representing

their intuitive real-time motor intention. This is done via

a uniquely defined, customizable (potentially subject-specific,

refer to Methods Section on Perturbed configurations) encoding

model which maps recorded cursor velocities to a set of

amplitude modulation factors that determines the maximum

normalized amplitude of the source-level activation signal. The

encoding model in our case is defined simply as a set of

sigmoid functions (Figure 2), the number of which depends

on the motor imagery paradigm being used: two functions for

1D, four functions for 2D. We chose the sigmoid over other

commonly used activation functions (such as a linear unit) for

two reasons: first, we wanted tunable, generalizable functions

that could transition into different configurations (see Figure 2

and Section onNeural activity encodingmodel), so that we could

tune the effects and extents of contralateral desynchronization

and ipsilateral synchronization in the simulation (discussed in

Section Classic vs. centered configurations). Second, the sigmoid

function captures well the extent of motor imagery plateauing at

very high and very low distances to target.

To validate our EEG BCI simulator as a method capable

of replacing or supplementing live experimentation in certain

contexts, a comparison study (overview in Figure 1) was

designed to test arrays of several parameters of interest (Table 1)

in the simple 1D left/right (LR) motor imagery cursor control

paradigm. These parameters were Z-score normalization bin

width (BW), number of trials for control coefficient calculation

(NT), and maximum cursor velocity (CV) (detailed in Methods

Section on EEG acquisition and online signal processing). We

picked this relatively simple experimental paradigm tominimize

variables that could affect this initial evaluation of the simulator,

while the parameters to be tested were carefully chosen to

reflect unexplored optimizations in the motor imagery cursor

control paradigm that are of interest. Although the evaluation

in this study was done in the 1D motor imagery paradigm,

the EEG BCI simulator was initially developed for 2D motor

imagery continuous cursor control and was used to identify a

non-significant effect of maximum cursor velocity relative to

TABLE 1 Decoder and task parameters tested in live and simulated

BCI.

Parameter (and notation) Domain Range (default

in bold)

Z-score normalization bin width

(BW)

Decoder 30, 60, 90, 120s

No. of trials for control coefficient

calculation (NT)

Decoder 0, 24, 48 trials

Maximum cursor velocity (CV) Task 200, 250, 300, 350 pixels/s

maximum target velocity in the 2D continuous cursor pursuit

paradigm during our previous study (Shin et al., 2021). We

also use the 2D LRUD center-out discrete task paradigm in

this study as part of an evaluation of our 2D motor imagery

encoding models (see Methods Section on Neural activity

encoding model).

Experimental design

Trial structure

Ten healthy human subjects (average age 23.8± 3.4, 9 right-

handed, 6 female) participated in one live and one simulated

session each, which shared the same trial structure that is

described here. Each session consisted of 10 runs of 24 1D

LR center-out discrete trials block-wise randomly distributed in

a pairwise fashion. Each run used a specific parameter value

from Table 1, except the “NT = 0 trials” run which was jointly

represented by the “BW = 60 s (default)” run, thus forming

10 runs (4 + 2 + 4). (Refer to the next section on EEG

acquisition and online signal processing for a description of each

of these parameters in the context of the experiment.) With a

particular parameter being used as the independent variable, the

other parameters not being used were fixed at a default value

(Table 1). The order in which the parameter values were tested

was randomized within each parameter type. Each trial began

with a 3 s rest period, followed by a 2 s preparation period, in

which the target was shown to the subject. Subjects were then

provided up to 6 s to move the cursor to hit the target, by either

modulating their neural activity (live experiment) or moving a

physical computer mouse with their dominant hand (simulated

experiment). If the cursor had not reached a target within the 6

s feedback control period, the trial was labeled as a timeout trial

and was aborted with no target selected. Therefore, a trial had

three possible outcomes: hitting the correct target (a hit), hitting

the incorrect target (a miss), or timeout.

For the simulated experiment, 4 of 10 subjects participated

in the experiment at home using their own hardware which

were screened in advance to ensure that the simulator software

ran and behaved as expected, and that each subject would
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participate in a valid environment. In both the live and simulated

experiments, the times at which each run of the experiment

began and ended were recorded digitally.

EEG acquisition and online signal processing

In the live experiment, EEG was acquired at a sampling rate

of 250 Hz and a sensitivity of ±750 mV with the g.Nautilus

RESEARCH 16 g.SAHARA (g.tec medical engineering GmbH,

Austria) system connected to the BCI2000 (Schalk et al., 2004)

module, which timed the experiment and visualized the task

(targets and cursor feedback). In the simulated experiment, the

subjects used a computer mouse on a flat office desk space

of at least 25 inches width to attempt to continuously control

the cursor on the screen. The mouse movements were first

converted to synthetic EEG in real-time (see Section on Neural

activity encoding model), which was decoded into actual cursor

movements for display on the screen by a custom Python

software (i.e., the simulator).

