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Abstract: The upper respiratory tract (URT) microbiome can contribute to the acquisition and
severity of respiratory viral infections. The described associations between URT microbiota and
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited at microbiota
genus level and by the lack of functional interpretation. Our study, therefore, characterized the
URT bacterial microbiome at species level and their encoded pathways in patients with COVID-
19 and correlated these to clinical outcomes. Whole metagenome sequencing was performed on
nasopharyngeal samples from hospitalized patients with critical COVID-19 (n = 37) and SARS-CoV-
2-negative individuals (n = 20). Decreased bacterial diversity, a reduction in commensal bacteria,
and high abundance of pathogenic bacteria were observed in patients compared to negative controls.
Several bacterial species and metabolic pathways were associated with better respiratory status and
lower inflammation. Strong correlations were found between species biomarkers and metabolic
pathways associated with better clinical outcome, especially Moraxella lincolnii and pathways of
vitamin K2 biosynthesis. Our study demonstrates correlations between the URT microbiome and
COVID-19 patient outcomes; further studies are warranted to validate these findings and to explore
the causal roles of the identified microbiome biomarkers in COVID-19 pathogenesis.

Keywords: SARS-CoV-2; COVID-19; microbiome; upper respiratory tract; respiratory status; inflammation

1. Introduction

The upper respiratory tract (URT) is the primary portal of entry for the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], which has caused the coronavirus
disease 2019 (COVID-19) pandemic. Infection with SARS-CoV-2 may cause epithelial
barrier dysfunction enhancing inflammatory responses and dysbiosis in the respiratory
tract, which may worsen the pathogenic processes [2]. It has been evidenced that the URT
microbiota may influence the susceptibility and severity of respiratory viral infections [3].
Co-infections of SARS-CoV-2 with other respiratory viruses and bacteria are well described
in COVID-19 patients [4–9]. Studies have claimed that bacterial co-infections are more
frequently encountered in COVID-19 compared to other viral infections [10,11]. However,
this has not been confirmed and any increase in bacterial co-infections may rather be
due to, e.g., the length of hospital stay and ventilation time. For other viral infections,
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the presence of certain bacterial organisms can enhance viral acquisition and replication,
thereby worsening the respiratory disease [12]. It is therefore of high interest to investigate
the URT microbiome and its potential contribution to COVID-19 outcome.

Previous studies have reported relationships between URT microbiota and SARS-CoV-
2 infection as well as severity of COVID-19 [13–18]. However, most such studies lacked
functional interpretation, and taxonomic resolution was limited at genus level using 16S
rRNA gene sequencing. The role of the URT microbiome in COVID-19 outcome remains,
thus, to be elucidated. Herein, we performed a shotgun whole metagenome sequencing
on nasopharyngeal (NP) samples collected from 37 SARS-CoV-2-infected patients and
20 SARS-CoV-2-negative individuals.

2. Materials and Methods
2.1. Study Design, Collection of Samples and Clinical Data

Nasopharyngeal (NP) specimens were obtained from 37 patients with COVID-19
hospitalized between 27 March 2020 and 18 May 2020 at Karolinska University Hospital,
Stockholm, Sweden. All patients had pulmonary infiltrates on chest radiography and
eventually received invasive mechanical ventilation at the intensive care unit, thereby being
defined as critically ill patients. The SARS-CoV-2 infection was detected using a two-target
real-time reverse-transcriptase polymerase chain reaction (RT-PCR) targeting the E gene
and RdRp or ORF1 or N2 (in-house: RdRp; Cobas: ORF1; GeneXpert: N2). The SARS-CoV-2
load was semiquantified using cycle threshold (Ct) values. NP samples from 20 adults who
tested negative for SARS-CoV-2 by RT-PCR were included as negative controls.

Demographic, epidemiological, clinical, and laboratory data of the COVID-19 patients
were extracted from the electronic medical records. Clinical and laboratory variables,
commonly used as predictors of COVID-19 outcome, were collected within 24 h after the
sampling except in three patients. These variables were respiratory rate, oxygen saturation
(SpO2), need for supplemental oxygen, PaO2/FiO2 ratio, respiratory Sequential Organ
Failure Assessment (SOFA) score, and levels of inflammatory markers including C-reactive
protein (CRP), lymphocytes, D-dimer, ferritin, and interleukin-6. Antibiotic use within
3 months prior to sampling was recorded (Table 1 and Supplementary Table S1). The SARS-
CoV-2-negative individuals were sampled due to clinical or epidemiological suspicions of
SARS-CoV-2 infection.

Table 1. Characteristics of 37 COVID-19 patients #.

