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Abstract

The ordinary linear regression method is limited to bivariate data because it is based on the

Cartesian representation y = f(x). Using the chain rule, we transform the method to the

parametric representation (x(t), y(t)) and obtain a linear regression framework in which the

weighted average is used as a parameter for a multivariate linear relation for a set of linearly

related variable vectors (LRVVs). We confirm the proposed approach by a Monte Carlo sim-

ulation, where the minimum coefficient of variation for error (CVE) provides the optimal

weights when forming a weighted average of LRVVs. Then, we describe a parametric linear

regression (PLR) algorithm in which the Moore-Penrose pseudoinverse is used to estimate

measurement error regression (MER) parameters individually for the given variable vectors.

We demonstrate that MER parameters from the PLR and nonlinear ODRPACK methods

are quite similar for a wide range of reliability ratios, but ODRPACK is formulated only for

bivariate data. We identify scale invariant quantities for the PLR and weighted orthogonal

regression (WOR) methods and their correspondences with the partitioned residual effects

between the variable vectors. Thus, the specification of an error model for the data is essen-

tial for MER and we discuss the use of Monte Carlo methods for estimating the distributions

and confidence intervals for MER slope and correlation coefficient. We distinguish between

elementary covariance for the y = f(x) representation and covariance vector for the (x(t), y(t))

representation. We also discuss the multivariate generalization of the Pearson correlation

as the contraction between Cartesian polyad alignment tensors for the LRVVs and weighted

average. Finally, we demonstrate the use of multidimensional PLR in estimating the MER

parameters for replicate RNA-Seq data and quadratic regression for estimating the parame-

ters of the conical dispersion of read count data about the MER line.

1 Introduction

In this work, we consider the problem of fitting a multidimensional line for data that are sub-

ject to stochastic error. The motivation for this work comes from a collaborative R & D effort

involving the application of the genome-wide association (GWAS) [1] and eQTL methods [2]

to identify beneficial agronomic variation in maize. This led to our applied algebraic investiga-

tion of the merits of various effect size measures and their associated statistical methodologies
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as described in our two recent publications in this journal. In the first, we discussed the impor-

tance of factoring a 2 × 2 contingency table for obtaining marginal scale invariant effect size

measures for proportional variation [3]. We also used projective geometric concepts for dis-

cussing connections between the phi coefficient, odds ratio, relative risk and proportion with

respect to the representation of effect sizes. In the second, we discussed the formulation of a

nonparametric measure for nonoverlap proportion and the importance of specifying a com-

plete set of parameters for point-biserial variation in the formulation of an effect size measure

[4]. We also discussed the importance of providing an error model for data and the use of

Monte Carlo (MC) methods for estimating distributions and confidence intervals for effect

size, as required for best practices [5]. However, in RNA-Seq studies, error estimation is com-

plicated by the low number of replications usually employed. Our RNA-Seq experimental

design is consistent with the recommended minimum of three replicates [6], but this is less

than the minimum of 13 replicates required for reliably estimating variance [7]. Furthermore,

RNA-Seq read counts can range over more than three orders of magnitude with heteroscedas-

tic error. Thus, weighted least squares (WLS) methods [8, 9] are needed for properly partition-

ing residual effects in data analyses. The importance of accounting for measurement errors in

omics studies has been discussed in several publications [7, 10–13]. These problems provide

the motivation for our investigation of linear measurement error regression (MER) methods

for multivariate data. The concepts discussed in this paper significantly extend our previous

gene expression data analysis work that is briefly described in [14].

We use the term ‘measurement error regression’ in accordance with the recommendation

in [15] instead of the other commonly used terms, such as ‘error-in-variables’ or ‘major axis

regression’ [16]. There are many studies on the MER problem [17–19], but [9, 20–22] were

particularly useful in this work. There are two forms of WLS optimization in measurement

error regression for (x, y) data. The elementary form involves the application of the normal

equations [9] algorithm to obtain WLS-based linear regression (WR) estimates for the neces-

sary parameters. However, WR is subject to the limitation where a design matrix is constructed

from error free independent data, and the residual effects are assigned exclusively to the

dependent data. Thus, WR requires the specification of ‘dependent’ and ‘independent’ quanti-

ties. Then, when both x and y are subject to error the WR estimate is biased, and there is exten-

sive literature describing various approaches for solving this problem [18–20]. The second

form of WLS involves ‘weighted orthogonal regression’ (WOR) or ‘orthogonal distance regres-

sion’ where the weighted sum of squares of the combined residual effects for x and y are mini-

mized [23]. The ‘dependent’ versus ‘independent’ distinction for y and x does not hold in

WOR. Then, WOR can be regarded as a generalization because under the condition where

only the y data are subject to error, the WOR and WR estimates are equivalent. However,

there is no analytical solution for WOR [23], and the implementation requires a numerical

iterative search method. In this work, we use the implementation of WOR in open source sta-

tistics software [24, 25] based on the nonlinear ODRPACK algorithm [26]. However, ODR-

PACK is limited to the analysis of bivariate data because it is based on the Cartesian

representation y = f(x). Our objective is to describe a multivariate generalization of the WR

algorithm that provides unbiased estimates for MER parameters for a set of linearly related

variable vectors (LRVVs). The main novel contributions of this work are as follows: 1) We

associate a set of LRVVs with a convex set of weighted averages and use Monte Carlo simula-

tion to demonstrate that the minimum coefficient of variation for error (CVE) provides the

optimal weights for forming the weighted average (Eqs 13, 16 and 17). 2) We formulate a

parametric linear regression (PLR) algorithm where the weighted average of the LRVVs serves

as the independent parameter, and the MER parameters are estimated using the Moore-Pen-

rose pseudoinverse (Eqs 22 and 23; Proposition 1). 3) Convex mappings from the data points
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in the MER graph to the predicted values along the MER line are provided (Eqs 6 and 7). 4)

We propose that in the parametric representation for the linear relation between variable vec-

tors, the corresponding covariance is a parametric vector quantity (Eq 25; Proposition 2). 5)

We identify scale invariant quantities for the partitioned residual effects between the LRVVs

for both PLR (Eq 27) and WOR (Eq 37). 6) We propose a multivariate generalization of the

Pearson correlation coefficient based on the m-fold contraction of Cartesian polyad alignment

tensors for the LRVVs and weighted average (Eqs 32, 33 and 35). 7) A quadratic regression

method is used to estimate the conical dispersion parameters for determining the read count-

ing error in replicated RNA-Seq data (Eqs 40 and 43).

