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Background: Lenvatinib is a newly approved molecular targeted drug for the treatment of

advanced hepatocellular carcinoma (HCC). However, the high cost associated with this

treatment poses a huge financial burden on patients and the entire public health system.

Therefore, there is an urgent need to develop novel strategies that enhance the antitumor

effect of lenvatinib.

Methods: The antitumor effects of chelidonine or/and lenvatinib on HCC cell lines

MHCC97-H and LM-3 were examined using the 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-

2- H-tetrazolium bromide (MTT) assay. For the in-vivo investigation, the effect on subcu-

taneous or intrahepatic tumor growth in nude mice was also determined. The mRNA levels

of epithelial mesenchymal transition (EMT)-related factors were examined through quanti-

tative polymerase chain reaction or Western blot.

Results: In the present study, we found that treatment with chelidonine enhanced the

apoptotic effect of lenvatinib on HCC cells and the in-vivo growth of HCC tumors in nude

mice. Mechanistically, treatment with chelidonine increased the expression of epithelial

indicator E-cadherin, whereas it decreased the expression of mesenchymal indicators

N-cadherin and Vimentin. These findings suggest that chelidonine restricted the EMT in

HCC cells.

Conclusion: Chelidonine inhibits the process of EMT and enhances the antitumor effect of

lenvatinib on HCC cells.

Keywords: advanced hepatocellular carcinoma, lenvatinib, chelidonine, epithelial mesenchymal

transition

Introduction
In China, there are >70 million patients with liver disease who suffer from various

chronic liver diseases caused by hepatitis B virus infection.1 Unfortunately, a large

proportion of these patients eventually progresses into hepatocellular carcinoma

(HCC).2,3 HCC seriously endangers the longevity of humans, and poses a huge

challenge to the public health system.4 Moreover, most patients suffering from

HCC are initially diagnosed an advanced stage, and only a very small proportion

are suitable to receive radical treatments, such as surgical resection.5,6 Molecular

targeted chemotherapy, represented by orally administrable kinase inhibitors (eg,

sorafenib), is the top therapeutic choice for the treatment of advanced HCC.7,8

Small molecular inhibitors of receptor protein tyrosine kinases, such as vascular

endothelial growth factor receptor (VEGFR) and mitogen-activated protein kinase,

can inhibit the proliferation and metastasis of HCC cells and tumor angiogenesis.9

However, the application of HCC molecular targeted drugs is faced with several
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challenges. Firstly, only 26–43% of patients with advanced

HCC are sensitive to sorafenib.10 Secondly, those who are

sensitive to sorafenib are likely to become tolerant to the

drug as the treatment progresses.10 In addition, other drugs

(ie, regorafenib and lenvatinib), which have been applied

in the clinic for a short period of time, may be linked to the

development of resistant if widely used. Thirdly, the cur-

rently available molecular targeted therapies for advanced

HCC are very expensive, thereby imposing a significant

financial burden. Fourthly, at present, the dosage of the

oral administration of such kinase inhibitors is relatively

high (eg, sorafenib: 800 mg/day). This high dosage may

induce several side effects, such as gastrointestinal

bleeding.11,12 The presence of advanced HCC is often

accompanied by varying degrees of cirrhosis, which ren-

ders the long-term, high-dose, oral administration of mole-

cular targeted drugs inducing some problems in terms of

safety.13,14 Therefore, it is important to develop therapeu-

tic strategies to achieve the safer and more effective treat-

ment for each agent.

Chelidonine is a natural product extracted from

Chelidonium majus L.15,16 Previously, chelidonine was

widely used for anesthetic purposes.17,18 Recently, chelido-

nine has also been shown to possess antitumor activity.19,20

It is well known that natural products have been widely

used and considered as an auxiliary medication to enhance

the sensitivity of antitumor agents.21–24 In the present study,

the antitumor effect of chelidonine was examined in HCC

cells.

Materials and methods
Agents and cell culture
L-02 (a non-tumor hepatic cell line) or HCC cell lines

(MHCC97-H and LM-3) were donated by Dr. Fan Feng

at the Department of Pharmacy, General Hospital of

Shenyang Military Area Command (Shenyang,

China).25,26 H22 (Cat. No. BNCC338327), a mouse HCC

cell line, was purchased from BeNa Culture Collection

Corporation (Beijing, China). All cells were purchased

from the culture collection centers of the Chinese govern-

ment, namely the Type Culture Collection of the Chinese

Academy of Sciences (Shanghai, China) and the National

Infrastructure of Cell Line Resources, Chinese Academy

of Medical Sciences (Beijing, China). Lenvatinib (Cat. No.

