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Purpose of review

To describe the current status of testing Schwann cell transplantation as a therapy for human spinal cord
injury (SCI).

Recent findings

Transplanted Schwann cells have reparative effects in the damaged spinal cord. A few clinical studies have
reported that Schwann cell transplantation appears safe. Compared with allogeneic cell transplants,
autologous cells do not require immune suppression, but the workload of cell manufacturing is greater.
Preclinical Schwann cell transplant studies conducted at the University of Miami in 2009–2012 supported an
investigational new drug approved by the Food and Drug Administration. A Phase 1 safety study has been
initiated.

Summary

Spinal cord repair after severe SCI requires that axonal regeneration and myelination occur in a context of
reduced inhibition, enhanced plasticity, and new circuit formation. Evolving clinical experience with
Schwann cell transplantation may provide a basis upon which additionally combined therapeutics can
be tested to increase the extent of repair after SCI. Safety is the primary consideration when ex-vivo
manipulated cells are introduced into the damaged nervous system. Preclinical studies across several
species have not indicated safety concerns regarding Schwann cells. Initial clinical reports from studies in
Iran and China are suggestive of clinical safety, although more rigorous characterization of the implanted
cells is needed.
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INTRODUCTION

Schwann cell transplantation for spinal cord
injury (SCI) is at an early stage of clinical testing
following preclinical development. Food and Drug
Administration (FDA) approval of an investigational
new drug application (IND) to undertake a Phase 1
safety and feasibility study in patients after subacute
SCI was based on the following milestones: detailed
characterization of manufactured human Schwann
cell batches, pivotal preclinical safety studies,
development of clinical cell injection methodology,
and adequate outcome assessment methods to
make a valid appraisal of feasibility and safety.
Schwann cells are being tested for repair in the
central nervous system (CNS) because they support
axonal regeneration in the peripheral nervous
system (PNS). Following nerve injury, Schwann
cells dedifferentiate [1

&

,2], secrete growth-promot-
ing trophic molecules and axon growth-promoting
iams & Wilkins. Unautho
extracellular matrix such as laminin, which support
axonal growth cone elongation. Regenerated axons
are then myelinated, restoring rapid action potential
conduction and function. The biology of peripheral
nerve regeneration across many species, including
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KEY POINTS

� Clinical experience with Schwann cell transplantation is
at the safety assessment and dose-escalation phase of
clinical development.

� Reliable preparation and characterization of human
autologous Schwann cell cultures appears to be
feasible.

� Preclinical studies have not revealed major safety
concerns.

� Large animal models such as minipigs are very useful
for safety studies in spinal cord cell transplantation.

� Development of biomarkers of cell activity after
transplantation is important to evaluate cell survival,
engraftment, and function after transplantation.

Autologous Schwann cell transplantation Guest et al.
man, is similar and has been studied for more than a
century [3]. Experimental studies have tested whether
Schwann cells would allow normally nonregenerative
damaged CNS axons to regenerate within the trau-
matically injured spinal cord and myelinate damaged
axons [4]. Autologous transplantation of Schwann
cells should not require immune suppression and
eliminates the risk of transmission of undetected
allograft donor abnormalities.

Few clinical trials have yet reported on the
effects of transplanted Schwann cells in SCI or other
potential applications such as nerve repair (Table 1
[5–7]). Investigators in Iran reported two studies: the
first with four patients with chronic thoracic SCI
transplanted with autologous Schwann cells [5]
followed for 1 year and a second report of 33 patients
with 2-year follow-up [6]. They described a method to
cultivate human Schwann cells using initial serum
starvation followed by exposure to autologous serum
without growth factors [8], arguing that this tech-
nique may be safer than the use of artificial mitogens.
A Chinese study enrolled six patients with chronic
SCI and reported their results after following the
patients for 5 years. In that study, the sural nerve
was predegenerated by cutting it within the body a
week before removing it for cell culture [7]. This step
may accelerate the rate of cell division in culture.
These clinical studies found a low incidence of
adverse events that could be linked to the transplants.
Although the studies were not conducted under
rigorous FDA oversight, the lack of reported serious
adverse events in the patients is reassuring. Clinical-
trials.gov lists only one current study testing Schwann
cell transplantation, NCT01739023, a Phase 1 clinical
study of the ‘Safety and Tolerability of Autologous
Human Schwann Cells (ahSCs) in Subjects With
Subacute SCI’ with which the authors are associated.
Copyright © Lippincott Williams & Wilkins. Unau
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SCHWANN CELLS AND PERIPHERAL
NERVE REPAIR
Spontaneous recovery after nerve injuries, although
imperfect, provides the core rationale to test Schwann
cells in the CNS. Even when nerves are completely
transected, the careful interposition of nerve graft
segments derived from noncritical nerves can sup-
port axonal regeneration, leading to the recovery of
muscle function and sensation[9–12]. In these
clinical grafting procedures, the donor nerve grafts
often do not match the size of the injured nerve
stumpsand therehas been interest in using fabricated
tubes with diameters similar to the injured nerve
stumps, filled with cultured Schwann cells, to span
the injured nerve gap. Animal experiments have
demonstrated the feasibility of this approach
[13,14] using human Schwann cells. The success
and reproducibility of these experiments in nerves
led to successful testing of tubing biomaterials and
Schwann cells within the spinal cord [15,16] in com-
plete transection models.
PERIPHERAL NERVE GRAFTS VERSUS
SCHWANN CELL TRANSPLANTATION FOR
CENTRAL NERVOUS SYSTEM REPAIR

