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Abstract

We developed a semi-automated active monitoring system that uses sequential matched-cohort 

analyses to assess drug safety across a distributed network of longitudinal electronic healthcare 

data. In a retrospective analysis, we showed that the system would have identified cerivastatin-

induced rhabdomyolysis. In this study, we evaluated whether the system would generate alerts for 

three drug-outcome pairs: rosuvastatin and rhabdomyolysis (known null association), rosuvastatin 

and diabetes mellitus, and telithromycin and hepatotoxicity (two examples for which alerting 

would be questionable). During >5 years of monitoring, rate differences (RDs) comparing 

rosuvastatin to atorvastatin were -0.1 cases of rhabdomyolysis per 1,000 person-years (95% CI, 

-0.4, 0.1) and -2.2 diabetes cases per 1,000 person-years (95% CI, -6.0, 1.6). The RD for 

hepatotoxicity comparing telithromycin to azithromycin was 0.3 cases per 1,000 person-years 
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(95% CI, -0.5, 1.0). In a setting in which false positivity is a major concern, the system did not 

generate alerts for three drug-outcome pairs.

INTRODUCTION

With the ongoing development of the US Food and Drug Administration’s Sentinel 

Initiative (1), and similar systems around the world, near-real-time active medical product 

safety monitoring may soon be a reality. These systems will enable regulators and other 

stakeholders to monitor outcomes of medical product use in distributed data networks 

comprising healthcare utilization data for many millions of patients (2). The amount of data 

contained in such systems raises concerns that the systems will generate intractable numbers 

of false positive alerts for purely statistical reasons (3). The non-randomized data that will 

feed these systems are collected in routine care and may therefore signal relations that arise 

from medical perceptions or administrative constraints rather than from biology, raising the 

additional specter of systematic false positive findings (4,5).

The challenges inherent in a broad-based monitoring system are similar to those confronted 

in every pharmacoepidemiologic study, and a system that incorporates sound design and 

analysis may reduce false positive signals. We have developed a semi-automated, 

sequential, propensity-score matched cohort approach (6) to drug safety monitoring built on 

validated methods for drug safety research and that can be easily deployed in distributed 

data networks (7,8). The approach involves: (1) identifying new users of a medical product; 

(2) matching them by propensity score to new users of a comparator product; (3) tabulating 

results across the distributed databases; and (4) applying an automated alerting algorithm 

selected from an earlier simulation study (9).

Had this system been in place at the time, it would have identified cerivastatin-induced 

rhabdomyolysis in longitudinal electronic healthcare data as early as a year before the drug 

was withdrawn from the US market (9). Given the concerns about statistical and systematic 

false positivity, we expanded the application of the approach to three additional examples 

including one in which we did not expect an alert (rosuvastatin and rhabdomyolysis), and 

two examples for which we were not certain whether alerting would be expected – 

telithromycin and hepatotoxicity, and rosuvastatin and diabetes mellitus. We describe what 

would have occurred had this system been in place at the time of US market approval of 

each drug.

RESULTS

Rosuvastatin and the risks of rhabdomyolysis and diabetes mellitus

Over more than five years of monitoring, we observed 8 cases of rhabdomyolysis among 

57,998 propensity score-matched rosuvastatin and atorvastatin pairs who contributed a total 

of 45,571 person-years of follow-up (Figure 1). Two of the 8 rhabdomyolysis cases occurred 

among rosuvastatin-treated patients, resulting in a difference at the end of monitoring of -0.1 

(95% CI, -0.4, 0.1) events per 1,000 person-years and a corresponding rate ratio of 0.4 (95% 

CI, 0.1, 1.9). None of the three selected algorithms generated alert in this example.
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Among similar follow-up times for the diabetes outcome, we observed 859 incident diabetes 

diagnoses among rosuvastatin-treated patients as compared to 1,055 among atorvastatin-

treated patients, resulting in a rate difference at the end of monitoring of -2.2 (95% CI, -6.0, 

1.6) events per 1,000 person-years (Figure 2) and a corresponding rate ratio of 0.9 (95% CI, 

0.9, 1.0). None of the selected algorithms generated alerts for this outcome either.