Sample
ID

Viral
Load a

Antibiotics
Use b

Days
From

Onset c
CRP d

(mg/L)
Ferritin
(µg/L)

D-Dimer
(mg/L)

Respiratory
Rate

(No./min)

SpO2 or
Oxygen
Support

PaO2/FiO2
(mm Hg)

Respiratory
SOFA Score

NP-C1 High No 7 119 1882 6.5 18 91–100% ≥300 0–1
NP-C2 Low No 2 252 1219 0.58 36 81–90% 200–299 2
NP-C3 Low Yes 7 177 829 1.1 NA Oxygen

support <200 3
NP-C4 Low No 12 208 NA 3.2 24 81–90% 200–299 2
NP-C5 Low No 8 89 4010 2.8 40 ≤80% 200–299 2
NP-C6 Low No 7 202 2050 2 32 81–90% 200–299 2
NP-C7 High No 4 41 624 0.67 18 81–90% 200–299 2
NP-C8 High No 5 158 66 3.6 28 91–100% ≥300 0–1
NP-C9 High No 14 144 1308 1.06 25 81–90% 200–299 2
NP-C10 High No 9 195 927 0.7 23 81–90% 200–299 2
NP-C11 Low No 6 227 1163 2.1 26 Oxygen

support <200 3
NP-C12 High No 23 38 440 0.3 18 91–100% ≥300 0–1
NP-C13 Low No 2 138 3592 1.97 35 Oxygen

support <200 4
NP-C14 Low No 3 318 1167 12.1 30 ≤80% <200 3
NP-C15 Low No 15 212 2985 2 24 ≤80% <200 3
NP-C16 High Yes 7 46 1822 0.96 23 Oxygen

support 200–299 2
NP-C17 High Yes 5 41 NA 0.64 24 81–90% 200–299 2
NP-C18 Low No 5 46 1026 0.5 22 91–100% ≥300 0–1
NP-C19 Low No 7 143 252 1.68 28 81–90% 200–299 2
NP-C20 Low No 29 98 366 4.1 32 81–90% 200–299 2
NP-C21 Low No 7 319 1374 0.51 23 81–90% 200–299 2
NP-C22 Low No 14 222 1550 1.6 22 ≤80% <200 3
NP-C23 High No 5 358 2843 0.46 35 ≤80% <200 3
NP-C24 High No 10 58 3621 1.04 23 ≤80% <200 3
NP-C25 Low No 5 319 959 1.03 40 ≤80% <200 3
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Table 1. Cont.

Sample
ID

Viral
Load a

Antibiotics
Use b

Days
From

Onset c
CRP d

(mg/L)
Ferritin
(µg/L)

D-Dimer
(mg/L)

Respiratory
Rate

(No./min)

SpO2 or
Oxygen
Support

PaO2/FiO2
(mm Hg)

Respiratory
SOFA Score

NP-C26 Low No 7 75 1024 0.34 16 81–90% 200–299 2
NP-C27 High No 35 260 NA 0.8 45 ≤80% 200–299 2
NP-C29 Low No 5 99 1562 0.9 22 ≤80% <200 3
NP-C31 High No 7 316 1361 1.08 35 ≤80% <200 3
NP-C32 High No 3 256 1914 1.05 40 Oxygen

support <200 4
NP-C34 High No 3 54 810 0.46 18 91–100% ≥300 0–1
NP-C35 Low Yes 6 190 1601 0.77 30 ≤80% 200–299 2
NP-C37 High No 2 41 693 0.69 26 91–100% ≥300 0–1
NP-C38 High No 3 42 40 0.25 28 ≤80% 200–299 2
NP-C39 High No 3 30 314 4.1 26 81–90% 200–299 2
NP-C40 Low Yes 19 12 453 2.3 NA Oxygen

support <200 4

NP-C42 Low Yes 14 368 1793 5.3 30 Oxygen
support <200 4

# The laboratory and clinical parameters represent status at sampling. Antibiotic use within 3 months prior to
sampling was recorded. Other patient metadata are shown in Supplementary Table S1. a The Ct values of E gene
and SARS-CoV-2 specific gene RdRp/ORF1/N2 are shown in Supplementary Table S1. b Antibiotics received are
shown in Supplementary Table S1. c Days from onset are defined as the number of days from the onset of initial
symptom to the time of sample collection. The date of initial symptom and sampling are present in Supplementary
Table S1. d C-reactive protein. NA: unavailable.

2.2. Nucleic Acid Extraction and Shotgun Metagenome Sequencing

The genomic DNA (gDNA) of the NP samples were extracted by the standardized
International Human Microbiota Standards (IHMS) Protocol Q (http://www.microbiome-
standards.org, accessed on 26 January 2021) [19] with some modifications. Sequencing
libraries were prepared with the Nextera DNA Flex kit (Illumina, CA, USA) following
the manufacturer’s instructions. Libraries were normalized with Qubit assay, and then
sequenced on NovaSeq6000 (NovaSeq Control Software 1.7.0/RTA v3.4.4) with a 151nt
(Read1)-10nt(Index1)-10nt(Index2)-151nt(Read2) setup using ‘NovaSeqXp’ workflow in
‘S4′ mode flowcell. The Bcl to FastQ conversion was performed using bcl2fastq_v2.20.0.422
from the CASAVA software suite. The quality scale used is Sanger/phred33/Illumina 1.8+.