Several investigators studied whether peripheral
nerve grafts (PNGs) transplanted into continuity
with spinal cord or brain tissues [17] could
support CNS axonal growth. Regeneration into
nerve grafts [18] confirmed the ability of some
classes of damaged CNS axons to regenerate if the
tissue environment is permissive. Grafts depleted
of Schwann cells by freezing did not support
CNS axonal growth, establishing that viable
Schwann cells were essential [19]. The suitability
of PNGs for transplantation into damaged regions
of nontransected spinal cord is limited by their
structure and the need to manipulate injured
spinal cord tissue to create a suitable interface with
the nerve grafts. Suspensions of Schwann cells
cultured from peripheral nerve biopsies can be
delivered with less surgical spinal tissue mani-
pulation and have several other advantages over
the use of PNGs: Schwann cells can be highly
characterized for phenotypic markers, purified to
remove fibroblasts, and expanded exponentially to
provide the large cell numbers that are necessary
for adequate engraftment in spinal cord injuries.
Transplanted Schwann cells can fill the injury
region, migrate and insinuate to the unique dimen-
sions of each injury, and form bridging tissue.
Advances in tissue culture were necessary to permit
the reliable derivation of human Schwann cell
cultures from donor nerves [20–22]. The sural nerve
is the most commonly harvested nerve from which
thorized reproduction of this article is prohibited.
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Table 1. Reported clinical trials of Schwann cell transplantation for SCI

Characteristics Saberi et al. [5,6] Zhou et al. [7]

Age, number of patients 23–50, n¼33 7–44, n¼6

Injury level T6–T9 C5–T12

Injury severity ASIA A–C ASIA A–C

Time after injury Average 4.1 years 1–20 Months

Surgical decompression
at the time of transplantation

No Yes

Cell purification ‘Starvation’ method Differential adhesion

Dose 300 ml (3–4.5 million cells) 200 ml (5 million cells)

Cell delivery 5–6 injections per side, within,
rostral and caudal to the injury site

6–7 injections per side adjacent
to injury site

Posttransplant rehabilitation Not stated Yes, duration not specified

Adverse effects One transient neurological worsening,
one wound breakdown and one
infected cell culture

None

Follow-up period 2 years 5–7 years

Neurological change Improved light touch sensory scores,
minimal improvement in pin-prick
sensation and motor scores. Improved
bladder sensation and control of
urination in some patients.

Recovery in all patients in motor,
sensory and autonomic measures.

Functional change Nonsignificant increase in FIM scores Improvement in FIM scores

MRI No concerning changes from preop to follow-up
were detected

No concerning changes from preop to
follow-up were detected

FIM, functional independence measure; SCI, spinal cord injury.

Cellular transplantation
human Schwann cells are derived because of
its superficial location, adequate length, and the
modest consequences of removing it [23].
HOW SCHWANN CELL
TRANSPLANTATION DIFFERS FROM THE
ENDOGENOUS SCHWANN CELL
RESPONSE AFTER INJURY?