At each time sample t0, in both experiments, the EEG was

pre-processed (Notch filtered 58–62 Hz, bandpass FIR filtered

2–60 Hz) and decoded online using Burg autoregressive power

estimation to evaluate the alpha band (8–12 Hz) powers PSDC3

and PSDC4 at the small spatial Laplacian-filtered (McFarland

et al., 1997) C3 and C4 channels, respectively (C3 neighbors: F3,

T7, Cz, P3; C4 neighbors: F4, T8, Cz, P4). The raw horizontal and

vertical control signalsCx andCy were then evaluated as follows:

Cx,t0 = PSDC4, t0 − PSDC3, t0

Cy,t0 = −PSDC4, t0 − PSDC3, t0

(1)

Cx and Cy are then Z-scored against their own history

during the past BW seconds’ worth of time samples in online

control, such that the resulting signal would have zero mean and

unit variance. BW in Equation (2) is the normalization bin width

which is one of the parameters varied in this comparison study

(Table 1).

C′a,t0 =
Ca,t0 − Ca,t0−BW : t0−1

σCa,t0−BW : t0−1

,

where a is the axis of control x (horizontal) or y (vertical). (2)

The first trial of each run was utilized for the calibration of

the normalization bin Ca,t0−BW : t0−1, in which the subject

attempted to control the cursor as per normal to “fill"

the normalization bin with statistically representative raw

control signals.

This normalized control signal is then directly proportional

(by a constant system-dependent scaling factor S) to the cursor

velocity to be applied at t0, in pixels:

vx,t0 = SC′x,t0

vy,t0 = SC′y,t0

(3)

However, a maximum cursor velocity CV may be enforced

as a simple nonlinear threshold such that ||Ev|| ≤ CV ; this is one

of the parameters varied in this comparison study (Table 1). At

the end of a run, we can choose to skip the initialization and re-

calibration of the normalization bin Ca,t0−BW : t0−1 for the next

run and instead make the normalization bin at the end of this

run’s 24 trials carry over to the next run’s t = 0. The number

of trials whose information is carried forward by this process,

which is in multiples of 24, is NT, one of the parameters varied

in this comparison study (Table 1). The cursor position (x, y) on

the screen is then updated by the velocities (multiplied by a value

of 1 update frame):

xt0 = xt0−1 + vx,t0

yt0 = yt0−1 + vy,t0
(4)

Performance comparison

Here we define the performance metrics used in this

study to represent different aspects of BCI task performance

quantitatively. Calculation of performance metrics as well as

the subsequent statistical analysis between live and simulated

conditions were done using customMATLAB (MathWorks Inc.,

MA, USA) scripts, with dependencies on EEGLAB (Delorme

and Makeig, 2004). Percentage trials correct (PTC) is the

proportion of total targets presented in a run that was

successfully hit by the subject-controlled cursor within the 6 s

feedback control period. Average decision time is the average

time elapsed from the start of the feedback control period to the

end of the feedback control period in each trial; a lower value

is better. Average integrated distance to target in a run is the

average distance of the cursor to the target during the feedback

control duration; a lower value is better.

In all of the above performance metrics, all trials, including

timeout trials, were included in their calculation. For example,

PTC, the proportion of all trials that were correct hits (LaFleur

et al., 2013), is used here instead of PVC (percentage valid

correct), which is the proportion of non-timeout trials that were

correct hits. Similarly, rather than calculating average hit time

by averaging the duration of hit trials, average decision time

is used where timeout trials were included as data points of

6 s to ensure that the metric fully represents the reduction in

information transfer rate due to timeout trials. The calculation

of average integrated distance to target in each run also included

all trials to ensure that the metric fully represents poor BCI task

performance observed in non-hit trials. We consider that this

inclusion of all trials is a fair choice in evaluating the effect of our

decoder and task parameters on BCI performance, as the effect

of these parameters on the frequency of aborts and timeouts has

not been established yet.

Next, we compared the performance vs. parameters trends

observed from the live and simulated experiments. To determine

if the simulator reached the same conclusion on the null
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hypotheses in each performance vs. parameter relationship, we

fit an ordinary least squares linear regression on each live and

simulated trend, and obtained the statistical significance of each

linear fit term.

Generation of synthetic motor imagery
EEG in real-time

To be comprehensive, the simulation process for a single

time sample in the 2D motor imagery paradigm is described.