Telithromycin and risk of hepatotoxicity

We identified and matched 106,658 initiators of telithromycin to the same number of 

initiators of azithromycin over more than 5 years of monitoring following telithromycin 

marketing authorization. The 106,658 matched pairs contributed a total of 17,720 and 

17,416 person-years of follow-up to the telithromycin and azithromycin groups, respectively 

(Figure 3). We observed 41 cases of hepatotoxicity during follow-up, of which 23 (56%) 

occurred among telithromycin-treated patients. None of the three selected algorithms 

generated an alert. The rate difference at the end of monitoring was 0.3 (95% CI, -0.4, 1.0) 

events per 1,000 person-years and the rate ratio was 1.3 (95% CI, 0.7, 2.3).

DISCUSSION

The proposed approach to active drug safety monitoring in electronic healthcare data, which 

combines semi-automated procedures and some expert inputs, previously detected 

cerivastatin-induced rhabdomyolysis, a known rare safety issue, as much as a year before the 

drug was withdrawn from the market. That the system detected this known drug safety issue 

provides some reassurance that it performs according to expectation. In the present 

application, the system did not generate alerts for rosuvastatin and rhabdomyolysis, a 

presumed true negative, or for two examples for which existing evidence is equivocal. False 

alerting is a major concern in emerging active medical product surveillance systems that will 

include data on many millions of patients. False positives, as well as false negatives, can 

arise from many sources including chance but, more importantly in observational data, from 

biases such as confounding by indication. Our approach to active monitoring is designed to 

mitigate such biases, by relying on new users, active comparators, and PS-matching, in order 

to minimize the number of false positive and false negative signals from the outset, before 

they can have adverse public health consequences.

Around the time that FDA authorized rosuvastatin for marketing in the US, concern had 

been raised regarding its associated with an elevated risk of rhabdomyolysis as compared to 

other available statins. In particular, development of the highest dose rosuvastatin tablets 

was discontinued because of an unacceptable increase in risk of rhabdomyolysis (10). 

However, the potential association between rosuvastatin and rhabdomyolysis has been 

evaluated in many post-marketing studies, none of which have found an elevated risk above 

and beyond that conferred by other available statins (11–15). Given the concern about false 

positivity in medical product safety monitoring systems that will monitor myriad products 

and outcomes among many millions of patients, our finding of a true negative is again 

reassuring.

Recently, concern has been raised about whether statins increase patients’ risk of developing 

type 2 diabetes mellitus. A meta-analysis of 13 randomized trials comprising 91,140 
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participants found that, over a mean follow-up of 4 years, statins were associated with a 9% 

increase in odds of diabetes as compared to placebo or no treatment (16). Another meta-

analysis reported similar findings and that any effect of statins on diabetes is likely a class 

effect (17). Because we compared new users of rosuvastatin to new users of atorvastatin, our 

safety monitoring question is one of comparative, rather than absolute, safety. Consistent 

with the meta-analyses, the system did not identify a higher risk of diabetes among patients 

treated with rosuvastatin as compared to patients treated with atorvastatin. However, we did 

not assess whether the system would have identified the small diabetes risk associated with 

statins versus no treatment. Subsequent monitoring activities could explore the relative 

safety of statins on diabetes as compared to other drugs to treat dyslipidemia, such as 

ezetimibe.

Evidence is mixed regarding whether telithromycin increases the risk of hepatotoxicity 

relative to similar antibiotic agents. A 2001 FDA advisory committee voted against approval 

of telithromycin primarily because of concern about hepatotoxicity. Following the 

completion of a controversial trial, FDA approved telithromycin in 2004 stating that the 

frequency and severity of hepatotoxicity with telithromycin was similar to that of other 

macrolides (18). Through April 2006, FDA received 42 cases of telithromycin-associated 

liver injury to its Adverse Event Reporting System (19). Post hoc analyses of the 

spontaneous reports detected an association between telithromycin and reports of liver 

injury, including mild disorders up to fulminant hepatotoxicity (20,21). However, neither of 

two epidemiological studies that each included more than 100,000 initiators of 

telithromycin, found evidence to suggest that telithromycin increases risk of hepatotoxicity 

as compared to other macrolides (22). Telithromycin remains on the market in the US, 

carrying only a labeled warning about hepatotoxicity, but not a black box warning (23).