Normally, the spinal cord is segregated from
the associated peripheral tissues such as the nerve
roots and pia mater by the glial limiting membrane
(GLM), formed by astrocyte foot-processes and
extracellular matrix at the brain and spinal cord
surface. Schwann cells are present at the dorsal root
entry and ventral root exit spinal cord interfaces
where nerve roots join the spinal cord, but they are
not found within the parenchyma because of the
specialized GLM in these areas [24,25]. Following
various injuries including SCI, the GLM is transi-
ently disrupted and Schwann cells spontaneously
enter the spinal cord [26]. In people, this leads to
the formation of neuromatous structures within the
injury site called ‘Schwannosis’ [27,28]. On the basis
of the current information, it does not appear that
Schwannosis has a significant role in the repair
of damaged central axons. Schwannosis differs
opyright © Lippincott Williams & Wilkins. Unautho
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from Schwann cell neoplasms such as Schwannoma
because of the presence of normally formed myelin
and axons [29] in the former and their absence in the
latter. Transplanted Schwann cells may be placed
into the spinal cord at a specific location and time
point after injury distinct from the endogenous
Schwann cell response. The fact that no adverse effect
has been attributed to naturally occurring Schwan-
nosis is an important argument for the inherent
safety of Schwann cell transplantation.
PRECLINICAL DATA SUPPORTING
SCHWANN CELL TRANSPLANTATION IN
HUMANS WITH SPINAL CORD INJURY

A PubMed search of animal experimental studies was
performed using Endnote X5 with the search terms,
‘Schwann’, and ‘spinal cord injury’ in the abstract
fields. The references positive for these two search
terms (413) were screened for those in which
Schwann cells were directly implanted into the spinal
cord regardless of the injury model. Review articles
were excluded. This reduced the total number of
citations to 72. Of these studies, 16 tested transplan-
tation of genetically unmodified Schwann cells in the
most relevant injury model (contusion) as one arm in
the study. To summarize the observations from these
rized reproduction of this article is prohibited.
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16 studies, it was consistently found that some pro-
portion of Schwann cells engrafted and supported
axonal sprouting and myelination. None of the prior
studies was performed in compliance with Good
Laboratory Practice (GLP), the standard expected
by the United States. FDA [30

&&

,31] and none
used Schwann cells that were prepared to current
Good Manufacturing Process (cGMP) standards.
Therefore, the prior published studies were not suit-
able as pivotal studies to support an IND application.

The authors and their colleagues at the Miami
Project to Cure Paralysis conducted detailed toxicity
studies that were designed to support an IND
application to conduct a safety study of autologous
Schwann cell transplantation in subacute SCI.
The IND was submitted to the FDA in September
2011 and approved in July 2012. Three animal
models were used: rodents, minipigs, and primates.
The rodent studies were designed for robust
statistical analysis of cell survival and engraftment,
whereas those in the larger animals addressed
the issues related to the transplant methodology
and used autologous cell preparations. Together,
these studies demonstrated long-term cell survival
and the absence of abnormal cellular formations
throughout the brain and spinal cord.
RESEARCH DESIGNS IN CELL THERAPY
CLINICAL TRIALS

Despite extensive preclinical research, the effects of a
therapeutic in humans with the target disease cannot
be fully predicted until rigorous clinical testing
occurs with adequate long-term follow-up. Control
groups are problematic in cell therapy trials because it
is unrealistic to place research individuals at the risk
of surgical exposure, anesthesia, and postsurgical
recovery in order to perform a noncellular control
injection. Another approach could be to randomize
individuals to two or more treatment groups, such as
two different cell types, or the combination of cell
therapy plus another biological therapy versus cell
therapy alone. In these situations, similar risks and
the existence of equipoise could justify such research
designs. However, most cell therapies for SCI are at
the Phase 1 safety study stage of development, and it
would be complex from a regulatory and informed
consent point-of-view to perform these comparisons
until clinical data regarding the individual therapies
are available. Thus, if control groups in early studies
are used, they are generally prospectively matched
individuals assigned to the best standard care [32

&&

].
Relevant data registries can provide important com-
parator information for the incidence of adverse
events [33

&&

] and anticipated neurological outcomes
[34].
Copyright © Lippincott Williams & Wilkins. Unau
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The first cell therapy for SCI conducted under
an FDA approved IND that has been reported is
the Proneuron study [32

&&

]. This Phase 2 study of
autologous activated macrophage transplantation
was terminated prior to full enrollment for financial
reasons, as was the subsequent FDA approved Phase 1
Geron study of embryonic stem cell transplantation
[35–38], indicating the difficulty of maintaining
financial support of cell therapy trials in neurological
diseases. Another FDA approved cell therapy study
that has published safety data is the Neuralstem
amyotrophic lateral sclerosis (ALS) study, in which
neural stem cells are implanted [39