S1164) and chelidonine (Cat. No. S9154) were purchased

from Selleck Corporation, (Houston, TX, USA). Dimethyl

sulfoxide (DMSO) was purchased from Sigma Aldrich

Corporation (St. Louis, MO, USA). The usage of cell

lines was approved by the Ethics Committee of Hebei

University of Chinese Medicine (Shijiazhuang City,

Hebei Province, China). HCC cells were cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM; Thermo

Scientific Corporation, Waltham, MA, USA) supplemen-

ted with fetal bovine serum (FBS; Thermo Scientific

Corporation).

Examination of cell survival
Lenvatinib or chelidonine was firstly dissolved in DMSO,

and DMEM was subsequently added to the solution. The

hepatic cells, which were cultured in DMEM with 10%

FBS at 37 °C with 5% CO2 condition, were seeded into

96-well plates (Corning Corporation, Corning, NY, USA)

with 8,000 cells/well, and treated with the indicated con-

centration of lenvatinib or chelidonine (Table 1) for 48 h.

Subsequently, the cells were examined using the 3-[4,5-

dimethyl-2-thiazolyl]-2,5-diphenyl-2- H-tetrazolium bro-

mide (MTT) assay. The MTT were treated the cells for

4–6 hrs and the cells were lysis by using DMSO. The

optical density (OD) values of cell samples were examined

at 490 nm. Following the MTT experiments, the inhibition

rates on the survival of HCC cells and the half maximal

inhibitory concentration (IC50) of the agents were calculated

as described by Feng et al (2013).27 The inhibition on HCC

cells were calculated as follows: [(OD values of control

group cells examined at 490 nm control group cells) −
(OD values of administration group cells examined at

490 nm control group cells)]/(OD values of control group

cells examined at 490 nm control group cells) ×100%.28,29

The IC50 of the agents were calculated based on the inhibi-

tion rates, to reflect their antitumor effect on HCC cells.

Quantitative polymerase chain reaction

(qPCR)
HCC cells were treated with the indicated concentrations

of agents (Table 1). Subsequently, the cells were harvested

and the total RNA was extracted using a PARISTM Kit

(Thermo Scientific Corporation). The RNA samples were

reverse transcribed using a MultiscribeTM Reverse

Transcriptase (Thermo Scientific Corporation). The qPCR

experiments were performed as described by Ji et al

(2017) and Liang et al (2017).30,31 GAPDH (glyceralde-

hyde-3-phosphate dehydrogenase) was selected as the

loading control. The relative mRNA expression levels of

E-cadherin, N-cadherin, Vimentin, Twist, and Snail were
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calculated using the comparative CT method.30,31 The pri-

mers used in this experiment are shown in Table 2.

Antibodies and Western blotting
HCC cells were firstly treated with the indicated concen-

trations of chelidonine (Table 1). Western blotting was

performed using a standard protocol. Briefly, cells were

harvested and the total protein of cells was extracted.

Subsequently, the protein samples were subjected to

sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE). After SDS-PAGE, the protein in the

SDS-PAGE gel were transferred onto a polyvinylidene

fluoride membrane. Subsequently, the membrane was

blocked using 5% bovine serum albumin diluted in Tris-

buffered saline with Tween (TBST) buffer. After blocking,

the membrane was incubated with primary antibodies

diluted by TBST. After three washes with TBST, the

membrane was incubated with secondary antibodies. The

membrane was visualized using an enhanced chemilumi-

nescence kit (Amersham Biosciences, Piscataway, NJ,

USA). Western blotting was performed using antibodies

purchased from Abcam Corporation (Cambridge,

UK) against E-cadherin (Cat. No. ab15148; dilution rate:

1:500), N-cadherin (Cat. No. ab98952; dilution

rate: 1:1000), Vimentin (Cat. No. ab8069; dilution

rate: 1:2000), Twist (Cat. No. ab49254; dilution rate:

1:500), Snail (Cat. No. ab216347; dilution rate: 1:500),

or GAPDH (Cat. No. ab8245; dilution rate: 1:5000).