Our system did not generate alerts for telithromycin. Again, we used an active comparator, 

which reformulates the monitoring question to one of comparative safety. These findings 

from our system are compatible with those of the other two large post-marketing database 

studies. While the system did not generate alerts, the results also cannot rule out a small 

increased incidence of hepatotoxicity associated with telithromycin as compared to 

azithromycin. At the end of the monitoring timeframe, the incidence rate of hepatotoxicity 

was 1.3 events per 1,000 person-years in the telithromycin group and 1.0 events per 1,000 

person-years in the azithromycin group, corresponding to a rate difference of 0.3 (95% CI, 

-0.5 to 1.0) events per 1,000 person-years and an incidence rate ratio of 1.3 (95% CI, 0.7 to 

2.3). Although it is unclear whether the system’s lack of alerting in this example represents a 

true or false negative, this example highlights an important benefit of active monitoring 

systems, such as Sentinel. Even in the absence of an alert, active monitoring systems will 

provide useful, continuous decision support at low cost since secondary data are captured 

routinely and in near-real-time and analyses can be performed sequentially in an automated 

fashion.

Our sequential PS-matched cohort framework for active drug safety monitoring offers 

several advantages when focusing on pre-specified outcomes that may be related to medical 

products. As illustrated by the rosuvastatin examples, PS-matched cohorts easily enable 

monitoring of multiple outcomes per product. In addition, new-user cohort construction, PS 
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estimation, and matching procedures can be largely automated (24). Balancing observed pre-

treatment confounders via PSs separately in each database also simplifies data aggregation 

across multiple data sources while obviating privacy concerns (7,8). In a drug’s early market 

phase, there is usually an abundance of users of an active comparator relative to users of the 

monitoring drug, offering sufficient opportunity to successfully match almost all patients 

exposed to the newly marketed drug. Resulting estimates of association then pertain to the 

effect observed among those exposed to the monitoring product as compared to the effect 

that would have been observed had those exposed to the monitoring product actually been 

exposed to the comparator agent. In addition, PS-matching enables monitoring of simple 

marginal event rates between matched groups as the groups have been balanced on a large 

number of potential confounders (25). Event rates can be expressed as observed (i.e. rate in 

the new drug group) and expected (i.e. rate in the comparator group), which allows for direct 

estimation of both absolute and relative measures of association and simplifies the 

application of a broad range of alerting algorithms without the need for further regression 

adjustment.

We encountered several practical limitations in implementing our approach in the four 

examples. Because we began monitoring upon each drug’s market entry, we identified few 

new users of the new drug during the first few month after the product was launched, which 

precluded us from fitting large PS models in the first quarters. As a simple solution, we 

combined the first two quarters to create the first monitoring period. While this enabled us to 

fit PS models in data from the first two quarters, it necessarily delayed the time to earliest 

possible alerting. However, it is unlikely that among few exposed patients there would be a 

sufficient number of events to generate an alert. In addition, while many aspects of an active 

monitoring system can be automated, human inputs remain critical elements to any public 

health surveillance activity. As in any pharmacoepidemiology study, our system requires 

stakeholders to choose a comparison group, eligibility and exclusion criteria, and exposure, 

follow-up, and outcome definitions. The assumptions made in each of these decisions will 

have bearing on the system’s performance. For example, choosing a truly unexposed 

comparison group, rather than a group exposed to an active comparator, allows stakeholders 

to assess the absolute safety of a medical product, but also increases the opportunity for false 

positive and false negative alerts due to increased confounding by indication (26).

Known limitations of electronic healthcare data pose challenges for broad application of 

Sentinel-like systems. Data on many types of adverse drug events, such as rashes, allergic 

reactions, and headaches, may not be fully captured in these data and the validity of codes 

used to identify other events, such as seizures that do not result in emergency care, may be 

questionable. Further, bias due to residual confounding is difficult to rule out since 

electronic healthcare data often lack information on potential confounding variables, 

including smoking status, body mass index, functional status, frailty, and over-the-counter 

drug use. If, for example, clinicians preferentially prescribed telithromycin to sicker patients, 

the resulting population imbalances might not be fully adjusted using health insurance 

claims data, leading to residual confounding and a false positive alert. That the system did 

not generate an alert in this example provides some reassurance that confounding has been 

adequately addressed in this case. Finally, many facets of prospective medical product 

monitoring require further exploration, methods development, and testing. However, as our 
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four examples to date suggest, active drug safety monitoring grounded in sound 

epidemiologic theory and application and appropriate clinical rationale can produce valid 

results despite conjecture to the contrary (27).