Neural activity encoding model

Input processing and formulation of encoding model

First, the 2D input cursor velocity Ev is scaled by a constant

parameter S such that its length is at most 1:

Ev ′ = SEv, |Ev| ≤ 1 (5)

Next, four pre-defined sigmoid functions, each

corresponding to a unique pair between the two hemispheres

(h) of the brain (left and right) and the two axes (a) of intended

control (horizontal and vertical), are used to convert the scaled

velocity Ev ′ into Ah,a values: Aleft,x,Aleft,y,Aright,x, and Aright,y.

In general,

Ah,a =
1

1+ eαh,a(v
′
a+kh,a)

(6)

The gain αh,a and the offset kh,a were configured manually

according to the boundary conditions reasoned below, and

Figure 2 shows some example configurations that work well for

the 2D motor imagery paradigm. The specific values of the gain

and the offset were obtained through a qualitative calibration

to ensure the output of reasonable control signals. The classic

configuration serves as a default for our simulator as its design is

informed by the following well-established concepts:

The presence of non-zero offsets kh,a, which cause v′a =

0 (i.e., no intention input in control axis a) to be modeled

as Ah,a ≈ 1 (i.e., no attenuation of amplitude in source-

level activation), is based on the fact that contralateral

alpha desynchronization is observed during motor execution

(Salmelin and Hari, 1994; Salenius et al., 1997; Babiloni et al.,

1999) and imagery (Pfurtscheller and Berghold, 1989; Llanos

et al., 2013), as opposed to an ipsilateral synchronization. For

example, left hand motor imagery is known to attenuate alpha

rhythmic activity in the right cortical motor area, instead of

increasing alpha activity in the left cortical motor area.

The signs of the slopes αh,a are based on the typical 2D

sensorimotor alpha rhythm-based cursor control achieved by

Wolpaw and McFarland (1994), which was originally developed

based on the above neurophysiological findings. In such a

scheme, the hemispheric lateralization of hand motor imagery is

used to control horizontal cursor movement while the bilateral

hand motor imagery or rest controls the cursor up or down,

respectively. In other words, to control the cursor to the right

(vx > 0), the subject would display alpha desynchronization,

or a relative decrease in alpha band power, in the left motor

cortex, and vice versa. Hence, the encoding functions for h =

“left” and h = “right” in the horizontal (a = x) control

appear mirrored. To control the cursor upwards (vy > 0), the

subject should display alpha desynchronization, or a relative

decrease in alpha band power, averaged across both left and right

motor cortices (i.e., both-hand motor imagery). A lack of such

desynchronization (i.e., rest) produces control in the downwards

direction. This control over 2D space is captured by the signs

of αh,a, which is preserved in other configurations. This allows

subjects to input their 2D motor intention into BCIs relatively

naturally by doing hand motor imagery.

Classic vs. centered configurations

In an ideal case, however, subjects would demonstrate

SMR changes that produce orthogonal commands for all four

directions, as it theoretically offers the maximal amount of

differentiability in the encoding between the four directions.

This is embodied by a centered configuration ideal which we

also propose and include in the simulator as a less realistic but

a more ideal case that would raise the BCI system’s performance

ceiling in the simulated environment even higher. By ensuring

that Ah,a varies in both v′a directions for all control axes a by

the same amount, the simulated subject produces orthonormal

control vectors that perfectly span a 2D control space.

A simple numerical example is useful in understanding this

hypothesized effect of encoding configurations on the alpha

power features of the simulated EEG. Given a pure rightwards

movement intention input (v′x = 1, v′y = 0), a classic

encoding maps this intention to have a high Aright,x ≈ 1

and a low Aleft,x ≈ 0, correctly resulting in a rightwards

horizontal movement once the generated EEG is decoded

using Equation (1). Meanwhile, the lack of vertical movement

intention, represented by v′y = 0, is mapped to a value of

approximately 1 for both Aright,y and Aleft,y. Thus overall, the

intention has lowered Aleft while Aright has not changed from

the no-intention state. This introduces an unwanted vertical

component to the decoded velocity (an upwards component

specifically, becauseCy,t0 is now less negative, Equation 1). Thus,

using the classic encoding, we can expect a diagonal bias of the

cursor movement toward the up-right direction, given subject

intention input of pure rightwards movement.

In contrast, using the centered encoding, the same intention

input (v′x = 1, v′y = 0) results in approximately the same

horizontal control signal as the classic encoding, but Aright,y is

about 0.5 lower than Aright,x while Aleft,y is about 0.5 higher

than Aleft,x. Thus the intention decreases Aleft by the same

extent that Aright increases, eliminating the unwanted vertical
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component. Thus, using the centered encoding, we hypothesize

that the subject would be able to control the cursor more

closely to their true intention input, although the model is

now assuming ipsilateral alpha synchronization during motor

imagery in addition to contralateral desynchronization which

may be considered a step down in realism of the resulting EEG.