2 Methods

Section 2.1 introduces our notations. In sections 2.2–2.4, we examine the WLS methods for

partitioning residual effects in linear regression for (x, y) data. In section 2.5, we discuss the

minimum CVE criterion for obtaining the optimal weighted average of a set of LRVVs. In sec-

tion 2.6, we describe the PLR framework where parametric equations are used to obtain a

novel multidimensional generalization of the normal WLS algorithm for linear regression. In

section 3.2, we describe the application of the PLR algorithm for the analysis of the conical dis-

persion of replicated RNA-Seq data about the MER line.

It has already been established that the specification of an error model E for the given data

is essential in MER analysis. An error model serves as a realistic assessment of the performance

of a data acquisition system, and error parameters are estimated from replicated measure-

ments [27]. The parameters are usually summarized as an ‘expected variance’ for error with

respect to each observation. When referring to experimental error, we use the term ‘expected

variance’ because error parameters are empirical. We provide a detailed discussion of the role

of E in partitioning residual effects for the WLS optimization of MER. Furthermore, proper

statistical practice dictates that effect size measures such as the regression slope, the correlation

coefficient and Cohen’s d must be qualified by a distribution [5, 28], and an assessment of sub-

stantive significance [29] must account for a distributed system response. Consequently, we

also discuss the use of Monte Carlo methods and E for estimating the distributions and confi-

dence intervals of MER parameters.

2.1 Notation

Our notation and terminology are partly taken from [30], but comprehensive discussions of

vector spaces and linear algebra for applied statistics are found in many textbooks, such as [8,

9, 31]. Scalars are denoted by italics y, and vectors are written in bold lowercase letters y� (yi)
� (y1, y2, y3, . . ., ydim(y)). Matrices are written in bold uppercase letters Y� [yij], and the trans-

pose is denoted as YT. Then, n joint observations for m experimental quantities produce a

dataset fyij j yij 2 R
1; 1 � i � n; 1 � j � mg, which corresponds to the Cartesian product of

the data vectors Y ¼ ðyjÞ, yj 2 R
n
, where dimðYÞ ¼ n�m. We use a convenient terminology

for the subsets of Y, where each axis of a regression graph is assigned to a variable vector yj, the

linear combinations ∑j kj yj are elements of the variable space, and each point in the graph cor-

responds to an observation vector y(i) [30, 32]. In this work, we describe a novel parametric lin-

ear regression algorithm for estimating MER parameters for a set Y of LRVVs. We also use the

shortened term ‘variable vectors’ synonymously when referring to LRVVs, except in a few

clearly identified cases. The inner product with the one-vector 1 = (1, 1, 1, . . .) produces the

mean value �y ¼ 1 � y=dimðyÞ. The subtraction of the mean vector produces a centered vector

yc ¼ y � �y1. The hat symbol ‘^’ denotes a unit-length vector, i.e., k ŷ k¼ 1. Then, the Pearson

correlation coefficient r(x, y) is defined as the cosine of the angle between unit-length, centered
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vectors [30, 32]

r ¼ x̂c � ŷc: ð1Þ

The variance for yj is denoted as Var(yj). The expected variance for normally distributed

errors eyij is denoted as s2
yij

, and the vector s2
yj

denotes the expected variance of the error in yj.

For bivariate data (yj, yk), the covariance is denoted as Cov(yj, yk); the notation for a variance-

covariance matrix is not needed in this work. In our Cov(yj, yk) notation, yj and yk are inde-

pendent and dependent quantities, respectively, and the roles are reversed for Cov(yk, yj). The

connection between correlation and covariance as measures of linear dependence in data is

discussed in [21, 32]. A general discussion of convex sets, linear fractional transformations and

perspective functions is found in [33]. The set containing all convex combinations of a set of

variable vectors Y is denoted as convðYÞ, where τ 2 convðYÞ ) τ ¼
P

jwjyj, for ∑j wj = 1

and 0� wj8j. A perspective function has the form P(y, t) = y/t. In recent publications, we pro-

vide an elementary discussion about projective geometry for fractional variation [3], and iden-

tify the homogeneous coordinates of the Pearson correlation coefficient as points on the line

passing through the point ðr;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p

Þ 2 S1

þ
[4]. Equivalent homogeneous coordinates are

indicated by a two-sided arrow, i.e., y$ x) y = x t.

2.2 The WLS linear regression algorithm

Consider a set of n linearly related observations {(xi, yi)|1� i� n}, which are represented as

the variable vectors fðx; yÞjx; y 2 Rn
g. The observations are subject to error, and the differ-

ences between the true (x�, y�) and observed values are denoted by (ex, ey) = (x − x�, y − y�).

The fact that (x�, y�) are unknown implies that (ex, ey) are also indeterminate. The specification

of an error model for the data Eðx; yÞ is essential for estimating the distributions and corre-

sponding confidence intervals of the statistical parameters, including the slope; see section 2.6.

The default approach is to reduce Eðx; yÞ to a stochastic form or some approximation thereof,

where the errors (ex, ey) are independent and associated with normal distributions with zero

means (0, 0) and expected variances ðs2
x; s

2
yÞ, where fCovðexi ; exkÞ ¼ 0 j i 6¼ kg,

fCovðeyi ; eykÞ ¼ 0 j i 6¼ kg and fCovðexi ; eykÞ ¼ 0 8 i; kg. In the standard MER framework [20,

21], the linear relation between x and y is expressed using Cartesian equations:

y ¼ axy1þ bxyx
� þ ey; ð2Þ

¼ axy1þ bxyx þ ðey � bxyexÞ; ð3Þ

where faxy; bxy 2 R
1
g are the model parameters. We use the subscript ‘xy’ to indicate the cor-

respondence with the derivative bxy ¼ dy�i =dx
�
i , because it will be necessary to distinguish

between different parameterizations in Eq 21. In linear regression analysis, the objective is to

obtain sample estimates (axy, bxy) for (αxy, βxy). After introducing the design matrix X = [1, x]

and the diagonal variance matrix Vy ¼ diagðs2
yÞ, the WLS linear regression estimate is

obtained by solving the normal equations to obtain [9]

uxy;WR ¼ ðXTV� 1

y XÞ� 1XTV� 1

y y; ð4Þ

where uxy,WR = (axy,WR, bxy,WR). Vy is required for the WLS scaling of both X and y, and (XT

X)−1 XT is the Moore-Penrose pseudoinverse of X; in practice, the pseudoinverse is estimated

by singular value decomposition. The ordinary linear regression (OLR) estimate is obtained

when Vy/ I, where I is the identity matrix. However, the bxy,WR estimate is biased because of
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the correlation of x with ex in Eq 3 [20]. The reliability ratio [17] for x is defined as

kx ¼ 1 �
VarðexÞ
VarðxÞ

;

where Var(x) = Var(x�) + Var(ex), and VarðexÞ ¼ 1 � s2
x=dimðs

2
xÞ. As illustrated in Fig 1A and

1B, bxy,WR is attenuated as κx decreases from 1. This bias in bxy,WR arises from the algebraic

requirement that X must serve as an error-free quantity in the normal equations, and the resid-

uals are assigned exclusively to y. The solution uxy,WR holds under the condition where Var(ex)

is small enough such that x� x� with κx� 1. A key objective of this work is to describe a novel

Fig 1. Comparison of various measurement error regression methods. A, B, C: Monte Carlo simulations of MER for 25 evenly-spaced values y�i ¼ x�i .