2.3. Metagenomics Analysis

The raw sequencing data were pre-processed using our in-house bioinformatics pipeline
as described previously [20]. Briefly, the adapter and low-quality reads (a quality score
of less than Q30) were removed using Trim galore (v0.6.4) (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/, accessed on 30 March 2021). After the quality
trimming, Bowtie2 (v2.3.5.1) [21] was used in combination with SAMtools (v1.19) [22] and
BEDtools (v2.29.2) [23] to identify and remove human DNA sequences. The non-human
reads were then used for downstream analysis. The bacterial taxonomic assignment and
abundance estimation was conducted with MetaPhlAn 3.0 [24] using default parameters.
Functional profiling was performed using the HMP Unified Metabolic Analysis Network
3 (HUMAnN 3.0), which quantifies gene families and microbial pathways in microbial
community from metagenomic sequencing data [25].

2.4. Statistical and Correlation Network Analysis

Alpha diversity of bacterial communities was assessed with microbial richness (num-
ber of detected taxa), Shannon and Simpson diversity indices using R function esti-
mate_richness. Differences in alpha diversity between groups were assessed by testing the
significance of these indexes using Wilcoxon rank sum test. Beta diversity was measured by
Bray–Curtis and weighted UniFrac distances using R package Phyloseq (v1.30.0) [26]. Sam-
ples were clustered according to bacterial composition using non-metric multidimensional
scaling (NMDS) approach with Bray–Curtis distance in Phyloseq (v1.30.0). Permutational
multivariate analysis of variance (PERMANOVA) was performed to test the differences in
bacterial composition between groups using vegan package (Adonis function) [27] using a
Bray–Curtis dissimilarity method. Given the small sample size, different methods were
used to determine and verify specific differences in bacterial taxa and metabolic pathways

http://www.microbiome-standards.org
http://www.microbiome-standards.org
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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between groups. In addition to Wilcoxon rank sum test, LEfSe algorithm [28] was used
to identify specific bacterial taxa and metabolic pathways as taxonomic and functional
biomarkers. Kruskal–Wallis test was used to process the dataset with LEfSe alpha values
set at 0.05. The threshold used to consider a discriminative feature for the logarithmic linear
discriminant analysis (LDA) score was set at >2.

Correlation analyses were performed using the Spearman’s rank correlation coeffi-
cient rho (library “psych”, function “corr.test”). Correlation network of bacterial species,
pathways, and clinical parameters was generated based on the Spearman’s correlation
coefficient. The input variables were species biomarkers, metabolic pathways, and clinical
markers reflecting COVID-19 outcome. The integration network was constructed using R
package bnlearn [29], and only edges of correlation significance test were plotted. Visual-
ization of the network was performed using Cytoscape (v3.6.1) [30]. Benjamini–Hochberg
correction was used to adjust p-values in the case of multiple testing. Due to small sample
size and exploratory purpose of this study, factors with adjusted p-value below 0.1 were
considered statistically significant; whenever no significant association was identified after
correction, results for unadjusted analysis were given, where raw p-value below 0.05 was
considered significant.

2.5. Genome Reconstruction and Functional Annotation of Moraxella Lincolnii

To understand the genetic characteristics and functional potential of species biomarker
(i.e., Moraxella lincolnii) that was found to be associated with clinical outcome, we performed
genome reconstruction through metagenome assembly and functional prediction. Briefly,
pre-processed reads were mapped to the reference genome of Moraxella lincolnii strain
CCUG 9405 (GCA_002014765.1) using Bowtie2 (v2.3.5.1). The mapped reads belonging to
Moraxella lincolnii were extracted using SAMtools (v1.19), then assembled using MEGAHIT
v1.1.3 [31] and kmer lengths starting from 21 to 141. For further confirmation, the assemblies
were mapped to the reference Moraxella lincolnii genome using BLASTn. The draft genome
of Moraxella lincolnii was further annotated using RAST (Rapid Annotation using Subsystem
Technology) Server (https://rast.nmpdr.org/rast.cgi, accessed on 13 July 2021), which
provides high-quality gene calling and functional annotation including a mapping of genes
to subsystems and metabolic reconstruction [32].

3. Results
3.1. Patient Data

NP samples from 37 critically ill COVID-19 patients were collected at a median (range)
of 7 (2–35) days after symptom onset. The median (range) age of the patients was 61 years
(31–75). The majority (n = 30/37, 81.1%) were males. The median (range) body mass index
(BMI) was 29.96 (19.27–55). Out of the 37 patients, 25 (67.6%) had other comorbidities
including hypertension, diabetes, chronic lung disease, ischemic heart disease, heart failure,
systemic inflammatory disease, transplanted, dementia, neurologic disease, and malignancy.
Symptoms at admission to hospital included fever, cough, shortness of breath, chest pain,
gastrointestinal problems, and loss of taste or smell. Six patients received antibiotics prior to
sample collection. Twenty-nine patients were discharged, and eight patients were deceased.