Assessment of subcutaneous tumor growth
The animal experiments performed in this study were

approved by the Ethics Committee of Animal Care and

Usage, of the Hebei University of Chinese Medicine. All

animal experiments were performed in accordance with the

UK Animals (Scientific Procedures) Act, 1986 and asso-

ciated guidelines. The nude mice or BalB/c mice used in

this study were purchased from Sibeifu Corporation

(Beijing, China). HCC cells were cultured and harvested

to prepare the cell suspension, which was diluted using

physiological saline. Subsequently, cell suspensions (5×106

cells/animal) were injected into subcutaneous position

(sites) of nude mice.32,33 The mice received oral adminis-

tration of agents 4–5 days following the injection of HCC

cells. For the chelidonine alone treatment, the mice received

the indicated concentrations of chelidonine (Table 3). For

the lenvatinib–chelidonine combination treatment, the mice

received solvent control (physiological saline) plus the indi-

cated concentration of lenvatinib (Table 3) or 5 mg/kg

chelidonine plus the indicated concentration of lenvatinib

(Table 3). The mice received the agents orally once every

2 days. Following the administration of 10 doses over a

21-day period, the tumors were harvested and their volumes

and weights were examined as described by Jia et al (2016)

Table 1 The concentrations of Chelidonine or Lenvatinib used in cell survival examination

Agents Concentration (μmol/L)

Chelidonine 0.03 0.1 0.3 1 3 10 30

Lenvatinib 0.003 0.01 0.03 0.1 0.3 1 3

Table 2 Primers used in qPCR experiments

Genes Primers Sequences

N-cadherin Forward Sequence CCTCCAGAGTTTACTGCCATGAC

Reverse Sequence GTAGGATCTCCGCCACTGATTC

Vimentin Forward Sequence AGGCAAAGCAGGAGTCCACTGA

Reverse Sequence ATCTGGCGTTCCAGGGACTCAT

Snail Forward Sequence TGCCCTCAAGATGCACATCCGA

Reverse Sequence GGGACAGGAGAAGGGCTTCTC

Twist Forward Sequence GCCAGGTACATCGACTTCCTCT

Reverse Sequence TCCATCCTCCAGACCGAGAAGG

E-cadherin Forward Sequence AAGGCACGCCTGTCGAAGCA

Reverse Sequence ACGTTGTCCCGGGTGTCATCCT
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and Xie et al (2018).24,34 Tumor volumes were calculated as

follows: (tumor length) × (tumor width) × (tumor width)/2.

The inhibition rates induced by agents on the subcutaneous

growth of HCC cells were calculated as follows: (Control

group’s tumor volume – administration group’s tumor

volume)/(Control group’s tumor volume) ×100% or

(Control group’s tumor weights – administration group’s

tumor weights)/(Control group’s tumor weights) ×100%.

Moreover, mice possessing a normal immune system, ie,

BALB/c mice (Sibeifu Corporation, Beijing, China), were

used. H22 cells were injected into BALB/c mice to form

subcutaneous tumors. The mice received oral administration

of agents 4–5 days following the injection of HCC cells. For

chelidonine alone treatment, the mice received the indicated

concentrations of chelidonine (Table 3). For the lenvatinib–

chelidonine combination treatment, the mice received sol-

vent control (physiological saline) plus the indicated concen-

tration of lenvatinib (Table 3) or 5mg/kg chelidonine plus the

indicated concentration of lenvatinib (Table 3). The mice

received the agents orally once every 2 days. Following the

administration of 10 doses over a 21-day period, the tumors

were harvested and their volumes and weights were exam-

ined as described by Jia et al (2016) and Xie et al (2017).24,34

Tumor volumes were calculated as follows: (tumor

length) × (tumor width) × (tumor width)/2. The inhibition

rates induced by the agents on the subcutaneous growth of

HCC cells were calculated as follows: (Control group’s

tumor volume – administration group’s tumor volume)/

(Control group’s tumor volume) ×100% or (Control group’s

tumor weights − administration group’s tumor weights)/

(Control group’s tumor weights) ×100%.