The statistical parameters are estimated from 5000 Monte Carlo datasets (x, y) = (x� + ex, y� + ey), with normally distributed errors (ex, ey). The

parametric linear regression and orthogonal distance regression methods both produce consistent estimates for the slope (bMER) for a wide range of

reliability ratios κx. The weighted average (bxy,W) of the attenuation-corrected direct and inverse WR estimates also produces comparable results. In

contrast, the standard (bWR) estimate is attenuated. A: Homoscedastic error: (sy� = 0.3, sx� = α), and α = {0.01, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. B:

Heteroscedastic error: ðsy� ¼ 0:01þ 0:3y�; sx� ¼ 0:01þ ax�Þ, and α = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. C: Using the results from (B), the Pearson

correlation coefficient rxy is attenuated compared to the parametric correlation coefficient rPLR ¼ rτwx
rτwy

for the weighted average τw = w x + (1 − w)y.

D, E, F: MER results for the data (x, y) from Table 11.3.1 in [21]. However, error estimates were not provided for the data. For demonstration purposes,

we used a rudimentary error model: s2
x ¼ 0:04þ 0:005x2, s2

y ¼ 0:1þ 0:005y2, κx = 0.93, κy = 0.91, r = 0.49, and rPLR = 0.74. D: Each MER line is labeled

with its slope. The ordinary least squares (bOLR) and orthogonal regression (bOR) estimates are consistent with [21]. The WLS orthogonal regression

(bORw) estimate is also shown. The predicted values for (xi, yi) are plotted for PLR and WOR. E: The bxy,PLR estimate is obtained from separate

regressions bτx,WR and bτy,WR. The inset shows the distribution of bxy,PLR estimated from 100 histograms with 5000 MC samples per histogram (see Fig

4); the error bars indicate the degree of convergence for the MC simulation. F: The weighted average prediction residuals for bxy = 1.38 and the WOR

residuals are quite similar. The PLR residuals from the τ WR results in (E) are comparable but do not account for heteroscedastic error. A-E: The error

bars correspond to ±2σ.

https://doi.org/10.1371/journal.pone.0262148.g001
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parametric generalization in which the WR algorithm itself serves as the basis for measure-

ment error regression for a set of LRVVs (section 2.6). We also compare the performance of

PLR with that of existing MER methods and provide realistic MER examples using publicly

available data. In particular, we discuss the WLS orthogonal regression and attenuation-cor-

rected slope estimation methods.

2.3 WLS orthogonal regression

The WOR algorithm minimizes the weighted sum of squares for the combined residual error

for ðe2
xi
; e2

yi
Þ:

min
a;b

X

i

ðwyi
ðaþ bx�i � yiÞ

2
þ wxi

e2

xi
Þ; ð5Þ

with ðwxi
;wyi
Þ / ð1=s2

xi
; 1=s2

yi
Þ [26] and does not require the identification of dependent and

independent variables. However, this minimization problem does not possess an analytical

solution [23], and a numerical method is needed for the implementation of WOR. For our

demonstration, the python scipy.odr package [25] provides a convenient WOR implementa-

tion based on the ODRPACK optimization library [26]. We are interested in WOR for a linear

function y = a + bx, but ODRPACK is more general and uses the Levenberg-Marquardt non-

linear least squares algorithm to support parameter estimation for a user-specified bivariate

function y = f(x). As demonstrated in Fig 1, the ODRPACK algorithm performs well for homo-

scedastic (Fig 1A) and heteroscedastic (Fig 1B) error models over a wide range of reliability

ratios. When either κx or κy approaches 1, the WOR estimate is equivalent to the WR estimate.

Thus, the WOR algorithm is regarded as a generalization of WR. Furthermore, the ODRPACK

algorithm provides predicted and residual values for (xi, yi), as demonstrated in Fig 1F. For

comparison, we describe a novel algebraic method to estimate predicted and residual values in

MER. First, we associate the observed data (xi, yi) with a convex mapping to an interval on an

MER line with (intercept, slope)�(a, b). The interval is bounded by the following two points:

vxi ¼ ðxi; bxi þ aÞ

and

vyi ¼
yi � a
b

; yi
� �

;

which correspond to the special cases s2
xi
¼ 0 and s2yi ¼ 0, respectively. Then, the weighted

average

vi;w ¼ wvxi þ ð1 � wÞvyi ð6Þ

is contained in convðvxi ; vyiÞ for 0� w� 1. Using the signal-to-noise ratios ð�x=s2
xi
; �y=s2yiÞ (see

Eq 17), the optimal weight is obtained:

w ¼ 1þ
�y
�x
s2xi
s2
yi

 !� 1

; ð7Þ

which produces the weighted average prediction (WP) value vi,WP. In Fig 1F, we demonstrate

that the ODRPACK and WP estimates for residuals are quite similar. The generalization of

Eqs 6 and 7 for MER inRm is straightforward.

However, the WR and WOR algorithms are both subject to the algebraic limitation that the

Cartesian representation y = f(x) only allows for the representation of lines (or curves) in two
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dimensions. Alternatively, the specification of a straight line in Rm requires the use of the

parametric representation

u ¼ α þ βt; ð8Þ

with u;α; β 2 Rm
and t 2 R1

[34]. Consequently, our objective is to describe a parametric

framework where the WR algorithm serves as the basis for measurement error regression for

LRVVs.