The median (range) Ct value of E gene and SARS-CoV-2 specific RdRp/ORF1/N2
gene was 24.8 (13.8–39.2) and 23.9 (13.8–37.8), respectively. The median Ct value of
RdRp/ORF1/N2 gene was used to define higher (Ct value ≤ 23.9, n = 17) and lower
viral load (Ct value > 23.9, n = 20). Patients were further divided into different groups
based on clinical variables reflecting COVID-19 outcome, i.e., SpO2 (91–100%, n = 6; 81–90%,
n = 12; ≤80%, n = 12; supplemental oxygen support, n = 7), PaO2/FiO2 ratio (≥300 mm
Hg, n = 6; 200–299 mm Hg, n = 17; <200 mm Hg, n = 14), respiratory SOFA score (0–1,
n = 6; 2, n = 17; 3–4, n = 14). The characteristics of COVID-19 patients including levels of
inflammatory markers CRP, lymphocytes, D-dimer, ferritin, and IL-6 of COVID-19 patients
are shown in Table 1 and Supplementary Table S1.

https://rast.nmpdr.org/rast.cgi
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3.2. Composition and Alteration of URT Microbiota Taxa in COVID-19 Patients

In total, 260 bacterial species belonging to 95 genera, 59 families, and 33 orders were
identified (Figure 1A and Supplementary Table S2). The most abundant bacterial genera
were Cutibacterium, Corynebacterium, and Staphylococcus, among which Corynebacterium was
significantly enriched in COVID-19 patients compared to controls (p = 0.0478, Wilcoxon
rank sum test). Among other genera with relative abundance above 0.2%, four were sig-
nificantly decreased in COVID-19 patients (p < 0.028, Wilcoxon rank sum test) (Figure 1B).
The most abundant bacterial species were Cutibacterium acnes, Corynebacterium accolens,
Corynebacterium pseudodiphtheriticum, and Staphylococcus aureus. Among 25 species with rela-
tive abundance of >0.2%, three were significantly decreased in patients (p < 0.018, Wilcoxon
rank sum test) (Figure 1C). Using LEfSe, eight out of 95 genera, Ralstonia, Lactobacillus, Atopo-
bium, Dialister, Porphyromonas, Slackia, Neisseria, and Rothia were significantly decreased
in COVID-19 patients, and Corynebacterium was significantly enriched in patients (LDA
score = 5.052, adjusted p = 0.059) (Figure 1D), which was consistent with the Wilcoxon rank
sum test. At species level, five species were significantly decreased in COVID-19 patients
(LDA score > 3.3, adjusted p < 0.056) (Figure 1E). Notably, we observed a high abundance
of respiratory bacteria that commonly cause pneumonia in critically ill COVID-19 patients,
e.g., Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis (Figure 1F).
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Figure 1. Bacterial microbiota composition in COVID-19 patients and SARS-CoV-2-negative controls.
(A) Taxonomic tree of identified bacterial taxa. Each dot represents a taxonomic entity. The root of
the tree denotes the domain bacteria. From the inner to outer circles, the taxonomic levels range from
phylum to species. Different colors of dots indicate different taxonomic levels according to the color
key shown. Numbers in parentheses indicate the total number of unique taxa at each taxonomic level.
Significantly differentially abundant genera and species between COVID-19 patients and negative
controls are labelled with A-N as indicated, more details are shown in Figure 1D,E. The size of each
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node represents their relative abundance. (B,C) Bar plots of main bacterial taxa at genus and
species levels (average relative abundance > 0.2%) between patients and controls. * Statistically
significant difference (Benjamini–Hochberg adjusted p < 0.06). (D,E) Taxonomic biomarkers at genus
(D) and species level (E) identified by linear discriminative analysis (LDA) effect size (LEfSe) analysis
between patients (in red) and controls (in green). LDA scores (log 10) for the enriched taxa in
controls are represented on the positive scale, while LDA-negative scores indicate enriched taxa in
patients. The LEfSe alpha value was set at 0.05, and the threshold used to consider a discriminative
feature for the LDA score was set at >2. (F) Heat map of abundant bacterial species (average
abundance > 0.2%) among individuals between patients and controls. The relative abundance of
bacterial species is represented by color gradient as indicated. The species were ordered by decreasing
relative abundance.

3.3. Distinct URT Microbiota Diversity in COVID-19 Patients

A significant reduction in alpha diversity of bacterial microbiota at genus level was
found in NP samples from COVID-19 patients compared to those from SARS-CoV-2 neg-
ative controls, as measured by the microbial richness (adjusted p = 0.045, Wilcoxon rank
sum test), Shannon and Simpson diversity indices (adjusted p = 0.034, Wilcoxon rank sum
test) (Figure 2A). Similarly, a decrease in microbial richness, Shannon and Simpson indices
of alpha diversity at species level was observed in COVID-19 patients (adjusted p < 0.1,
Wilcoxon rank sum test) (Figure 2B). No significant difference in beta diversity of bacterial
microbiota was found between samples from patients and controls at genus or species
level, as assessed with Bray–Curtis and weighted UniFrac dissimilarities (data not shown).
NMDS based on Bray–Curtis distance showed no significant separation between patients
and controls at genus or species levels (p > 0.05, PERMANOVA); however, controls were
more diversely distributed than COVID-19 patients (Figure 2C,D).