In summary, using examples we demonstrated the viability of a sequential PS-matched 

cohort approach to active monitoring that integrates clinical, epidemiological, and other 

expert stakeholder input with several semi-automated processes. In broad-based safety 

surveillance systems, false positivity is a major concern. Our system previously generated 

timely alerts about a known association, did not generate alerts for a known null association, 

and did not produce alerts in the other two examples for which alerting would be 

questionable.

METHODS

Data sources

We used data from three different sources to mimic monitoring across Sentinel’s distributed 

data network: (1) the HealthCore Integrated Research Database (HIRD); (2) New Jersey 

Medicare Parts A and B data linked to the Pharmacy Assistance for the Aged and Disabled 

(PAAD) program; and (3) Pennsylvania Medicare data linked to the Pharmaceutical 

Assistance Contract for the Elderly (PACE) program. The HIRD contains longitudinal 

claims data comprising all filled prescriptions and clinical encounters from 14 Blue Cross 

and/or Blue Shield licensed health plans in the northeastern, southeastern, mid-Atlantic, 

mid-western, and western regions of the US. Starting in the third quarter of 2004, the 

amount of HIRD data increased substantially as data from more plans became available. 

Both PACE and PAAD provide medications at minimal expense to patients aged 65 and 

older with low income but who do not meet the Medicaid annual income threshold. The 

Medicare Parts A and B data include hospital discharge information and all fee-for-service 

charges, with vital status information from the Social Security Administration’s Death 

Master File. We included PACE- and PAAD-linked Medicare data only through the end of 

2005.

The Brigham and Women's Hospital Institutional Review Board approved this study.

Sequential matched cohort monitoring framework

We replicated prospective monitoring as if new data became available on a quarterly basis. 

We divided each database into sequential data sets defined by claims occurring in each 

calendar quarter and queried each data set to identify all new users of each of the drugs of 

interest and of their active comparators. We applied eligibility and exclusion criteria for 

each example as described below (28). Within each data set, we constructed separate 

propensity score (PS) models and used the PS to match new users of the monitoring drugs to 

new users of the active comparator drugs in a 1:1 ratio. We used the 180 days preceding 

each patient’s date of drug initiation (index date) to identify variables for the PS models, 

which included a set of pre-defined potential confounders for each example (listed below) 

plus potential confounders identified using the high-dimensional PS (hdPS) algorithm (29) 

with its small sample option (v2, hdpharmacoepi.org; 30). In each model, we considered up 
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to 100 empirically-identified potential confounders from each of three domains – procedure 

codes, diagnosis codes, and drugs used. Patients exposed to the monitoring drugs and the 

comparators could only be matched if their index dates occurred in the same quarterly data 

set.

Data pooling and follow-up

In each sequential data set, we identified outcomes for PS-matched patients who remained 

under follow-up, as defined below for each example. We combined the exposure, outcome, 

and follow-up time information for each calendar quarter across the three databases. This 

approach to pooling across a distributed data network enables multivariable-adjusted 

analyses while maintaining data privacy (7,8). These data elements served as inputs into the 

alerting algorithms. For example, inputs from the first period included the number of 

matched pairs with index dates in the first calendar quarter, the number of outcomes in each 

exposure group, and the total follow-up time in each group through the end of the first 

period. The algorithm inputs from the second period included the same corresponding data 

for new users with index dates in the second calendar quarter plus additional follow-up and 

outcome data for patients with index dates in the first period whose follow-up continued into 

the second period (Appendix Figure 1). Because relatively few patients use a new drug when 

it first enters the market, we combined the first two calendar quarters in which prescriptions 

for the new drug began to appear in the databases to create the first monitoring period in 

each example.