2.4 Covariance in ordinary linear regression

The OLR algorithm corresponds to the special case where Vy is replaced with the identity

matrix I in Eq 4. Then, the expression for the slope takes a simple form and provides the intui-

tion for our novel parametric algorithm in section 2.6. From Eq 3, the sample covariance [22]

is expressed as

Covðx; yÞ ¼ bxyVarðxÞ þ Covðx; ey � bxyexÞ;

¼ bxyðVarðxÞ � VarðexÞÞ;

where Cov(ex, ey) = 0, and Cov(x, ex) = Var(ex). Then, we obtain the direct estimator for the

slope

bxy;kx ¼
Covðx; yÞ

VarðxÞ � VarðexÞ
;

¼
bxy;OLR
kx

;

ð9Þ

where

bxy;OLR �
Covðx; yÞ
VarðxÞ

ð10Þ

and bxy;kx ! bxy;OLR as κx! 1. Even though bxy;kx is referred to as the ‘regression coefficient

corrected for attenuation’ [17], we note that bxy;kx is also biased. Reversing the roles of x and y

yields the inverse estimator for βxy:

b� 1
yx;ky

¼
VarðyÞ � VarðeyÞ

Covðy; xÞ
;

¼
ky

byx;OLR
;

ð11Þ

where κy = 1 − Var(ey)/Var(y). The relations in Eqs 9 and 11 indicate that the OLR estimates

serve as bounding values because for any least squares estimate bMER, it can be shown [20] that

jbxy;OLRj � jbMERj � jb
� 1
yx;OLRj: ð12Þ

In section 2.6, we provide a statistical explanation (see Eq 26) and a graphical illustration

(Fig 2) of the bounded range of |bMER|. To compensate for the bias in bxy;kx and b� 1
yx;ky

, various

ad-hoc combinations have been proposed, including the arithmetic mean [16, 35]:

bxy;A ¼ ðbxy;kx þ b� 1

yx;ky
Þ=2:
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Unfortunately, the limiting values of bxy,A are not consistent with the OLR estimate for

either κx or κy = 1. Instead, we introduce the weighted average

bxy;W ¼ wx

bxy;WR

kx
þ wy

ky

byx;WR

;

where the weights are determined from signal to noise ratios ðwx;wyÞ /

ð�x=VarðexÞ; �y=VarðeyÞÞ (see Eq 17). In Fig 1A and 1B, we observe that the bxy,W estimates com-

pare well with the expected slope but with much larger confidence intervals compared to those

of WOR.

2.5 Noise reduction for a weighted average of linearly related variable

vectors

Consider the weighted average of the LRVVs fðx; yÞ j x; y 2 Rng:

τ ¼ wx þ ð1 � wÞy; ð13Þ

with 0� w� 1. Then, τ 2 conv(x, y) and corresponds to points on the line segment connect-

ing x and y. The average of x and y is associated with the partial cancellation of error and an

improved signal-to-noise ratio. Let Var(ex) and Var(ey) denote the expected variances of the

errors in x and y, respectively. Then, the propagation of independent error for the weighted

sum of two variables [34] gives

VarðeτÞ ¼ w2VarðexÞ þ ð1 � wÞ2VarðeyÞ: ð14Þ

Fig 2. Bounded ranges of the regression slopes for the errors in both x and y. Monte Carlo simulations of parametric linear

regression are conducted for 25 evenly spaced values y�i ¼ x�i , and the error model is syi ¼ 0:2y�i , sxi ¼ ax
�
i for α = 0.01, 0.2, 0.4. The

estimates for the slope bPLR (A) and correlation rPLR = rτx rτy (B) are averages over 5000 datasets (x, y) = (x� + ex, y� + ey) with

normally distributed errors (ex, ey) and a weighted average τ = wx x + (1 − wx)y. The optimal (bPLR, rPLR) estimates corresponding to

the minimum CVE in τ are also plotted (red). The 2σ error bars are estimates for the positive and negative deviations from the

median value.

https://doi.org/10.1371/journal.pone.0262148.g002
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By introducing the mean value �τ ¼ w�x þ ð1 � wÞ�y and the change in coordinates ω = w/(1

− w), the coefficient of variation for error in τ is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeτÞ

p
�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðexÞ
VarðeyÞ

o2 þ 1

s

�x
�y
oþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeyÞ

q
�y: ð15Þ

Then, setting the derivative dð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeτÞ

p
=�tÞ=do ¼ 0 yields

o ¼
�x
�y
VarðeyÞ
VarðexÞ

;

and we obtain the criterion

w ¼ 1þ
�y
�x
VarðexÞ
VarðeyÞ

 !� 1

; ð16Þ

for the minimum CVE. In Fig 3, we use Monte Carlo simulations to demonstrate that the min-

imum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeτÞ

p
=�t is consistent with Eq 16. By partitioning the weighted average τ = ∑j wj yj

into a sequence of pairwise averages for the data (yj), we obtain the general min(CVE) expres-

sion

wj ¼
�y j

VarðeyjÞ

X

j

�y j
VarðeyjÞ

 !� 1

: ð17Þ

Thus, the noise reduction for the average is optimal when the �y j=VarðeyjÞ ratios are bal-

anced for the LRVVs. To the best of our knowledge, this expression for optimizing the CVE of

a weighted average has not been previously reported. We note that the �y j=VarðeyjÞ correspond

to the signal-to-noise ratios �y j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeyjÞ

q
[36]. However, for data that are not linearly related,

averaging results in the uncontrolled mixing of noise and signal and a loss of information.

This implies that the treatment of measurement error in more general problems, including

multiple and polynomial regression, requires nonlinear optimization methods. That explains

why this work is limited to the treatment of MER for LRVVs. In the next section, we discuss

the use of τ as a parameter for measurement error regression.

2.6 The chain rule in linear regression

By applying the chain rule [34] to Eq 2, we obtain the factorization

bxy ¼
dy�i
dx�i

; ð18Þ

¼
dy�i
dτ�i

dτ�i
dx�i

; ð19Þ

$
dy�i
dt�i

;
dx�i
dt�i

� �

; ð20Þ
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� βxy ¼ ðbty; btxÞ: ð21Þ

The fractional form of Eq 19 is associated with scale invariance and corresponds to the

homogeneous coordinates βxyt, with t 2 R1. The mapping βxy 7! βxy is equivalent to invoking

the parametric representation (x(t), y(t)) for the linear relation between the variables (Eq 8).