To assess the potential effect of antibiotics on differences in the bacterial microbiota
between groups, we excluded the six COVID-19 patients who had received antibiotics
within three months prior to sampling. Similarly, we observed that the alpha diversity
of bacterial microbiota at species level in COVID-19 patients was marginally significantly
decreased compared to controls, as assessed with Shannon and Simpson diversity indices
(p = 0.056 and 0.054, respectively, Wilcoxon rank sum test) (Supplementary Figure S1A),
while no difference in beta diversity was found between patients and controls (Supplemen-
tary Figure S1B,C). The differentially abundant bacterial species between 31 patients who
had not been given antibiotics and controls were consistent with those observed between
all patients and controls with two exceptions (Supplementary Figure S1D). As information
about the use of antibiotics was unavailable in SARS-CoV-2-negative individuals, we did
not adjust this factor in subsequent comparative analyses performed between patients
and controls.

Given that the bacterial microbiota diversity was decreased in COVID-19 patients,
we were interested to determine if samples with higher viral load (Ct value ≤ 23.9,
n = 17) showed decreased microbiota diversity compared to those with lower viral load
(Ct value > 23.9, n = 20), but no significant difference was observed (data not shown). No
significant correlation was observed between the abundance of bacterial species and Ct
values of the SARS-CoV-2 specific gene.
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Figure 2. Differences in bacterial microbiota diversity between COVID-19 patients and SARS-CoV-2-
negative controls. (A,B) Alpha diversity in COVID-19 patients and SARS-CoV-2-negative controls
at bacterial genus (A) and species (B) level assessed by microbial richness, Shannon and Simpson
diversity indices. (C,D) Non-metric multidimensional scaling (NMDS) based on Bray–Curtis distance
of bacterial composition at genus (C) and species (D) level between patients and controls. ** Benjamini–
Hochberg adjusted p < 0.05, * Benjamini–Hochberg adjusted p < 0.1.

3.4. Bacterial Microbiota Associated with Clinical Outcome in COVID-19 Patients

Patients were categorized into groups based on respiratory and inflammatory status
reflecting the severity of COVID-19 outcome, as mentioned above. The association between
bacterial microbiota and the clinical parameters was analysed by LefSe and Spearman’s
correlation analyses. LEfSe showed that Moraxella lincolnii and Propionibacterium namnetense
were enriched in patients who had the highest PaO2/FiO2 ratio (≥300 mm Hg) or lowest
respiratory SOFA score 0–1 (Moraxella lincolnii: LDA score = 4.307, adjusted p = 0.079; Propi-
onibacterium namnetense: LDA score = 4.255, adjusted p = 0.0089, respectively) (Figure 3A).
Moraxella lincolnii and Propionibacterium namnetense were also enriched in patients with the
highest SpO2 91–100% (LDA score = 4.234, p = 0.014; LDA score = 4.077, adjusted p = 0.026,
respectively) (Figure 3B). Spearman’s correlation corroborated the association between
microbiota and clinical markers obtained by LefSe. Several bacterial species correlated
to certain clinical markers (Figure 3C), among which, Moraxella lincolnii and Propionibac-
terium namnetense correlated positively to PaO2/FiO2 ratio, while inversely to inflammation
marker CRP and D-dimer, respectively (p < 0.05). These data imply that Moraxella lincolnii
and Propionibacterium namnetense may be associated with improved clinical outcome, i.e.,
better respiratory status and lower inflammation level.
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Figure 3. Bacterial microbiota in correlation to clinical outcomes in COVID-19 patients. (A) Bacterial
species biomarkers associated with respiratory SOFA (Sequential Organ Failure Assessment) score or
PaO2/FiO2 level. (B) Bacterial species biomarkers associated with oxygen saturation (SpO2) level or
oxygen support. The biomarkers were identified by linear discriminative analysis (LDA) effect size
(LEfSe) analysis. LDA scores (log 10) for the enriched species in a given group are represented with
colors as shown. The LEfSe alpha value was set at 0.05, the threshold used to consider a discriminative
feature for the LDA score was set at >2. (C) Correlation between bacterial species and markers of
respiratory and inflammatory status. Spearman’s correlation rho values are represented by color
gradient as indicated (red is for positive, green is for negative correlation). Only correlations with
p < 0.05 are shown on the plots.