(However, reports of ipsilateral alpha synchronization observed

during motor imagery do exist, although rarer; Pfurtscheller and

Neuper, 1997). Based on this understanding, we evaluated the

effect of centered and classic encoding models on the resulting

task-specific SMR features (i.e., alpha powers) in the simulated

EEG by conducting three individual runs of 2D target reach, in

which the targets were displayed in random order at cardinal

positions to prompt the subject to move the computer mouse

in each direction in a straight line. To verify the effect of the

classic and centered encoding in the simulated environment, we

visualized the decoded trial-by-trial cursor trajectories from the

2D runs, as well as the effect on three different performance

metrics (Figure 4) designed to evaluate the extent of the diagonal

bias that is implied by the classic encoding and corrected by

the centered encoding. Cursor position covariance for each

run, Cx,y, was utilized to estimate the presence of unwanted

diagonal bias. True vs. decoded velocity angle is the angle

of deviation between the true intended velocity vector and

the decoded velocity vector actually applied to the displayed

cursor. To calculate this, the simulator simply records the

input velocity vector as the true intention and compares its

alignment against the decoded velocity vector at each time

sample of feedback control. Lastly, the trajectory length to

target, which is simply the Euclidean norm of the decoded

velocity summed over all time samples of feedback control, is

a less direct but more practically meaningful measure of how

a diagonal bias would affect BCI performance by elongating

the travel distance and potentially travel time of the cursor

to the target.

Perturbed configuration (subject-fitting of encoding

functions)

Figure 2 also mentions the perturbed configuration, which

is designed to fit the sigmoid functions by analyzing the EEG

recorded in previously conducted target reach experiments.

This is a more ambitious encoding approach that attempts to

fit sigmoid curves that match the subject’s C3 (h = “left”)

and C4 (h = “right”) alpha band powers when presented

with each of the 4-class targets. This allows the simulator’s

encoding of the motor imagery neural activity to be subject-

specific, if the subject undergoes a 1D LR and UD or 2D LRUD

reaching motor imagery experiment as a calibration session.

EEG epochs from feedback control periods of hit trials in

each of the four directions were extracted and pre-processed

(Notch filtered 58–62 Hz, bandpass FIR filtered 2–60 Hz). Alpha

powers from hit trials filtered by each direction and each control

axis were averaged, resulting in 12 mean alpha power values:

µL,µR,µU ,µD,µLR,µUD for h = “left” and “right”. These are

proportional to average amplitudes of alpha bandpass filtered

signals and therefore can serve as factors for αh,a values used

to fit the sigmoids. We do this by assigning v′x = −1 to

µL, v
′
x = 0 to µUD, v

′
x = 1 to µR, v

′
y = −1 to µU ,

v′y = 0 to µLR, and v′y = 1 to µD, making the reasonable

assumption that the EEG during vertical control would contain

no horizontal control intention, and vice versa. µ values were

normalized by dividing the maximum µ within each control

axis, ensuring that 0 ≤ µ ≤ 1. This gave us enough data

points (3 per h, a combination) to fit the αh,a and kh,a of the

sigmoids by nonlinear regression with iterative least squares

estimation. This offline pipeline, which accesses continuous

recorded EEG in the BCI2000 data format and outputs the αh,a

and kh,a values, is implemented as a custom MATLAB script

and is available for use with the simulator, although it is not

yet validated with a large group of subjects with undoubtedly

vastly varying SMR activation patterns during motor imagery.

Nonetheless, to both demonstrate its functionality and to

increase the realism of the EEG generated, we used this

pipeline to generate αh,a and kh,a values from a single high

performing subject’s data from one of our previous studies

(Stieger et al., 2020, 2021a), and this model was used for

running the simulated experiments in the parameter effect

comparison study.

Generation of scalp EEG via forward solution

An overview of the scalp EEG generation pipeline is

shown in Figure 3. OpenMEEG, a forward solver that employs

a symmetric boundary element method (Gramfort et al.,

2010; Kybic et al., 2005), was used to compute a lead field

matrix of the dimensions 32 channels × 15,002 vertices

using the FSAverage anatomy template cortical surface as

the source space (Fischl et al., 1999) and the default

BioSemi 32-channel MRI registration via Brainstorm (Tadel

et al., 2011). 15,002 corresponds to the number of vertices

provided by the low-resolution cortical surface provided by the

FSAverage template which is sufficient for our use. Vertices

located in the left and right hand-knob areas as specified

in Viganò et al. (2019) were then labeled based on the

Brainnetome atlas parcelation (Yu et al., 2011). Specifically,

these were areas A4ul_L, A4ul_R (left and right area 4—upper

limb region), A6cdl_L and A6cdl_R (left and right caudal

dorsolateral area 6).