Therefore, the chain rule permits a generalization in which the slope in linear regression is

parameterized by τ�, where βxy corresponds to the point (βxy, 1) on the projective line P1 and a

perspective function of the slope vector βxy [4, 33]. Consequently, Eq 21 serves as the basis for

our generalization of the linear regression algorithm, where the weighted average τ serves to

parameterize the relation between variable vectors. Analogously to Eq 9, the PLR slope vector

is obtained as

bxy;PLR $
1

kτ

bτy;WR; bτx;WR

� �
; ð22Þ

Fig 3. Noise reduction for a weighted average of variable vectors. Monte Carlo simulations of weighted averaging

are conducted for the data (x, y) consisting of 25 evenly spaced values for y� = 2x�. The statistical parameters are

estimated from 5000 datasets (x, y) = (x� + ex, y� + ey) with normally distributed errors (ex, ey), and the error model is:

sy� = 0.3y�, sx� = α x� for α = 0.01, 0.3, 0.5. The minimum coefficient of variation for error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeτÞ

p
=�t for the

weighted average τ = wx x + (1 − wx)y is consistent with Eq 17, as shown by the optimal wmin curve. Deming regression

is associated with the weights ðwx;wyÞ / ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðexÞ

p
; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeyÞ

q
Þ and the corresponding CVE curve (grey)

intersects the wmin curve.

https://doi.org/10.1371/journal.pone.0262148.g003
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where the components of bxy,PLR are estimated individually using the WR algorithm (Eq 4)

with τ in the design matrix. Thus, x and y both serve as dependent variables. Without loss of

generality, the factor k� 1
τ can be ignored because of the homogeneous coordinates equivalence.

Therefore, we can regard τ as corresponding to a set of fixed values. Then, the parametric lin-

ear regression estimator for βxy is

bxy;PLR ¼
bτy;WR

bτx;WR
: ð23Þ

In the special case where wx = 1, τ = x and bxy,PLR! bxy,WR, x serves as both a dependent

variable and an independent variable. Conversely, bxy;PLR ! b� 1
yx;WR for wy = 1, and y serves as

an independent variable. Therefore, the fact that there is a bounded range of values for the

MER slope (Eq 12) comes from the dependence of bxy,PLR on τ, which ranges over conv(x, y).

The monotonic decrease of bxy,PLR with wx is shown in Fig 2A, with the lower and upper

bounds given by (bxy,WR, 1) and (1, byx,WR), respectively; this is consistent with the OLR con-

straints in Eq 12. As we discuss in section 3.2, the extension of the PLR algorithm for estimat-

ing the MER parameters for a set of LRVVs Y ¼ ðyjÞ is straightforward. Therefore, we make

the parametric linear regression proposition.

Proposition 1. For a set of linearly related variable vectors Y ¼ ðyjÞ, the weighted average τ
= ∑j wjyj corresponding to the minimum coefficient of variation for error (Eq 17) provides the
optimal measurement error regression estimate for the slope vector bY;PLR ¼ ðbτyj;WRÞ.

In Fig 1A and 1B, we show that the performance of the bxy,PLR estimate is comparable to

that of the WOR algorithm for a wide range of reliability ratios. The PLR algorithm provides

predicted values for y(i) (Fig 1E), but predicted values can also be estimated using the WP

method (Eq 7). In the special case where the LRVVs are not subject to error and the points fall

exactly on a straight line, we obtain kτ ¼ 18 τ 2 convðYÞ, then any τ can serve as the

parametric variable vector in PLR.

Now, we consider the pedagogically important special case where Vx and Vy are both pro-

portional to I. We obtain

bxy;PLR ! bxy;POLR ¼
1

VarðτÞ
Cov τ; yð Þ;Cov τ; xð Þð Þ; ð24Þ

$ Covðy; x j τÞ � ðCovðτ; yÞ;Covðτ; xÞÞ; ð25Þ

$ ðbxy;POLR; 1Þ; ð26Þ

where bxy,POLR = Cov(τ, y)/Cov(τ, x) is a perspective function of bxy,POLR. In Eq 25, we intro-

duce the parametric covariance vector notation Cov(y, x j τ) to indicate the homogeneous

coordinates equivalence with bxy,POLR. Thus, we note that covariance serves as a measure of

linear dependence between variable vectors [21, 32] and is therefore subject to the chain rule.

Consequently, we make the parametric covariance proposition.

Proposition 2 In the analysis of linear dependence for a set of LRVVsY, the chain rule
implies that the covariance is associated with a conditional vector form
CovðY j τÞ ¼ ðCovðτ; yjÞÞ, which is parameterized by the weighted average τ 2 convðYÞ.

Therefore, covariance is a vector quantity in the parametric representation for the linear

relation between variable vectors. Then, there is a range for Cov(y, x j τ) in correspondence

with bxy,POLR and the bounded range for bMER in Eq 12. For (wx, wy) given by Eq 17 and τ = wx
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x + wx y, we obtain the expression

Covðτ; yÞ
wyVarðyÞ

¼
wxCovðx; yÞ
wyVarðyÞ

þ 1; ð27Þ

observe that the right side is invariant to scaling the data: (x, y)! (kxx, kyy), and note that

there is a similar factorization for Cov(τ, x). Conversely, we conclude that the scaling invari-

ance property for the quantities

wxCovðx; yÞ
wyVarðyÞ

;
wyCovðy; xÞ
wxVarðxÞ

( )

;

implies that wx/wy/ ky/kx, which is a necessary condition but not sufficient for specifying the

optimal weights for τ; in section 3.1, we discuss Deming weighting which also satisfies the scal-

ing invariance property. Then, we obtain the homogeneous coordinates equivalence

Cov τ; yð Þ;Cov τ; xð Þð Þ $
wyVarðyÞ
wxVarðxÞ

Covðτ; yÞ
wyVarðyÞ

;
Covðτ; xÞ
wxVarðxÞ

 !

;

and observe the corresponding scaling relation

wyVarðyÞ
wxVarðxÞ

!
ky
kx

wyVarðyÞ
wxVarðxÞ

:

Then, bxy,POLR varies proportionally with the scaling (kxx, kyy); the bxy,POLR estimate is con-

sistent with respect to the scaling of the data. These covariance factorizations provide another

demonstration of the importance of WLS optimization for partitioning residual effects in mea-

surement error regression. The generalization of these expressions for a (yj) dataset is straight-

forward. However, we note that Cov(τ, yj) assumes that Vyj
¼ I and does not account for the

heteroscedastic error in yj. Thus, in practice, the PLR estimate (Eq 22) is preferred. Finally, we

note that the two special cases

bxy;POLR ¼ ðbxy;OLR; 1Þ; ð28Þ

$ ðCovðx; yÞ;VarðxÞÞ; ð29Þ

for τ = x and

bxy;POLR ¼ ð1; byx;OLRÞ; ð30Þ

$ ðVarðyÞ;Covðy; xÞÞ; ð31Þ

for τ = y, correspond to the bounding values in Eq 12. Therefore, Cov(x, y) and Cov(y, x) are

numerically equal but serve as components for different parametric covariance vectors, and

correspond to different estimates for MER slope, bxy,OLR and byx,OLR, respectively.