3.5. Functional Pathways Associated with Clinical Outcome in COVID-19 Patients

Functional analysis was performed to understand the potential role of the bacterial
microbiota in COVID-19 outcome. Intriguingly, several pathways correlated positively
to PaO2/FiO2 ratio, while inversely to at least one inflammatory marker, i.e., CRP, D-
dimer, or ferritin in COVID-19 patients (p < 0.05, Spearman’s correlation) (Figure 4A).
These included: (i) superpathways of menaquinol-7, menaquinol-11, menaquinol-12, and
menaquinol-13 biosynthesis; (ii) mono-trans, poly-cis decaprenyl phosphate biosynthesis
pathway; (iii) superpathway of tetrahydrofolate biosynthesis; (iv) gondoate biosynthesis
(anaerobic); (v) flavin biosynthesis I; (vi) biotin biosynthesis II; (vii) L-histidine degrada-
tion II; (viii) polyisoprenoid biosynthesis. Interestingly, most of these pathways belong
to the same superclass ‘vitamin biosynthesis’; in particular, the four superpathways of
menaquinone biosynthesis are known as vitamin K2 biosynthesis. These results might
indicate a potential role of vitamin K2 in better clinical outcome, i.e., better respiratory
status and lower inflammation in COVID-19.
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Figure 4. Correlation analysis. Correlations between (A) metabolic pathways and clinical markers,
(B) metabolic pathways and bacterial species biomarkers associated with better clinical outcome.
Spearman’s correlation rho values are represented by color gradient as indicated (red is for positive,
green is for negative correlation). Only correlations with p < 0.05 are displayed. (C) Correlation
network of bacterial species, metabolic pathways, and clinical markers. The nodes are two bacterial
species biomarkers (blue squares), metabolic pathways (purple polygons), and clinical markers (red
circles). Two nodes are connected if their Spearman’s correlation is significant (p < 0.05). The edge
color indicates correlation between subjects (red: positive, green: negative). Spearman’s correlation
rho values are represented by color gradient as indicated.

Additionally, we observed that the PaO2/FiO2 ratio correlated positively to pathways
involved in 1,4-dihydroxy-2-naphthoate biosynthesis I, formaldehyde oxidation I, etc. CRP
level correlated inversely to pathways involved in pyrimidine deoxyribonucleotides de
novo biosynthesis, heme biosynthesis I (aerobic), etc., while they correlated positively
to pyruvate fermentation to propanoate I. The serum ferritin level correlated inversely
to pathways involved in heme biosynthesis I (aerobic), 6-hydroxymethyl-dihydropterin
diphosphate biosynthesis I, L-lysine biosynthesis I, etc. D-dimer correlated inversely to
several functional pathways (p < 0.05, Spearman’s correlation) (Figure 4A).
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3.6. Correlations between Bacterial Microbiota and Metabolic Pathways Contributing to
Clinical Outcome

To assess the correlations between bacterial microbiota and metabolic pathways con-
tributing to respiratory and inflammatory status, Spearman’s correlation analysis was
performed between bacterial species and functional pathways in COVID-19 patients. Inter-
estingly, we observed very strong correlations between species and pathway biomarkers
that were associated with clinical markers. Moraxella lincolnii correlated strongly to super-
pathways of menaquinol-7, menaquinol-11, menaquinol-12, and menaquinol-13 biosyn-
thesis (rho = 1, adjusted p < 2.2 × 10−16); mono-trans, poly-cis decaprenyl phosphate
biosynthesis (rho = 0.998, adjusted p = 2.33 × 10−43); formaldehyde oxidation I (rho = 0.805,
adjusted p = 2.50 × 10−7); 1,4-dihydroxy-2-naphthoate biosynthesis I (rho = 0.781, adjusted
p = 1.23 × 10−6), etc. (Figure 4B). Most of these pathways, as mentioned above, belong
to the same superclass ‘vitamin biosynthesis’. Propionibacterium namnetense correlated
positively to the superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
(rho = 0.657, adjusted p < 0.0001), and L-histidine degradation II (rho = 0.478, adjusted
p = 0.0425) (Figure 4B).

Correlation network analysis was performed to unravel any interaction among two
species biomarkers, metabolic pathways, and clinical markers reflecting COVID-19 outcome.
Results demonstrated species-to-pathways, species-to-clinical markers, and pathway-to-
clinical markers interconnections, e.g., Moraxella lincolnii to superpathways of menaquinol
biosynthesis, Moraxella lincolnii to CRP and the PaO2/FiO2 ratio, and superpathways
of menaquinol biosynthesis to CRP and the PaO2/FiO2 ratio (Figure 4C). These data
highlight the associations between microbiota and metabolic pathways contributing to
clinical outcome in COVID-19 patients.