Intrahepatic growth experiments
MHCC97-H cells) were firstly seeded into nude mice to

form subcutaneous tumor tissues. Following the formation

of subcutaneous tumors in nude mice, the tumor tissues

were harvested, and micro-blocks of tumor tissues were

prepared (Table 4). Subsequently, the micro-blocks were

injected into the liver of nude mice.35–38 The mice received

oral administration of agents 4–5 days after injection of the

tumor tissue micro-blocks. Subsequently, the animals were

divided into four groups: (1) solvent control group; (2)

5 mg/kg chelidonine treatment group; (3) 0.5 mg/kg lenva-

tinib treatment group; and (4) 5 mg/kg chelidonine plus

0.5 mg/kg lenvatinib treatment group. For each group, the

mice received the agents orally once every 2 days.

Following the administration of 10 doses over a 21-day

period, the livers of mice with tumor tissues (ie, lesions/

nodules) were harvested and collected. The photographs of

livers were quantitatively analyzed using the Image J soft-

ware (National Institutes of Health, Bethesda, MD, USA) as

descripted by Xie et al (2018) and Chen et al (2018).34,39

The intrahepatic growth of MHCC97-H cells was measured

by calculating the relative lesion/nodule area as follows:

Table 3 The concentrations of Chelidonine or Lenvatinib used in animal examination

Agents Concentration (mg/kg)

Chelidonine 1 2 5 10 20 30

Lenvatinib 0.05 0.1 0.2 0.5 1 2

Table 4 Weight of Tumor tissues seeded into nude mice’s liver organ

Tumor tissues Weight of Tumor tissues (mg)

Solvent control Chelidonine Lenvatinib Chelidonine + Lenvatinib

No. 1 2.08 1.92 2.05 2.10

No. 2 2.06 1.8 2.14 1.96

No. 3 2.11 2.13 1.95 2.03

No. 4 2.19 1.98 2.22 2.12

No. 5 1.98 1.83 1.75 1.84

No. 6 1.79 1.71 1.75 1.96

No. 7 1.74 1.99 1.91 2.09

No. 8 2.06 2.03 2.02 1.77

No. 9 1.99 1.78 1.85 2.01

No. 10 1.76 2.25 1.99 2.03
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(total intensity of lesion)/(total intensity of liver organ)

×100%. The inhibition rates of agents on the intrahepatic

growth of MHCC97-H cells were calculated as follows:

[(control group relative lesion/nodule area) − (administra-

tion group relative lesion/nodule area)]/(control group rela-

tive lesion/nodule area) ×100%.34,39

Statistical analysis
Statistical analyses were performed via two-way analysis

of variance with Bonferroni correction, using the SPSS

software (Version No.: 9.0; IBM Corporation, Armonk,

NY, USA). P-values <0.05 denoted statistical significance.

The IC50 values were calculated using the Origin software

(Northampton, MA, USA).

Results
Chelidonine enhances the sensitivity of

HCC cells to lenvatinib
Firstly, the antitumor effect of chelidonine on HCC cells was

examined. As shown in Figure 1A and B, chelidonine inhi-

bits the survival of MHCC97-H cells (Figure 1A) and LM-3

(Figure 1B) in a dose-dependent manner. The IC50 values of

chelidonine in MHCC97-H and LM3 cells were 7.72

±0.70 μmol/L and 6.34±0.44 μmol/L, respectively.

Epithelial mesenchymal transition (EMT) is a critical process

for tumor cell survival. Therefore, we subsequently tested the

effect of chelidonine on EMT. As shown in Figure 2, cheli-

donine reduced the expression of mesenchymal markers N-

cadherin and Vimentin, whereas it enhanced the expression

of the epithelial marker E-cadherin (Figure 2). These results

suggested that chelidonine induced EMT in HCC cells. In

addition, treatment with chelidonine inhibited the expression

of Twist and Snail, the two key regulators of the EMT

process (Figure 2). Chelidonine significantly inhibited the

viability of HCC cells at the concentrations of 3, 10, and

30 μmol/L. Notably, chelidonine at the 1 μmol/L concentra-

tion did not exert an significant injury on cell viability.

Nevertheless, 1 μmol/L of chelidonine inhibited the EMT

process in HCC cells. Therefore, 1 μmol/L is a non-cytotoxic

dose of chelidonine that can affect the EMT process of HCC

cells. Thus, this concentration was selected for the following

studies. Subsequently, the effect of the combination of che-

lidonine and lenvatinib on HCC cells was examined. As

shown in Figure 1C and D, treatment with chelidonine

enhanced the antitumor effect of lenvatinib on HCC cells

(IC50 values are shown in Table 5).