Now, we consider the multivariate generalization of the Pearson correlation coefficient r (Eq

1). Using the well-known correspondence between covariance and Pearson correlation [32],

rτyj
¼

Covðτ; yjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðτÞVarðyjÞ

q ¼ τ̂ c � ŷ j;c;

we transform Eq 25 and define a parametric correlation vector

rðx; y j τÞ ¼ ðrτx; rτyÞ: ð32Þ
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Then, we observe that the Pearson correlation coefficient rτ(x, y) can be written in Cartesian

tensor form as the double contraction of dyads

rτ ¼ τ̂ cτ̂ c : x̂cŷc; ð33Þ

¼ rτxrτy: ð34Þ

The dyad x̂cŷc is a bilinear measure of the joint variation in x and y. In the special cases

where τ̂ c ¼ x̂c and ŷc, rτ reduces to the standard Pearson correlation coefficient r (Eq 1). Geo-

metrically, rτ serves as a measure of the degree to which xc and yc are mutually aligned in the τc
direction. Then, the generalization of Eq 33 as the m-fold contraction of polyads for the vari-

able vectors ðŷ j;cÞ 2 R
n�m

serves as the basis for our definition of the parametric correlation

coefficient:

rPLR ¼
Ym

j¼1

rτyj
; ð35Þ

with m� 2. The τ̂ c-polyads τ̂ cτ̂ c; τ̂ cτ̂ cτ̂ c; . . . are referred to as 2nd, 3rd, . . . order Pearson corre-

lation tensors, respectively. Therefore, we associate a set of m LRVVs with a set of two-way,

three-way, . . ., m-way weighted averages, PLRs, covariance vectors and PLR correlation coeffi-

cients. However, a detailed discussion of Cartesian tensors [37, 38] is beyond the scope of this

paper. In Fig 2B, the concave down variation of rPLR = rτx rτy results from the product of the

monotonically increasing rτx function and decreasing rτy function, with the endpoints equal to

the Pearson correlation coefficient r. Thus, rPLR varies with the expected error ðs2
x; s

2
yÞ, but

Pearson’s r serves as the lower bound. Then, r is attenuated compared to rPLR when the data (x,

y) are subject to measurement errors [13], as shown in Fig 1C. When the data (x, y) are highly

correlated and Pearson’s r approaches 1, the rPLR curve becomes a horizontal line at rPLR = 1

(or nearly so). We conclude that the parametric covariance (Eq 25), correlation (Eq 32) and

PLR slope (Proposition 1) correspond to different perspective functions and coordinate sys-

tems for representing the linear relation between variable vectors, i.e., points dispersed about

the MER line. Then, a condition for the interpretation of covariance and correlation is that the

deviation of the points from the MER line must be consistent with the expected error ðs2
yðiÞ
Þ. In

section 3.1, we discuss the ambiguity that arises when the MER line is perturbed by outliers.

Analytical methods for the propagation of errors and the estimation of distributions for

ratios [39, 40], proportions [41, 42], and correlation coefficients [43] are complicated by frac-

tional transformations, bounded ranges, and discreteness. The propagation of errors for con-

voluted quantities such as bxy,PLR and rPLR is prohibitively complicated. Alternatively, Monte

Carlo methods are practical approaches for estimating the distributions and confidence inter-

vals of fractional statistical parameters, and they allow for the detailed simulation of stochastic

effects in the data acquisition process as described previously [4]. The error bars shown in vari-

ous figures in this paper are estimated using MC methods. Fig 4 shows an example of a two-

dimensional MC histogram for the joint (rPLR, bxy,PLR) distribution. We note that the distribu-

tions for MER parameters are often skewed, so confidence intervals are estimated separately

for + /− deviations from the median.

3 Data analysis and results

Using publicly available data, we provide practical examples that illustrate the ambiguity that

arises when the variable vectors are not linearly related and the application of multidimen-

sional parametric linear regression for analyzing the dispersion of RNA-Seq read count data.
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3.1 Example 1: Measurement error regression with outliers

The data for this example come from Table 11.3.1 in [21] and originate from consulting work

(R. Berger, personal communication). However, error estimates are not available for these

data. For our demonstration, we provided a rudimentary error model with

ðs2
x; s

2
yÞ ¼ ð0:04þ 0:005x2; 0:1þ 0:005y2Þ, as shown by the 2σ xy-error bars in Fig 1D. The

ordinary linear regression estimate for the slope is attenuated as expected (Eq 9). However, the

orthogonal regression (OR) estimate reported in [21] is also biased because of the equal weight

assumption for the residual effects (ex, ey). Using the defined notations for sums of squares,

Sxx ¼
X

i

ðxi � �xiÞ
2
; Syy ¼

X

i

ðyi � �yiÞ
2
; Sxy ¼

X

i

ðxi � �xiÞðyi � �yiÞ;

and making the substitution (x, y) 7! (wxx, wyy), we obtain a WLS OR estimate:

bxy;ORw ¼
wx

wy
� Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 1
p� �

; ð36Þ

where the wx/wy factor is needed for the transformation back to the original coordinates for (x,

y), and the factor for the weighted residuals in (x, y) is

B ¼
1

2Sxy

wx

wy
Sxx �

wy

wx
Syy

 !

: ð37Þ

Fig 4. Distribution of the statistical parameters in parametric linear regression. A two-dimensional histogram (B)

is calculated from 500000 Monte Carlo datasets for the data in Fig 1D. The distributions of rPLR (A) and bPLR (C) are

averages obtained from 100 MC histograms, with 5000 MC datasets (x, y) per histogram. The 2σ error bars are

estimates of the positive and negative deviations from the median and indicate the degree of convergence of the MC

estimate. The (rPLR, bPLR) = (0.74, 1.44) estimates are indicated in red.

https://doi.org/10.1371/journal.pone.0262148.g004
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The weights are determined from the signal to noise ratios ðwx;wyÞ /

ð�x=VarðexÞ; �y=VarðeyÞÞ with the constraints wx + wy = 1 and wx, wy� 0 (Eq 17). Then, we note

that B is invariant to the scaling of the data, (x, y)!(kx x, ky y). Therefore, the bxy,ORw estimate

is consistent with respect to the scaling of the data. The bxy,OR estimate is recovered when wx =

wy [20], and because of this constraint, bxy,OR is not a consistent estimate since it does not vary

proportionally with (kxx, kyy) scaling. There is better agreement between bxy,WOR and bxy,ORw

(Fig 1D), but the latter does not account for the heteroscedastic errors ðs2
x; s