3.7. Genomic Feature and Functional Potential of Moraxella Lincolnii

Given that Moraxella lincolnii was found to be associated with respiratory and inflam-
matory status, and that it also correlated very strongly to the metabolic pathways associated
with better respiratory and inflammatory status, particularly vitamin K2 biosynthesis, we
were interested to identify genetic evidence that could support this finding. We therefore
performed genome reconstruction and functional annotation of Moraxella lincolnii from
one sample with a high abundance of this species. Genomic characteristics of M. lincolnii
are summarized in Supplementary Table S3. Notably, a gene that encodes a key enzyme
in menaquinone (vitamin K2) biosynthesis was identified in the M. lincolnii genome, i.e.,
ubiE (bifunctional demethylmenaquinone methyltransferase/2-methoxy-6-polyprenyl-1,4-
benzoquinol methylase). Additionally, M. lincolnii possess genes involved in several crucial
metabolic pathways that are known to act in an integrated manner to maintain the balance
and organism homeostasis, including genes involved in lipid metabolism, amino acid
metabolism, glycolysis, pentose phosphate pathway, etc. (Supplementary Table S3b and
Supplementary Figure S2). These results support our hypothesis that M. lincolnii con-
tributes to vitamin K2 biosynthesis and other metabolic pathways, thereby, possibly being
associated with better clinical outcome in COVID-19 patients. Further in vitro studies are
in need to validate the effect of M. lincolnii in vitamin K2 biosynthesis and other biological
functions that may play a beneficial role in COVID-19.

4. Discussion

In this study, using shotgun whole metagenome sequencing, we characterized the
upper respiratory microbiome profile in critically ill COVID-19 patients and correlated the
findings to viral load, and respiratory and inflammatory status. No association was found
between SARS-CoV-2 loads and bacterial microbiota diversity or differentially abundant
bacterial taxa, which is in line with a previous report using metagenome sequencing [14].
The viral load in the URT is highest early in the disease course [33,34], and since our
sampling occurred a median of 7 days after symptom onset, the peak of viral replication
had most probably passed. Intriguingly, in the COVID-19 patients, several bacterial species
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were associated with markers of both respiratory and inflammatory status; in particular,
Moraxella lincolnii and Propionibacterium namnetense were correlated to better respiratory
status and low inflammation. M. lincolnii, a poorly characterized bacterium isolated from
the human respiratory tract [35], was found in two of the COVID-19 patients who showed
high viral load but with very low levels of inflammatory markers and normal respiratory
conditions, implying that M. lincolnii might increase the host immunity against SARS-
CoV-2. We acknowledged that this hypothesis remains to be confirmed since only two
patients harbored M. lincolnii. It is noteworthy that a recent study has indeed suggested a
protective role of M. lincolnii in respiratory health status [36]. Moreover, M. lincolnii has
recently been shown to exhibit strong inhibitory activity against nasal S. aureus, mediated
by proteins fitting the profile of antimicrobial peptides (AMPs) [37]. AMPs are known to
exhibit antiviral and immunomodulatory properties [38], which possibly could contribute
to improved patient outcomes in viral respiratory infections. Research on the recently
identified P. namnetense [39] is also very rare, our data appeal for further in-depth studies
to investigate the potential role of these two species in COVID-19 outcomes.

To date, the most probable hypothesis on how the respiratory microbiome could
influence viral respiratory infections relies on the immunological properties of microbes
inhabiting the respiratory tract [3]. At functional level, we found that several metabolic
pathways correlated to both better respiratory status and to lower inflammation level.
Interestingly, most of these pathways are involved in vitamin biosynthesis, particularly
four superpathways of menaquinone (vitamin K2) biosynthesis. Several other pathways
that correlated to better respiratory status or/and lower inflammation level belonged to
pathway superclass ‘Cofactor, Carrier, and Vitamin Biosynthesis’, such as 1,4-dihydroxy-2-
naphthoate biosynthesis I, which is the naphthalenic intermediate in the biosynthesis of
vitamin K2 [40]. Our results may, thus, indicate a potential role of vitamin K2 in improving
clinical outcome in COVID-19. This is supported by the reported correlations between
vitamin K deficiency and severe COVID-19 outcome [41,42]. Vitamin K is associated
with an impaired production of inflammatory cytokines and plays an important role
in immunomodulation [43,44]. In addition to attenuating the excessive production of
proinflammatory cytokines [45], vitamin K may protect the integrity of the alveolar-capillary
membrane [46], thereby, possibly improving respiratory status in COVID-19 patients as
we observed.

Another remarkable finding was the strong correlation between the two species
biomarkers (M. lincolnii, P. namnetense) and metabolic pathways associated with better
respiratory status and lower inflammation level. In particular, M. lincolnii correlated
strongly to pathways involved in vitamin K2 biosynthesis. Vitamin K naturally occurs
in two biologically active forms, K1 and K2; of these, vitamin K2 is predominantly of
bacterial origin [47,48]. In order to confirm this and gain insights into the functions of M.
lincolnii, we reconstructed the draft genome of M. lincolnii from metagenome data and
performed functional annotation. Strikingly, we found that M. lincolnii carried the gene
encoding ‘bifunctional demethylmenaquinone methyltransferase/2-methoxy-6-polyprenyl-
1,4-benzoquinol methylase’, an enzyme catalyzing the last step in menaquinone (vitamin
K2) biosynthesis. M. lincolnii possess additional genes involved in several metabolic path-
ways that have been suggested to be associated with COVID-19, e.g., lipid and amino
acid metabolism, heme biosynthesis, glycolysis, pentose phosphate pathway, etc. [49,50].
Our data indicate a great need for in vitro research to validate the effects of M. lincolnii in
vitamin K2 biosynthesis and other metabolic processes that may play beneficial roles in
COVID-19 outcome.