The source-level background activity was modeled as

a Brownian noise (1/f 2) signal (maximum amplitude 50

µV, so signal-to-noise = 100µV/50µV) assigned to 500

random vertices. This is the standard level of complexity

in modeling background brain processes in other forward

solution-based simulations (Haufe and Ewald, 2016), although

the number of vertices as well as the number of unique

activation signals used could serve as future hyperparameters
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FIGURE 3

Frame-by-frame pipeline of the EEG BCI simulation (shown in black text), in addition to the pre-loaded lead field computation process (shown

in blue text).

to further increase the complexity of the background activity

simulation. However, the lead field projection is a limiting

step of the frame-by-frame pipeline in terms of computation

time, at least in the simulator’s current implementation.

Therefore, the number of vertices used in the forward

solution is limited by the target update rate, which was 30

frames per second on low-end computer systems for the

included experimentation.

The activation signal corresponding to source-level motor

imagery, in general, was modeled as four separately defined

amplitude time series signals. Each signal was generated by

bandpass filtering uniformwhite noise with a Kaiser window FIR

filter with edge frequencies matching the alpha band (5–12 Hz)

with transitions between 3–5 and 12–14 Hz. The filter order was

automatically estimated using empirical formulae described in

Oppenheim et al. (1999). Then, the resulting signal was filtered

with a Tukey window with width = 0.95 times the epoch length

and cosine fraction = 0.8, then its amplitude was normalized

by the Ah,a. This normalization simulates the event-related mu-

rhythm desynchronization or synchronization that is associated

with motor imagery as described in the previous section on

encoding model design.

Results

We found that both encoding models behaved as expected

(Figure 4). The centered configuration lowered the diagonal bias

relative to the classic configuration in all calculated metrics on

average. In all three subjects, the centered configuration had

less negative covariance between horizontal and vertical cursor

positions (p = 0.0355); less angular deviation between true and

decoded cursor velocities (p = 0.00258); and shorter trajectory

length over time (p = 0.00215), all using paired t-tests. The

statistical significance of the trends as well as the visualized

trajectories indicate a clear effect of the encoding model on the

decodable features of the simulated EEG. These results support

our previous assertion that the simulator’s well-defined encoding

models allow for the isolation of decoder and task parameters as

the cause of the effects in performance.

Figures 5A–C shows the performance of the human subjects

in the live and simulated experiments when subject to the

parameter changes described in Table 1 and Section Methods.

We found that maximum cursor velocity was a significant linear

predictor of PTC in both live (p = 0.0496) and simulated

(p = 0.000109) conditions and average decision time (both live
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FIGURE 4

The e�ect of classic and centered neural activity encoding models on the decoded cursor trajectories in a 2D left/right/up/down discrete target

reach task, as well as on various performance metrics on a trial-by-trial basis. Four-class targets were located in each cardinal position as a bar

with a thickness of 0.0625 normalized task space units.

and simulated p < 0.0001). In the other trends, no statistically

significant effects of NT and BW on performance were observed

for either the live or simulated experiments (live PTC vs. BW:

p = 0.396, all others: p > 0.5). The statistical significance is

visualized in Figures 5A–C by the linear fit terms (i.e., regression

coefficients) with their 95% confidence interval. The trend in

each parameter-environment pair is significant if the confidence

interval of its linear fit term crosses the zero line.

Figure 5D shows the average time spent on the live and

simulated experiments, per phase of the experiment. We

can make this comparison because the live and simulated

experiments were run in parallel on the same subjects with the

identical trial structure and length. Despite using a dry electrode

system which is typically considered a fast and convenient

option available for live EEG BCI experiments, the BCI

simulator only took about 55% of the time the live experiments

took to obtain the same amount of data used to conduct the

same statistical analysis and to arrive at the same conclusions.

The reduction in time-to-data would undoubtedly be greater in

comparison to wet electrode systems. The reduction in time-

to-data comes from all phases of the experiment but is most

obvious in the set-up and capping phases, which are completely

unnecessary in the case of the simulator. The simulator does

require set-up in the sense of initialization of system parameters,

but the same can be said for the experiment software involved in

running the live experiments and was therefore excluded from

this comparison.