2
yÞ. The bxy,PLR esti-

mate is obtained from the separate regressions (bτx,WR, bτy,WR), as shown in Fig 1E. The differ-

ences between the bxy,WOR and bxy,PLR estimates are small compared to the experimental

uncertainty. However, we observe that there are many positive and negative outliers in the

data (Fig 1D), and only a subset of the points are close to any one of the MER lines. This

implies that the data (x, y) are not linearly related, and the weighted average τ 2 conv(x, y) is

then subject to confounding effects. Then, WLS optimization produces misleading results, and

the MER line does not possess a functional or operational interpretation. Criteria can be

applied to select an LRVV subset for measurement error regression, but this works best when

the outlier subset is small. Otherwise, linear regression is not recommended for the analysis of

data that are not linearly related. In [4], we discuss the use of regression tree association graphs

in the analysis of weakly correlated data. Finally, we note that the Deming orthogonal regres-

sion estimate [22] is obtained by substituting the alternative weighting ðwx;wyÞ /

ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðexÞ

p
; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðeyÞ

q
Þ into Eq 36. Our simulations confirm that Deming weighting has

the scale invariance property but it is not optimal for MER (Fig 3), and the corresponding

parameter estimates are biased for both PLR and ORw (not shown).

3.2 Example 2: Conical dispersion for replicated RNA-Seq data

In this section, our objective is to demonstrate that multidimensional linear MER has practical

applications. We expect that there are many applications for PLR in the ‘big data’ world but

the application for RNA-Seq data analysis is convenient because of our previous collaborations

in gene expression research. In particular, we discuss the use of the PLR method in the

analysis of read counting errors in a replicated RNA-Seq dataset. The estimation of the experi-

mental errors and confidence intervals for effect size measures are important problems in

RNA-Seq analysis because experiments are usually performed with very few replicates [6].

The replicated data correspond to the Cartesian product of LRVVs Y ¼ ðyjÞ with yj 2 R
n,

dimðYÞ ¼ n�m; yij is the read count for the ith RNA tag of the yj replicate, n is the number of

RNA tags, m is the number of replicates, and m� n because RNA-Seq assays are highly multi-

plexed and n is large. The observation vectors for the RNA tags are denoted g(i). Our error

analysis algorithm is iterative and requires an initial guess for the expected error in the data

ðs2
yj
Þinit; the read counting errors are assumed to be independent or approximately so:

fCovðeyij ; eyklÞ ¼ 0 j i 6¼ k _ j 6¼ lg. In our implementation, the initial error estimate is of the

form s2
yj
¼ q

0
þ q

2
y2
j . Let min(g(i)) correspond to a set of RNA tags with the lowest read counts,

excluding those with �gðiÞ ¼ 0; i.e., min(g(i)) is a set of points close to the origin of the regression

graph. Then, q0 is initially estimated from the variance for min(g(i)); typically 1� q0� 50. An

initial value for q2 is obtained by visual inspection of the data (Fig 5); typically 0.002� q2�

0.05 (Fig 6 legend). Then, the optimal τ 2 convðYÞ for the minimum CVE is estimated, and

the PLR method provides parameter estimates for the MER line:

‘ ¼ amin þ bPLRt; ð38Þ
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with amin ¼ minðg
ðiÞÞ, t 2 R

1
, famin; bPLR 2 R

m
g. Then, the data are transformed so that ℓ

passes through the origin with a unit slope (Fig 5B & 5D); i.e., bPLR = 1, and amin ≊ 0. This

adjustment for ℓ is important because afterwards, the g(i) are conically dispersed about the 1

line. Then, the g(i) are partitioned into orthogonal components for deviation δ(i) and mean

�gðiÞ ¼ g
ðiÞ � 1=dimðgðiÞÞ:

g
ðiÞ ¼ dðiÞ þ �gðiÞ1: ð39Þ

Statistically, only the magnitude of δ(i) is important because the orientation is random.

Next, we introduce the mean squared deviation (MSD) d
2

ðiÞ ¼ δðiÞ � δðiÞ=dimðδðiÞÞ, and we

obtain the two parameter representation for the dispersion ð�gðiÞ;
�d
2

ðiÞ Þ, as shown in Fig 5A and

Fig 5. Conical quadratic error parameters for replicated RNA-Seq data. Replicate Arabidopsis thaliana RNA-Seq data from [46]

for the (μg, 4 reps) sample in (A, B) and (1g, 3 reps) sample in (C,D) are scaled so that the parametric linear regression line

corresponds to the unit slope line ðbPLR ¼ 1Þ and passes through the origin. Then, the conical dispersion of points about the 1 line in

the MER graph serves as a measure of the replication error, as shown in the y
1

projections (B,D). An iterative WLS regression of the

mean squared deviation versus the mean value ð�gðiÞÞ produces parameter estimates for the quadratic error model (Eq 41), as shown

in (A, C). The corresponding 2σ threshold curves are shown in (B, D). The linear component of the error (q0 þ q1�gðiÞ) is shown as

‘convergent’ dashed curves. The larger overdispersion q2 in (C, D) compared to that in (A, B) indicates that there is a significant

variation in data quality between the two experiments. The histogram (D inset) shows that the read counts range over four decades.

https://doi.org/10.1371/journal.pone.0262148.g005
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5C. We adopt a heuristic quadratic model for the MSD [14, 44]

d
2

ðiÞ ¼ q
0
þ q

1
�g
ðiÞ þ q

2
�g2
ðiÞ þ eðiÞ: ð40Þ

Then, a WLS quadratic regression of the MSD produces sample estimates for the qi (Fig 5A

and 5C), which then serve as the error model for the input data:

s2
yij
¼ q

0
þ q

1
yij þ q

2
y2
ij; ð41Þ

as shown by the 2σ threshold curves in Fig 5B and 5D. The q0 and q1 terms correspond to the

background noise and Poisson-like components of the dispersion, respectively [45]. The over-

dispersive component q2 suggests that there are uncontrolled experimental effects that cannot

be averaged in a random manner. We note that for a well-designed data acquisition process,

the q2 component should be minimized. The initial guess for ðs2
yj
Þinit is updated, and the algo-

rithm iterates several times to reach convergence for both ℓ and {qi}.
The data for this demonstration come from a study of the response of Arabidopsis thaliana

to fractional gravity [47] and can be retrieved from the publicly accessible NASA GeneLab