L-02 cells were also used to further examine the effect

of chelidonine or lenvatinib. The inhibitory effect of

Figure 1 The antitumor effect of chelidonine on HCC cells. HCC cells, MHCC97-H (A), and LM-3 (B) were treated with the indicated concentration of chelidonine for

48 h. Subsequently, the cells were harvested for analysis using the MTT assay. The results are shown as the mean ± SD of the inhibition rate induced by chelidonine on the

survival of HCC cells. HCC cells, MHCC97-H (C), and LM-3 (D), which were pre-treated with 1 μmol/L chelidonine, were treated with the indicated concentration of

lenvatinib for 48 h. Subsequently, the cells were harvested for analysis using the MTT assay. The results are shown as the mean ± SD from the inhibition rate induced by

chelidonine on the survival of HCC cells.

Notes: *P<0.05 versus solvent control with chelidonine.

Abbreviations: HCC, hepatocellular carcinoma; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; SD, standard deviation.
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lenvatinib on L-02 cells was much lower than that observed

in HCC cells; the IC50 value of lenvatinib in L-02 cells was

8.53±0.55 μmol/L. Treatment with chelidonine enhanced

the effect of lenvatinib on L-02 cells, and the IC50 values

of lenvatinib decreased from 8.53±0.55 μmol/L to 2.67

±0.33 μmol/L. Therefore, chelidonine may enhance the

sensitivity of HCC cells to lenvatinib.

Chelidonine increases the in-vivo antitumor

activity of lenvatinib against HCC tumors
A subcutaneous tumor model in nude mice was established

to further examine the synergistic effect of lenvatinib. As

shown in Figure 3, chelidonine inhibited the subcutaneous

growth of MHCC97-H cells in a dose-dependent manner.

Chelidonine decreased the mRNA or protein levels of N-

cadherin, Vimentin, Twist, and Snail, whereas it enhanced

the expression of E-cadherin (Figures 4 and 5). As

expected, the non-cytotoxic concentration (5 mg/kg) of

chelidonine inhibited the EMT process of HCC cells in

subcutaneous tumors. As shown in Figure 6, at non-cyto-

toxic concentrations, the combination of chelidonine with

lenvatinib enhanced the antitumor effect of lenvatinib. The

IC50 values of lenvatinib in the subcutaneous growth of

MHCC97-H cells decreased from 0.82±0.05 mg/kg to 0.18

±0.02 mg/kg. Moreover, the effect of chelidonine or len-

vatinib on H22 cells, a liver cancer cell line of mice, in

normal mice (BalB/c) was also examined (Figure S1). The

inhibitory effect of lenvatinib on the subcutaneous growth

of H22 cells was much lower than that observed in HCC

cells. In addition, treatment with chelidonine at a concen-

tration with no significant toxicity enhanced the antitumor

effect of lenvatinib on the subcutaneous growth of H22

cells.

Subsequently, we performed an analysis of the combi-

nation treatment in the intrahepatic tumor model. As shown

Figure 2 The effect of chelidonine on EMT indicators in cultured HCC cells or HCC cells in subcutaneous tumor tissues. HCC cells, MHCC97-H (A–C), and LM-3 (D–F)
were treated with the indicated concentration of chelidonine for 48 h. Subsequently, the cells were harvested and the total RNA was extracted from cells. The expression of

N-cadherin (A and D), Vimentin (B and E), and E-cadherin (C and F) was examined through qPCR. The results are shown as the mean±SD from the qPCR experiments.

HCC cells, MHCC97-H (G and H), and LM-3 (I and J) were treated with the indicated concentration of chelidonine for 48 h. Subsequently, the cells were harvested and the

total RNA was extracted from cells. The expression of Twist (G and I) and Snail (H and J) was examined through qPCR. The results are shown as the mean ± SD from the

qPCR experiments.

Notes: *P<0.05 versus solvent control with chelidonine.

Abbreviations: EMT, epithelial-mesenchymal transition; HCC, hepatocellular carcinoma; qPCR, quantitative polymerase chain reaction; SD, standard deviation.