Discussion

The present study had three major goals: (1) to develop a

motor imagery EEG BCI simulator, which is novel in closed-

loop BCI simulation and can serve as an adoptable and readily
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FIGURE 5

(A–C) The e�ect of CV (A), NT (B), and BW (C) on performance metrics as defined in Methods. (D) Time-to-data curves for the live and

simulated experiments, with mean value in minutes over 10 subject sessions shown on the right. Set-up only includes necessary sanitization of

the experimental venue and electrode cap, and the launching of essential experiment softwares: BCI2000 (for recording the EEG, and timing and

visualizing the experiment) and g.RECORDER (for signal transmission checks and application of hardware settings such as voltage sensitivity and

online noise removal). Capping includes the actual electrode capping process as well as the conduction of signal transmission checks to ensure

that the EEG was being acquired and processed appropriately. Each point in the experimentation represents the end of each run, including time

spent on subject-requested breaks, equipment troubleshooting, and/or providing additional instructions to the subject as necessary.

extendable framework for future simulated EEG experiments;

(2) to demonstrate the proposed simulator’s ability to conduct

pseudo-online BCI experiments to replace or supplement offline

and online experimentation in the future, and the merits in

doing so, and; (3) to do such validation by testing parameters

of practical interest to motor imagery BCI studies.

We achieved the first objective by ensuring that each step

of our simulation pipeline was congruent with well-established

standards in offline EEG simulation that increase the realism

of the EEG generated and the adoptability of the resulting

method. For example, we use a symmetric boundary element

method with a realistic anatomical human head model template,

as well as the option to input custom head models. In the

forward solution, one dipole is assigned to each vertex with

its orientation perpendicular to the cortical surface, which is a

standard in many lead field calculation processes. Furthermore,

our approach is open to customized source locations, activation

signals, and orientations, effectively allowing vastly different

kinds of EEG to be generated in real-time for different

purposes—although new encoding models would need to be

developed for paradigms beyond 2D motor imagery. We

also proposed various encoding model configurations to close

the loop between motor intention and EEG, a feature not

available in offline simulations. These were developed based

on reasonable assumptions grounded in known motor imagery

neurophysiology (see Section Methods).

We achieved the second objective by running a parallel study

involving live and simulated experiments with as many factors

(subjects, task, decoder) kept constant as possible. By doing

so, we showed that the simulator led to the same hypothesis

testing results on the effects of the parameters as the live

experiments did. We also showed that the simulator spent

much less time than the live experiments to collect the same

amount of data used to reach the conclusions, demonstrating

the simulator as a rapid prototyping test-bed for BCI systems.

More qualitative advantages of the simulator that we have
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demonstrated include the abilities to: conduct experiments

remotely and without dedicated EEG equipment; record ground

truth intention over time, which allowed us to evaluate metrics

such as true vs. decoded velocity angle deviation which may

be of interest in BCI behavioral studies; test BCI system

components in controlled environments with customizable

levels of session and subject variability (by changing the

encoding function parameters) as well as signal-to-noise

conditions (by adjusting the maximum amplitudes of source-

level task-related vs. background activation signals). All of these

advantages overcome some innate challenges experienced by live

BCI experimentation, and it is our hope that the simulation

framework provided by our study encourages more active

efforts by researchers to evaluate and improve their decoding

algorithms and tasks in online and pseudo-online environments.

Lastly, in fulfilling our third objective, we found

interesting results regarding the tested parameters that

warrant further investigation.

Maximum cursor velocity

We had originally hypothesized that the effect of maximum

cursor velocity on PTC would vary between subjects depending

on average subject performance. This was due to vastly different

levels of SMR control consistency observed between subjects

(that depend on their BCI training and experience, as well

as their mental state). We hypothesized that subjects with

highly consistent SMR control and therefore higher average

performance would display linearly increasing performance

with increasing maximum cursor velocity, while subjects who

had poor consistency in their SMR activity and therefore

control of the cursor would display an inverse U-shaped trend

of performance against maximum cursor velocity, due to the

higher number of wrong-target hits (usually called “misses,”

but such trials were included in our analysis as markers

of poor performance, see Sections Methods and Results) by

uncontrollably fast moving cursors. The idea would be that

increasing the maximum cursor velocity (and by extension

the frequency of decisions) would decrease the accuracy for

such subjects who are unable to exhibit sustained intention,

before reaching a critical point where only the initial correct

intention is captured. Such a U-shaped trend would also have

been consistent with studies that attempted to optimize cursor

velocity, i.e., gain (although different from maximum cursor

velocity in this study) in 1D motor imagery cursor control

(McFarland and Wolpaw, 2003; Willett et al., 2019).

Instead, we found that increasing the maximum cursor

velocity increased PTC regardless of the subject’s average PTC.