Our study demonstrated a reduced bacterial microbiota diversity in the critical COVID-
19 patients compared to the SARS-CoV-2-negative individuals. Some respiratory pathogens,
particularly pneumonia-causing bacteria, e.g., Staphylococcus aureus and Haemophilus influen-
zae, were abundant in the critically ill COVID-19 patients, highlighting the possibility that
co-infections with such pathogens may contribute to severe clinical outcome. In contrast, a
significant reduction in respiratory commensals, e.g., Neisseria mucosa, Ralstonia pickettii,
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was found in the COVID-19 patients. Such reductions in healthy commensals might con-
tribute to the susceptibility to and severity of SARS-CoV-2 infection, as suggested in other
viral infections [3], although the causal relationship between URT microbiome alteration
and SARS-CoV-2 infection warrants further investigation. It should be noted that most of
our critically ill COVID-19 patients had well-known risk factors for disease severity, such
as age, gender, and comorbidities [51,52], which may be confounders contributing to URT
microbiome changes in the patients. Moreover, although the controls were sampled due to
suspicions of SARS-CoV-2 infection, we could not rule out potential confounders that may
explain the differences in the URT microbiome observed.

This study has limitations. The major flaws were the small sample size and the lack of
detailed information of SARS-CoV-2-negative controls; thus, the microbiome changes in
COVID-19 patients and microbiome biomarkers identified for clinical outcomes remain
to be validated with further studies. Second, only critically ill COVID-19 patients were
included, and a single NP sample per patient collected at hospital admission was analysed,
our findings may not apply to patients with asymptomatic, mild to moderate COVID-19.
Third, although whole metagenome sequencing has obvious advantages, particularly its
functional profiling capacity, it suffers from host-derived DNA contamination, which may
obscure microbial signatures in low-biomass and highly host-contaminated NP samples.
16S rRNA sequencing should be considered in combination with whole metagenome
sequencing to obtain a comprehensive landscape of URT microbial communities and
functionality. In spite of these limitations, our study reveals important information for the
interpretation of the role of the URT microbiome in SARS-CoV-2 infection. It is noteworthy
that the correlations observed in this study do not illustrate a direct causal link between
the URT microbiome and SARS-CoV-2 infection as described widely in other microbiome
studies [53–55]; further in-depth studies are warranted to explore the causal roles of the
URT microbiome in the COVID-19 pathogenesis.

In conclusion, our study characterized the URT microbiome in correlation to COVID-
19 outcomes. Several bacterial species and metabolic pathways were associated with
respiratory and inflammation status in COVID-19 patients. Strong associations were found
between two species biomarkers and several pathways that were associated with better
clinical outcome; in particular, Moraxella lincolnii and pathways involved in vitamin K2
biosynthesis. To our knowledge, this is the first study to depict the URT microbiome
associated with respiratory status in critical COVID-19 patients. In addition, our study
demonstrates a distinct URT microbiome profile in patients with critical COVID-19 com-
pared to non-COVID-19 individuals. These findings aggregately render evidence of the
URT microbiome as a possible contributor to COVID-19 outcome. Future in-depth studies
are warranted with a larger sample size, serial samples from each patient, samples from
other geographic areas, combination of different sequencing techniques, and in vitro assays
to elucidate the causal roles of URT microbiome changes in SARS-CoV-2 infection, disease
progression, and patient outcomes. This could possibly aid the identification of microbial
targets for potential interventions and treatments of COVID-19.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10050982/s1, Table S1. Clinical and laboratory
metadata of COVID-19 patients (.xlsx). Table S2. Bacterial species identified in this study and
their relative abundance in each sample (.xlsx). Table S3. Genomic characteristics and functional
annotation of Moraxella lincolnii (.xlsx). Figure S1. Differences in bacterial microbiota diversity and
differentially abundant species between 31 COVID-19 patients who did not take antibiotics prior to
sampling and 20 SARS-CoV-2-negative controls. (A) Alpha diversity between COVID-19 patients and
SARS-CoV-2-negative controls at bacterial species level assessed by richness, Shannon and Simpson
diversity indices. (B,C) Bray–Curtis dissimilarity and non-metric multidimensional scaling (NMDS)
based on Bray–Curtis distance of bacterial species composition between patients and controls. (D)
Bacterial species biomarkers identified by linear discriminative analysis (LDA) effect size (LEfSe)
analysis between 31 COVID-19 patients (in red) and 20 controls (in green). LDA scores (log 10) for
the enriched species in controls are represented on the positive scale, while LDA-negative scores
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indicate enriched species in patients. The LEfSe alpha values was set at 0.05, the threshold used to
consider a discriminative feature for the LDA score was set at >2. Figure S2. Subsystem distribution
of Moraxella lincolnii identified in this study. The functional annotation and subsystem categorization
was conducted using RAST server.
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