Table 5 The IC50 values of Lenvatinib on HCC cells

Cell lines Solvent control Chelidonine

IC50 value of Lenvatinib (nmol/L)

MHCC97-H 260.02±14.4 42.86±2.43

LM-3 185.26±6.36 52.28±3.12
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in Figure 7, MHCC97-H cells form intrahepatic tumor

tissues (ie, a lesion) in the liver of nude mice. Treatment

of nude mice with 0.5 mg/kg lenvatinib exerts certain anti-

tumor effects on the intrahepatic tumor (Figure 7).

Treatment with 5 mg/kg chelidonine alone did not signifi-

cantly reduce the size of the intrahepatic lesion (Figure 7).

However, the combination of lenvatinib with chelidonine

significantly enhanced the antitumor effect of lenvatinib

(Figure 7). The inhibition rate of lenvatinib on MHCC97-

H cells increased from 34.10±5.07% to 52.52±5.13. The

expression of EMT-related factors in tumor tissues were

shown to confirm the effect of the combination treatment.

These data suggested a synergistic effect of chelidonine and

lenvatinib in HCC cells.

Discussion
At present, there is no accurate method for the prediction of

the prognosis of advanced HCC patients treated with mole-

cular targeted therapy.10 Previously, sorafenib was the only

molecular targeted therapy option against HCC.40–43 With

the progress of translational research, newmolecular targeted

drugs (eg, regorafenib) are gradually becoming clinically

applicable. Lenvatinib is a recently approved drug.44–46

Unfortunately, in HCC patients, a high dose of each agent

is required to achieve even limited tumor regression.47

Therefore, investigation of the detailed mechanisms under-

lying the resistance to molecular targeted agents, and the

development of promising strategies to reduce their effective

dosages are warranted.47 In the present study, we found that

treatment with chelidonine enhanced the antitumor effect of

lenvatinib on HCC cells. The effect of chelidonine or lenva-

tinib was also examined in non-tumor L-02 cells. In addition,

the effect of the drug was also examined in mice with a

normal immune system. Human tumors cannot form tumor

tissues in immunologically normal mice. Therefore, tumor

tissues were established in immunized normal mice using

mouse HCC cells. The results showed that lenvatinib inhib-

ited the formation of subcutaneous tumor by H22 cells.

However, the antitumor activity was weaker than that

observed in human HCC cells. Chelidonine enhanced the

Figure 3 The antitumor effect of chelidonine on the subcutaneous growth of MHCC97-H cells. MHCC97-H cells were injected into nude mice to form subcutaneous tumor

tissues. Mice received the indicated concentrations of chelidonine. The results are shown as photographs (A) or a scatter diagram of inhibition rates calculated from tumor

volumes (B) or tumor weights (C). *P<0.05 versus solvent control with chelidonine. n=10.
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Figure 4 The effect of chelidonine on EMT indicators or regulators in subcutaneous tumor tissues formed by MHCC97-H cells. MHCC97-H cells were injected into nude

mice to form subcutaneous tumor tissues. The mice received the indicated concentrations of chelidonine (1, 2, 5, 10, 20 or 30 mg/kg). Subsequently, the tumor tissues were

harvested and the total RNA was extracted from the cells. The expression of N-cadherin (A), Vimentin (B), E-cadherin (C), Twist (D), and Snail (E) was examined through

qPCR. The results are shown as the mean ± SD from the qPCR experiments.

Notes: *P<0.05 versus solvent control with chelidonine. n=10.

Abbreviations: EMT, epithelial-mesenchymal transition; qPCR, quantitative polymerase chain reaction; SD, standard deviation.

Figure 5 The effect of chelidonine on EMT indicators or regulators in subcutaneous tumor tissues formed byMHCC97-Hcells. MHCC97-Hcells were injected into nudemice to form

subcutaneous tumor tissues. The mice received the indicated concentrations of chelidonine (1, 2, 5, 10, 20, 30 mg/kg). Subsequently, the tumor tissues were harvested and the total

protein was extracted from the cells. The expression of N-cadherin, Vimentin, E-cadherin, Twist, and Snail was examined using Western blotting. GAPDH was selected as a loading

control. The results are shown as Western blotting images [A] or a scatter plot of the grayscale scan results (N-cadherin [B], Vimentin [C], E-cadherin [D], Twist[E], and Snail [F]).
Notes: *P<0.05 versus solvent control with chelidonine. n=10.