While this result may appear contradictory to our hypothesis,

they are certainly not irreconcilable. We suspect that there is

a separate confounding factor at play that is highly related to

(but perhaps not linearly correlated with) maximum cursor

velocity. We suggest two possibilities for this: the subject’s level

of cognitive engagement in the task, and the dynamics of cursor

position error. The former refers to the idea that if a cursor

is able to move at higher speeds, the task engages the subject

to pay more attention to the task due to the fact that there

is now less time to correct for errors if the cursor moves off

in the wrong direction. In this case, it is also easy to see why

it might be related to maximum cursor velocity rather than a

constant gain on cursor velocity - the unknown increases in the

speed at which the cursor can potentially move may, on average,

increase the task difficulty and boost the subject’s engagement.

Alternatively, the engagement level may have increased because

trials now take a shorter period of time on average, as

supported by our results. The latter refers to the possibility

that higher cursor speeds may have increased performance by

reducing the temporal delay between the subject’s true intended

cursor position/trajectory (as visualized in the subject’s mental

space or internal coordinates, etc.) and the updated cursor

position/trajectory on the screen provided as visual feedback.

Indeed, in control theory, delays are regarded as a major cause

of instabilities and suboptimal limits in control performance,

and they are usually compensated for by complicated controllers

that estimate delay elements (Mirkin and Palmor, 2005; Brown

and Coombs, 2008). While our brain can undoubtedly learn to

correct for such visual input delays in much more sophisticated

ways than man-made controllers, a need for it to do so would

worsen average BCI control performance and training times.

Therefore, it would be helpful for BCIs if some optimization on

the maximum cursor velocity could, to some extent, eliminate

the delay element that enters the closed-loop system in the

first place.

Furthermore, Willett et al. (2016) showed quantitatively that

increasing cursor velocities prompted subjects to successfully

modulate their own control signals to be shorter, supporting our

results. Combining these findings and also our previous study

(Shin et al., 2021), our results suggest that relaxing maximum

cursor velocities in general could improve performance and

control efficiency for continuous cursor control tasks.

Z-score normalization bin width

We had hypothesized that increasing Z-score normalization

bin width would have a positive effect on performance: a longer

bin width would leave a longer time history of raw control

signals to act as a statistical buffer for the incoming raw control

signal to be normalized against, thereby increasing the quality

of baseline SMR pattern estimation, and by extension, control

signal estimation. Similarly, we had hypothesized a similar

statistical robustness effect of the number of trials for control

coefficient calculation.

However, we found no significant difference in performance

between the values tested for both of these parameters in both
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the live and simulated environments. A possibility is that shorter

bin widths benefited performance by increasing the recency

of baseline SMR pattern estimation, to an extent sufficient to

even out with the hypothesized gain in performance. Indeed,

from a practical perspective, recording artifacts such as sudden

movements and eye blink artifacts, when not appropriately

corrected for online, may enter the normalization buffers as

large spikes in amplitudes: shorter bin widths and number

of normalization trials may have worked to ensure that such

information that is harmful to the control signal statistics is

flushed out relatively quickly before affecting online control for

extended periods of time. If this is indeed the case, it would be

an interesting future study to implement sophisticated online

artifact removal algorithms (Kobler et al., 2020), which are

actively being developed in recent years, and seeing if the effect

of these two parameters is changed. An alternate explanation

could be that the dynamics of this task were stable across the

shortest buffer width, and therefore it had no significant effect

on task performance.

Study limitations and future work

The limitations of this work can be divided into that of the

simulator, and that of the experiments conducted. As for the

proposed simulator, there are clear areas for improvement. One

is regarding the realism of the EEG generated. By using well-

defined encoding models, we have ensured that the generated

EEG varies continuously according to continuous intention

input, closing the feedback loop that is neglected in offline

analyses. While this allows valid closed-loop experiments to be

conducted with the simulator in the implemented experimental

paradigms (1D and 2D motor imagery cursor control with

alpha power estimation), the EEG generated cannot be regarded

to be equivalent to real EEG in general, and it cannot be

expected to work with paradigms outside this family of task-

decoder combinations. Despite this, the simulation of EEG

under other paradigms may be achieved by extending the

current simulator. The proposed approach, much like other

available ground-up EEG simulations, requires users to design a

parameterization method of EEG and a neural activity encoding

model that fits their purpose of use. The alternative would be

the use of endpoint-focused approaches to EEG simulation, such

as generational adversarial networks (GANs) and variational

autoencoders (VAEs) (Zhang and Liu, 2018; Aznan et al., 2019;

Bao et al., 2021; Fahimi et al., 2021; Kunanbayev et al., 2021; Ko

et al., 2022) and waveform decomposition and reconstruction-

with-noise techniques (Yeung et al., 2004; Lotte, 2011; Bridwell

et al., 2016; Dinarès-Ferran et al., 2018). Such approaches pay

less attention to ensuring that the generative model is consistent

with our understanding of the origin of the EEG and its

features, or the neurophysiology of BCI control, in exchange for

highly realistic EEG. Among these, VAE-based approaches may

be especially well-positioned to overcome the aforementioned

limitation of multi-class EEG generation by establishing a

continuous parameterization subspace from training epochs of

EEG. However, the parameterization only seeks to capture the

statistics of real training data, and thus lies outside the task space.