&&

,40] into the
spinal cord of patients with advanced ALS to slow
the disease progression. Cell therapies for SCI are
particularly expensive because of the use of surgery
and anesthesia, the need for in-hospital acute care
and rehabilitation, advanced imaging, cell manufac-
turing costs, and extensive follow-up.
CLINICAL ISSUES

In the next section, we address the issues that
have been most important to the initiation of our
clinical study.
Summary of enrollment criteria for our
Phase 1 safety study

The Miami Project study selects for those patients
with the least risk to be harmed neurologically
by the cell transplantation. Thus, patients with
thoracic SCI with neurologically complete injuries
are enrolled because their prospect for natural
recovery is minimal [34]. Injuries at the thoracic
spinal cord level were selected because loss of func-
tion in nearby spinal segments as a complication
would be less harmful than in the cervical spinal
cord. Important exclusion criteria include the
inability to adequately image the SCI and implan-
tation site using MRI. The configuration of spinal
fixation instrumentation [41] may generate MRI
artifacts obscuring the injury and transplant site
precluding critical safety evaluations to assess for
the formation of an intraspinal mass. Another
important consideration in this study is to deter-
mine that transplanted Schwann cells do not exacer-
bate harmful neuroplasticity. After SCI, neuropathic
pain is common [42,43], and cell transplantation
could theoretically exacerbate this problem [44].
Thus, patients who develop severe neuropathic pain
are excluded from transplantation.
Cell manufacturing

Each autologous cell culture is unique. This
poses a challenge to generate cell products that
thorized reproduction of this article is prohibited.
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Table 2. Advantages and disadvantages of autologous and allogeneic cell transplants for transplantation in
spinal cord injury

Issue Autologous Allogeneic

Cost Per batch costs are high as single
preparation for one patient

Development and batch validation costs are high,
but per vial costs are relatively low

Availability Limited by the success of autologous
cell culture

Cryopreserved stocks

Risk of host immune
rejection

Considered to be minimal Substantial, immune suppression required

Biomarkers of survival and
function

None Evidence of host cellular or antibody
immune response to allograft

Expansion of cell culture Limited by senescence at
>passage 5–6

Allogenic ’stem’ cells can be expanded for
a greater number of passages

Cellular transplantation
are sufficiently similar, so that their effects after
transplantation may be compared. It is expected
that individual variations in genotype, anatomy,
and life history mean that each donor nerve
is different (Table 2 [5–7]). Even when carefully
replicated procedures such as nerve dissection,
seeding onto laminin-coated surfaces, and exposure
to media components and growth factors are
identical, the growth kinetics of the culture and
its cellular composition may vary to some extent.
In some patients, it may not be possible to obtain
adequate cultures for transplantation and this must
be explained during informed consent. Further-
more, assessment of the number of failed cultures
compared with successful cultures is an important
aspect of the determination of the feasibility of the
opyright © Lippincott Williams & Wilkins. Unautho
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autologous transplant program. The Schwann cell
manufacturing capacity is exponential, such that
millions of cells can be generated from a modest
segment of donor nerve. Although Schwann cells
undergo dedifferentiation in cell culture and
may exhibit considerable plasticity [45], there
is no current evidence that cell culture leads to
cellular changes that impair their ability to function
as myelinating and regeneration-promoting cells
after implantation into the injured spinal cord
(unpublished data, IND 14856; Fig. 1).
Injection methodology

Cells are implanted into the damaged spinal cord
by direct injection. There are several variables to
rized reproduction of this article is prohibited.

tologous SCs transplanted into the site of thoracic contusive
A in support of the clinical trial NCT01739023 (IND
virus to express green fluorescent protein (GFP), allowing
plant occupying the injury site, bar¼5000 mm. (b)
ial fibrillary acidic protein (GFAP) at 7 days after
ofilament (NF) by aSCs. (d and e) Identification of the
splantation. SCs, Schwann cells; SCI, spinal cord injury.
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Table 3. Clinical outcome measures in NCT01739023, a Phase 1 clinical study of the safety and tolerability of
autologous human Schwann cells (ahSCs) in patients with subacute SCI

Measures of neurological function INSCSCI assessment of neurological level and severity