Algorithm selection and application

Alerting algorithms refer to sequential statistical monitoring approaches, such as group 

sequential monitoring methods and sequential probability ratio tests, that could be used for 

medical product safety monitoring. In a statistical simulation study, we found that the 

relative performance of algorithms, with respect to the accuracy and timeliness of alerting, 

in the setting of prospective safety monitoring varied substantially depending on the 

characteristics of specific scenarios (9). In the Appendix we provide the list of algorithms 

(Appendix Table) that we tested in the simulation study along with their relative 

performances under varying parameter constellations (Appendix Figure 2). The relative 

performance of the algorithms depended on event frequency and on user preference for 

identifying potential safety issues with high sensitivity versus high specificity. We used the 

results of the simulation study to select three algorithms for each example, based on three 

values for preference for sensitivity versus specificity that regulators may define (31). To 

select the algorithms, we estimated the expected number of events based on the number of 

exposed patients observed in the first two calendar quarters (assuming that utilization of the 

drug would increase in each period) and on literature estimates of the incidence of each 

outcome. The selected algorithms and their operating characteristics from the simulation 

study are presented in Table 1. Additional operating characteristics of the 93 algorithms 

tested in 600,000 simulated scenarios are available from the authors.
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Specifics of each example

Rosuvastatin and rhabdomyolysis and diabetes mellitus—We selected 

atorvastatin as an active comparator because it was available on the market before the 

introduction of cerivastatin and it has low risk of rhabdomyolysis (32). We defined new 

users of rosuvastatin or atorvastatin as no use of any statin in the 180 days preceding the 

index date. We excluded patients with evidence of diabetes, myopathy, renal dysfunction, or 

liver disease prior to the index date. We used the same sequential PS-matched cohorts for 

both rhabdomyolysis and diabetes mellitus outcomes. In addition to age and sex, we 

included in the PS models risk factors for rhabdomyolysis including hypothyroidism and use 

of drugs that either cause or interact with statins to cause rhabdomyolysis (33) plus the 

following diabetes risk factors: coronary artery disease, congestive heart failure, 

hemorrhagic stroke, hypertension, dyslipidemia, peripheral vascular disease, and use of 

angiotensin converting enzyme inhibitors, beta-blockers, non-statin cholesterol-lowering 

drugs, ticlopidine, clopidogrel, and nitrates.

We followed patients for rhabdomyolysis from their index dates until they experienced the 

event, discontinued their index treatment (as defined by a gap in treatment of greater than 14 

days), switched to a different statin, died, or disenrolled. We defined rhabdomyolysis using 

the algorithm for claims data validated by Andrade et al, which had a positive predictive 

value of 74% in a network of managed care organization databases (34). For diabetes 

monitoring, we followed patients until they received a diagnosis of diabetes, discontinued 

their index treatment (plus a 60-day grace period added to the end of the days supply of the 

last prescription), switched to a different statin, died, or disenrolled. We defined diabetes 

using a validated algorithm for claims data, which has been found to have a positive 

predictive value of 97% (35).

Telithromycin and hepatotoxicity—We defined new use of telithromycin or 

azithromycin – an active comparator that shares similar indications as telithromycin, was 

available at the time of telithromycin approval, and was commonly used – as no prior use of 

either drug in the 180 days preceding the index date. We excluded patients with evidence of 

hepatic injury or impairment, including those with diagnoses for alcoholism. In addition to 

age and sex, we included codes for the following potential risk factors for liver injury as pre-

defined covariates in the PS models (36–38): diabetes, illicit drug use, renal dysfunction, 

and drugs with potential for liver damage, defined as those considered category three 

hepatotoxic (i.e. clear literature evidence of life-threatening hepatotoxicity or death) in at 

least one out of five drug compendia as reported by Guo et al (39). We followed patients 

until they experienced acute hepatotoxicity, died, or for a maximum of 60 days. We defined 

hepatotoxicity as the occurrence of a diagnostic or procedural code indicating acute liver 

injury. These codes have been validated in the context of acetaminophen-induced 

hepatotoxicity, with a positive predictive value of 78% (40).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Active monitoring for rhabdomyolysis among new users of rosuvastatin compared to new 

users of atorvastatin
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Figure 2. 
Active monitoring for diabetes mellitus among new users of rosuvastatin compared to new 

users of atorvastatin
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Figure 3. 
Active monitoring for hepatotoxicity among new users of telithromycin compared to new 

users of azithromycin
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