Instead, in the future, it may be possible to implement a closed-

loop decoder-encoder framework such that a training epoch of

EEG is decoded into continuous parameter(s) that represent

intention variable(s) in the task space, which is then fed into the

encoder of a generative model to generate continuously varying

EEG. Alternatively, a dynamical systems perspective on motor

control (Shenoy et al., 2013) may provide hints for a simulation

method that does not rely on encoding models to parameterize

intention. In this case, the challenge would be implementing

a time-varying generative model that work toward implicit

intention “output(s)” based on past perturbations to the system,

and ensuring its function in a closed-loop environment.

While human experimentation should definitely remain as

the ultimate environment for drawing scientific conclusions

(especially those relating to BCI-relevant neurophysiology) and

holistically validating BCI systems, closed-loop simulation is

an interesting framework that has been demonstrated by us

and others to be able to serve as a controlled environment

for rapid testing of large arrays of parameters as well as initial

evaluations of decoder and task designs with feedback control.

In addition, as explained previously, our closed-loop simulation

offers merits such as the availability of continuous true intention

recording, ability to assess a decoding algorithm’s performance

ceilings (if noise conditions in the simulation settings are

minimized), as well as increased accessibility for both subjects

and experimenters to online EEG experiments. However, this

study did not specifically aim to exploit or demonstrate these

advantages, as our priority was to assess the experimental

functionality of the simulator at a basic level. Future studies

should perhaps do so. In particular, the simulator is particularly

well-positioned to answer some important behavioral questions

in the motor imagery BCI context, such as investigating

how subjects behave in various virtual environments

with different object interactions, rules, target, and

cursor sizes.

Another notable feature of the simulator that was not

rigorously examined in this study is the ability to quantitatively

control noise conditions or neural activity perturbation. As

mentioned in Section Methods, the simulator is equipped with

tools to control the signal-to-noise ratio (SNR) at the source

level, and perturb the neural encoding model manually or by

fitting to a subject’s previously recorded EEG data. The signal-

to-noise ratio parameter in particular could, in the future,

undergo optimization to result in cursor control behavior closest

to the live experiments. This could be challenging due to the

difficulty in defining the true or observed SNR from live EEG

data to serve as a standard. For example, we could reasonably

estimate live SNR in our case to be the alpha power in C3/C4
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divided by the average non-alpha power in all non-C3/non-C4

channels. However, a value resulting from such a definition

would not be directly comparable to the SNR parameter in

the simulator as it is defined currently, although we may

argue that they are at least comparable in scale. A low SNR

configured for the simulator artificially lowered the performance

in the simulated experiments, as observed by the lower PTC

and longer decision time on average compared to live under

several experimental conditions. In the simulator, other types of

perturbations can also be modeled in the given framework e.g.

display latency. Future studies could use such approaches to test

subject behavior and/or decoder performance when subject to

such conditions designed to model real-life challenges to stable

BCI system usage.

As for the study, a limitation was that the calibration trial

did not provide enough time for the normalization bin to fill up

initially, possibly leading to a diluted effect of the BW parameter

on the performance metrics which were evaluated across all

trials. While this short calibration protocol was chosen to be

in line with literature using the autoregressive power spectral

density estimation (Edelman et al., 2019; Meng et al., 2022)

which build the normalization bin during online control, it did

restrict the number of trials in which the BW had statistical

influence. A future study could perhaps be designed to confirm

the effects of BW on motor imagery BCI with a larger subject

and trial pool.

Conclusion

In summary, we have developed a motor imagery EEG

BCI simulator that provides a framework for closed-loop

motor imagery EEG generation. Inspired by a variety of

forward solution-based offline EEG simulators, online neural

activity simulation studies, and motor imagery studies, our

framework contributes toward promoting the online testing

of motor imagery BCIs and noninvasive BCI systems. We

demonstrated the usage of our simulator in gaining insights into

the effect of several important decoder and task parameters,

including the limit on cursor velocity as a parameter, which

we found to significantly affect performance. We believe that

the adoption and improvement of such software, including

ours, will lower the barrier to online experimentation and

ultimately accelerate the development of noninvasive BCI

decoders, tasks and systems that are closer to real world

applications.
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