Abbreviations: EMT, epithelial-mesenchymal transition; qPCR, quantitative polymerase chain reaction.
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ability of lenvatinib to inhibit the formation of subcutaneous

tumor by H22 cells. This may be attributed to the similarity

of various lenvatinib targets (eg, VEGFR or c-Kit) of murine

origin to lenvatinib targets (eg, VEGFR or c-Kit) of human

origin.

EMT is an important cellular process associated with poor

prognosis in HCC patients and mediates metastasis.48–53

During this process, cell adhesion-related proteins are down-

regulated, whereas mesenchymal-related proteins are upregu-

lated. These effects result in the loss of cell polarity and

insensitivity to antitumor drugs.54,55 It has been shown that

EMT is a key factor contributing to the development of resis-

tance to sorafenib.56–59 Therefore, disruption of the EMT

process is a promising strategy to enhance the sensitivity of

HCC cells to molecular targeted agents. In the present study,

we observed that treatmentwith chelidonine restrictedEMTby

modulating its key regulators. Moreover, chelidonine func-

tioned as an antitumor agent through the following mechan-

isms: (1) Reduction of telomere length; (2) inhibition of the

tumor necrosis factor-α/nuclear factor-κBpathways; (3) induc-

tion of mitotic slippage and apoptotic-like death; or (4) inhibi-

tion of the formation of the integrin-linked kinase/PINCH/α-

parvin complex.16,60–66 The findings of the present study

extended our knowledge regarding chelidonine and provided

useful data for the investigation and development of novel

therapeutic strategies against HCC.

Moreover, the biological diversity of the secondary meta-

bolites obtained from natural products provides us with new

druggable agents, as well as novel options for chemical

synthesis and structural modification.67–72 Chelidonine

could function as an antitumor agent via multi-mechanisms:

(1) inducing caspase-dependent or caspase-independent cell

death; (2) modulating the telomere length; (3) suppressing

the NF-κB pathways; (4) inducing mitotic slippage and

apoptotic-like death of human cancer cells.73–77 In this

study, we observed the potential application of chelidonine

to the treatment of advanced HCC. We established two in-

vivo HCC growth models to examine the in-vivo activity of

chelidonine, namely the subcutaneous tumor model and

intrahepatic tumor model. MHCC97-H cells were injected

into the liver of nude mice to form intrahepatic tumor tissues,

mimicking the intrahepatic growth of HCC cells. This model

is an accurate tool for HCC-related studies and the evaluation

of anti-HCC therapies.

Figure 6 Chelidonine enhances the antitumor effect of lenvatinib on the subcutaneous growth of MHCC97-H cells. MHCC97-H cells were injected into nude mice to form

subcutaneous tumors. Subsequently, the mice received solvent control plus the indicated concentrations of lenvatinib or chelidonine (5 mg/kg) plus the indicated

concentrations of lenvatinib. The results are shown as photographs (A) or a scatter diagram of inhibition rates calculated from tumor weights (B) or tumor volumes

(C). *P<0.05 versus solvent control group with chelidonine group. n=10.
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Figure 7 Chelidonine enhances the antitumor effect of lenvatinib on the intrahepatic growth of MHCC97-H cells. MHCC97-H cells were injected into nude mice to form

intrahepatic tumors. The mice received solvent control, 5 mg/kg chelidonine, 1 mg/kg lenvatinib, or 5 mg/kg chelidonine plus 1 mg/kg lenvatinib. The results are shown as

photographs of livers with lesions formed by MHCC97-H cells (A), a scatter diagram of lesion/node areas (B), or inhibition rates calculated from the lesion/node areas (C).

Subsequently, the tumor tissues were harvested and the total protein was extracted from the cells. The expression of N-cadherin, Vimentin, E-cadherin, Twist, and Snail was

examined using Western blotting. GAPDH was selected as a loading control. The results are shown as Western blot images (D) or a scatter plot of the grayscale scan results

N-cadherin (E), Vimentin (F), E-cadherin (G), Twist (H), and Snail (I). *P<0.05 versus solvent control with chelidonine. n=10.
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Conclusion
Chelidonine inhibits the process of EMT and enhances the

antitumor effect of lenvatinib on HCC cells.
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