Autonomic testing

Bowel and bladder datasets

Evoked potential testing

Measures of disability SCIM III

FIM

SF-12

Patient global impression of change

Pain assessments NPSI, pain drawing, LANSS pain scale, ISCI basic pain dataset

Spasticity Modified Ashworth

Neuroimaging Contrast-enhanced MRI

Intraoperative ultrasound

Autologous Schwann cell transplantation Guest et al.
consider in the development of a safe injection
method. Transplant injections have the potential
to create damage to preserved spinal tissue in several
ways and associated injury must be minimized.
The most damaging injections are those of large
volumes, delivered rapidly, with poor control over
motion of the needle and tissue interface [46]. In the
clinical environment, it is important to consider
all contingencies that might add risk during
the cellular transplantation because unpredictable
events such as, for example, electrical power failure
or anesthetic emergencies, including cardiopulmo-
nary instability, although uncommon, do occur.
Therefore, the ability to terminate the injection
and exit the spinal cord rapidly is necessary. A rigid
needle within spinal cord tissue can cause serious
injury if there is loss of control of the position of
the needle because of operator error, injection
device dysfunction, or inadvertent patient motion.
Currently, there are three main approaches to make
spinal cord injections: free hand needle injections,
fixed platform injections, and floating cannula
injections [47,48]. Each method has specific merits
and limitations. We currently use a fixed platform
injection apparatus.
Dose of cells

Selecting the optimal clinical cell dose is a challeng-
ing task because of the complex effects of cells
compared to more conventional drugs. For example,
after most cell injections, some cells will die and
engender some degree of inflammation. Thus,
both beneficial and harmful events may occur
simultaneously after transplantation. The best cell
dose is a function of the final result in the tissue and
may not be based solely on a single tissue effect.
Copyright © Lippincott Williams & Wilkins. Unau
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There is a limited ability to monitor toxico-
logical endpoints in SCI patients receiving cell
transplants other than worsening of the neuro-
logical injury density or level. Complications of
SCI such as neuropathic pain and spasticity
occur to some extent in most patients and linking
these endpoints to the cell dose may be difficult.
The formation of abnormal tissue or tumors may
occur independent of the cell dose. In our IND
development, we have focused on learning the
maximum tolerated dose that can be delivered to
the spinal cord in animals and not cause additional
injury that is evident by clinical examination,
neurophysiology, postinjection MRI, or histology.
We found that the minipig SCI model was very
useful for dose tolerance studies because of its
human-like neural axis dimensions. On the basis
of large animal testing, we determined a well
tolerated dose at which to initiate the study and
successive larger doses that may exert a superior
therapeutic effect.
Outcome measures

In our current study, the most important outcomes
are the feasibility of the autologous transplant
strategy and the safety of the procedures and cellular
implant. Impairment of residual neurological func-
tion could occur as a result of the surgical implan-
tation procedure or because of the biological effect
of the cell transplant. In patients with complete
thoracic SCI, such changes are measured using
sensory testing, with the neurological level as the
endpoint. This level is defined as the last at which
sensory perception is normal on both sides. The
outcome measures we are utilizing are listed in
Table 3 [5–7].
thorized reproduction of this article is prohibited.
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Cellular transplantation
The need for surrogate markers of cell
survival, engraftment, and effect

It is desirable to have clinical tests that allow the
effect of cell implantation to be followed longitudi-
nally, especially to determine cell survival and
biological activity. This is important because a clear
impact on neurological recovery may not occur with
cell grafts alone and will likely require future com-
bination therapies. The paucity of surrogate markers
is not unique to Schwann cell transplantation, but is
a general problem facing the CNS cell therapy field.
The doses of transplanted cells are relatively small
compared with the overall cell death that occurs
after SCI, potentially masking the ability to detect
Schwann-cell-specific markers of cell death and
survival. For Schwann cells, the issue is further
complicated because of the fact that endogenous
Schwann cells enter the regions of SCI and may have
similar biological activity. Because allografts require
immune suppressive drugs to avoid cellular rejec-
tion, formation of antiallograft antibodies is a useful
biomarker that is not available for autografts to
determine a definite host response. It is likely that
progress in this area will require the development
of well tolerated molecular markers that the trans-
planted cells can uniquely express and which do not
impair their biological activity in the long term.
CONCLUSION

Autologous Schwann cell transplantation is a
reasonable treatment approach to the repair of
spinal cord injuries based on the role of Schwann
cells in peripheral nerve repair, the endogenous
Schwann cell’s response to spinal cord injury, and
the feasibility of preparing and delivering the cells.
More clinical experience is required to determine
the safety and efficacy. It is probable that future
studies will combine Schwann cell transplantation
with additional therapies to amplify the reparative
effects.
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