Omics database [46]. The dataset contains read count data for six samples with varying gravi-

ties (g) {μ, 0.09, 0.18, 0.36, 0.57, 1}. For each sample, the replicates (yj) with m = 3_4, corre-

spond to a set of LRVVs with approximately identical noise properties: fs2
yj
≊ s2

yk
j j 6¼ kg, with

the possible exception of a small subset of irreproducible outliers which must be flagged. The

read counts are distributed over more than three decades (Fig 5D inset), and the point esti-

mates are skewed due to the heavy tail effects at large values [6]. Consequently, an upper limit

for the mean value ð�gðiÞ � 2000Þ of the observation vectors is imposed, and 4% of the data are

removed from the MER analysis; however, all of the data are included in the graphs (Figs 5

and 6). In Fig 5, we observe that the dispersion varies between the μg (A, B) and 1g (C, D) sam-

ples. As discussed above, the data are transformed such that the PLR slope is 1 and the curva-

ture is negligible near the origin in log-log plots (B, D). We note that log-log scales are

convenient for visualizing dispersion, but the data are not log-transformed in actual calcula-

tions; a log or ratio transformation results in nonlinear confounding effects for weighted aver-

ages. For duplicate read counts g(i) = (x, y), we define the scaled difference

d ¼
x � y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x þ s2

y

q ;
ð42Þ

with the expected variance for the error in x − y given by the sum of the individual variances:

s2x� y ¼ s2x þ s2
y [21]. Then, we apply the condition s2

y ¼ q
0
þ q

1
yþ q

2
y2 to obtain the quadratic

equation

q
2
�

1

d2

� �

y2 þ q
1
þ

2x
d2

� �

yþ q
0
þ s2

x �
x2

d2
¼ 0: ð43Þ

The |d| = 2 threshold curves in Fig 5B and 5D are calculated from the roots of this expres-

sion. The q2 component dominates at high read counts, as indicated by the convergence of the

dashed curves for the linear components (q0, q1). Then, q2 serves as an indicator of the data

quality and reproducibility, and we observe significant variations between the samples (Fig 6
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legend). We define the root mean square (rms) scaled deviation as

�drms;ðiÞ ¼

ffiffiffiffiffiffiffi
�d
2

ðiÞ

s2
�gðiÞ

v
u
u
t ;

where s2
�gðiÞ
¼ q

0
þ q

1
�gðiÞ þ q

2
�g2
ðiÞ. A comparison of the empirical survival distributions for

�drms;ðiÞ shows that there are heavy tails at large deviations for the six samples (Fig 6). We use

Monte Carlo methods to simulate the read count data for normal distributions

N ð�gðiÞ; s�gðiÞ
; dimðg

ðiÞÞÞ and confirm that the simulated distributions for �drms;ðiÞ are identical to

chi-squared distributions (Fig 6). The much slower decay in the experimental �drms;ðiÞ is an indi-

cation of uncontrolled processes in the RNA-Seq assay that result in overdispersion in the g(i).

The inset graph in Fig 6 shows the overdispersion for a small {g(i)} subset around the median

�gðiÞ for the μg sample. Thus, the overdispersive effects in the �drms;ðiÞ are observed for intervals

over the entire range of read counts. Statistical methods that assume normal distributions and

do not account for this overdispersion will overestimate the effect size. In biological studies,

the variable vectors for RNA-Seq are not linearly related. Then, our parametric LRVV frame-

work serves an elementary role in searching for multiway dependency in the variation of gene

expression. The detailed discussion of weighted least squares optimization problems, including

normalization and the estimation of effect size, in gene expression data analysis is a topic for a

separate paper.

Fig 6. Overdispersion of the residual effects in replicated RNA-Seq data. Empirical survival functions for the root

mean square scaled deviation (�drms) from the conical dispersion analysis (see Fig 5) of the RNA-Seq data are plotted for

six A. thaliana samples under fractional gravity [46]. The w2
3

and w2
4

curves from the Monte Carlo simulation for the

standard normal distribution are also shown. The slower decay in the observed �drms indicates that RNA-Seq data are

subject to heterogeneous dispersive effects. The inset shows the overdispersion for a 1000 point subset around the

median �gðiÞ for the μg sample. Thus, overdispersive effects are observed across the entire range of read counts. In the

legend, each sample is labeled with its q
2

coefficient for the quadratic error model. The variation in q
2

indicates that

there are significant data quality variations between samples.

https://doi.org/10.1371/journal.pone.0262148.g006
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4 Software

Numerical computations were performed using the python (v3.8.4) language with the NumPy

(v1.19.0) [48] and SciPy (v1.5.0) [49] packages. Figures were prepared using the Matplotlib

(v3.4.1) package [50]. The manuscript was prepared using the MiKTeX (v2.9) implementation

of TeX/LaTeX [51].

5 Discussion

In this work, we discuss the fact that statistical measures of linear dependence, including

covariance, correlation coefficient and regression slope, are subject to the chain rule. We

develop a novel multidimensional linear regression algorithm where the relation between vari-

able vectors is parameterized by a weighted average, and the weights are determined from an

error model E for the input data. Then, the implementation of PLR involves the use of

weighted least squares normal equations to estimate the parameters of the best fit line for a set

of LRVVs. Standard statistical concepts, including covariance and the Moore-Penrose pseu-

doinverse, provide the necessary intuition for the formulation of our PLR method. This con-

trasts with the ODRPACK algorithm which requires iterative numeric optimization because

the WOR least-squares equation cannot be solved analytically. The PLR and ODRPACK meth-

ods yield very similar results but the latter is formulated only for bivariate data. We find that in

the parametric representation of a linear relation, covariance and correlation are associated

with vector quantities. We also identify scale invariant quantities for partitioned residual

effects between the LRVVs for both the PLR and weighted orthogonal regression methods.

Therefore, when E is undefined, MER is not a well-posed problem [52]; i.e., there is not a

unique solution. This supports previous suggestions that the specification of E is a requirement

for solving the MER problem [27]. E is also essential for determining the distributions and cor-

responding confidence intervals of PLR parameter estimates and effect size. Constructing a

realistic error model for a data acquisition process can be daunting, especially in omics studies,

because it is necessary to account for all relevant sources of experimental error and system var-

iability. However, an approximate trial and error approach can be informative, and Monte

Carlo methods are convenient because they allow for the detailed simulation of stochastic

effects in the data acquisition process. Finally, the averaging of variable vectors that are not lin-

early related results in the loss of information because of the destructive interference associated

with the mixing of signal and noise. Consequently, accounting for measurement error in poly-

nomial and multiple regression requires nonlinear optimization methods, which is a topic for

a separate paper. We conclude that the parametric representation for the relation between vari-

able vectors provides a more general framework for linear regression compared to the stan-

dard Cartesian representation.
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