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Abstract

The stratum lacunosum moleculare (SLM) is the connection hub between entorhinal cortex and hippocampus, two brain
regions that are most vulnerable in Alzheimer’s disease. We recently identified a specific synaptic deficit of Nectin-3 in
transgenic models for tauopathy. Here we defined cognitive impairment and electrophysiological problems in the SLM of
Tau.P301L mice, which corroborated the structural defects in synapses and dendritic spines. Reduced diffusion of DiI from
the ERC to the hippocampus indicated defective myelinated axonal pathways. Ultrastructurally, myelinated axons in the
temporoammonic pathway (TA) that connects ERC to CA1 were damaged in Tau.P301L mice at young age. Unexpectedly,
the myelin defects were even more severe in bigenic biGT mice that co-express GSK3b with Tau.P301L in neurons.
Combined, our data demonstrate that neuronal expression of protein Tau profoundly affected the functional and structural
organization of the entorhinal-hippocampal complex, in particular synapses and myelinated axons in the SLM. White matter
pathology deserves further attention in patients suffering from tauopathy and Alzheimer’s disease.
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Introduction

Deteriorating intellectual and mental faculties are all but the

most feared in the elderly in our ageing society. Despite extensive

fundamental and clinical investigations and trials, the lack of

preventive or effective treatment of neurodegenerative disorders

accounts for the increasing number of people suffering from

dementia, in particular Alzheimer’s Disease (AD) [1]. Besides the

well-known defects in gray matter, also problems with white

matter are recognized in AD. These include structural defects in,

with partial to extensive loss of myelin sheaths, inflicting axons

with microstructural changes that remain largely to be defined [2–

9]. Interestingly, myelin defects observed in the perforant pathway

(PP) strengthened the hypothesis that pathologically altered

anatomical pathways contribute importantly to mental disease

[6,7,10].

The entorhinal cortex (ERC) is considered an early and most

vulnerable region in AD-brain. Accumulation of phosphorylated

protein tau in all its layers precedes its progressive accumulation in

the hippocampal formation [11,12]. ERC and hippocampus are

intimately involved in various forms of learning and memory that

are affected in AD, which make entorhinal-hippocampal projec-

tions of prime interest, both functionally and in relation to the

proposed ‘spreading’ or sub-regional progression of tauopathy

[13–17].

ERC-neurons project to the dentate gyrus (DG) and CA1

hippocampal subfields by the perforant (PP) and temporoammonic

pathway (TA) that originate in ERC layers II and III, respectively

[18,19]. The TA pathway links ERC to CA1 pyramidal neurons

by synapsing onto distal parts of apical dendrites within the

stratum lacunosum moleculare (SLM) [20]. Although most

afferents in CA1 SLM constitute the TA with afferents from

ERC layers II and III, also ERC layers V and VI contribute [19].

Early in AD, the apical dendrites in SLM develop phospho-tau

positive dilatations resulting in degeneration, termed dendritic

amputation [21].

Attention has been focused mainly on PP that targets DG, while

TA remained relatively neglected, even so far that the term PP

usually also refers to TA. Nevertheless, TA was defined of prime

importance for long-term memory consolidation and for interme-

diate-term memory retention and retrieval [22–24].

Recently we reported that expression of Nectin-3, an important

cell adhesion molecule (CAM) was compromised in the CA1 SLM

of two transgenic models for tauopathy, carrying Tau.P301L

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e87605

http://creativecommons.org/licenses/by/4.0/


without or with GSK3b [25]. We now tested the hypothesis that

early phases of tauopathy impact the structure and functions of

synapses and dendritic spines in the ERC-hippocampal formation

of the Tau.P301L and biGT models. The combined data

demonstrated that tauopathy provoked early and profound

impairments of the functional and structural organization of the

hippocampal circuits that link ERC to the hippocampus proper, in

particular synapses and myelinated axons within the SLM.

Materials and Methods

Ethical statement
All experiments were performed in accordance with regional,

national and European regulations concerning animal welfare and

animal experimentation, and were authorized and supervised by

the University animal welfare commission (Ethische Commissie

Dierenwelzijn, KULeuven).

Mouse models
Generation and validation of Tau.P301L mice and bigenic

Tau.P301LxGSK3b.S9A mice (denoted biGT) were reported

[26,27]. Analysis of dendritic spines was performed in crosses with

Thy1-YFP mice, as described [28,29]. All offspring was genotyped

for the respective transgenes by PCR and qPCR on DNA isolated

from tail biopsies [25,27,29].

Intracerebral injection of AAV-Tau.4R in the entorhinal cortex

was as described [30,31]. Briefly, AAV-Tau.4R virus (108

transducing unit) was stereotactically injected at coordinates

posterior 4.72 mm, lateral 3.25 mm, ventral 3.5 mm relative to

Bregma, and injected mice were analyzed 1 month post-injection.

Behavior
Passive Inhibitory avoidance task (PIA) was performed in

a two-chambered inner box comprising lit and dark sections

separated by a trap-door, all placed inside a larger sound-tight

box. For conditioning mice were placed in the lit section and after

10 sec the trap-door was opened to allow entrance in the dark

section where they received an electric footshock (0.5 mA; 2 sec)

after 2 sec. The mice were kept 15 sec in the dark compartment

before being returned to the home cage. Retention was assessed

after 24 hours by placing the mouse in the lit section and

measuring the latency as the time that elapsed before entry into

the dark compartment [27].

Novel Object recognition task (NORT) was essentially as

described [32–34]. Briefly, mice were habituated for 10 min in the

perspex open-field box dimly illuminated from below. The next

day, mice were observed in the same box for 8 min in the presence

of two identical objects (A). The time was recorded that the mice

explored both objects with criterion that the snout was directed

towards and close to the object (less than 1 cm). The exploration

time was recorded as the measure for explorative behavior. The

same day, 4 hours later an 8 min retention trial was performed by

placing the mouse in the box with one old (A) and a novel object

(B). The time that the animal spent exploring each object (tA, tB)

was recorded. The relative retention index (RI) was defined as the

time spent exploring novel object (B) over the time spent exploring

both objects, i.e. tB/(tA+tB)6100.

Biochemical analysis
Mice were sacrificed by decapitation and the brain rapidly

removed, hippocampi promptly dissected and homogenized as

described [25]. Proteins were denatured, reduced and separated

on 10% Tris-Glycine SDS-PAGE gels (Anamed, Germany). After

transfer, nitrocellulose membranes were probed with primary

antibodies specific for protein tau and tubulin as described [25]

and for CNPase (Millipore - MAB326) as marker for myelin.

Immunohistochemistry
Mice were anesthetized (Nembutal; 100 mg/kg, i.p.) before

transcardiac perfusion with ice-cold saline (4 ml/min, 2 min).

Brains were quickly removed to allow an overnight fixation in

4%paraformaldehyde in PBS at 4uC. Brains were stored in 0.1%

sodium azide in PBS at 4uC until vibratome 40 mm thick sections

were collected.

Immunohistochemistry was performed essentially as described

[26,30]. For CNPase (Millipore - MAB326) an antigen retrieval

step was necessary. Briefly, sections were mounted on silanized

glasses, dried for one hour at 37uC and incubated in a decloaking

chamber in proprietary decloaking solution (Diva, Biocare

Medical). After rinsing in PBS, sections were pretreated for

15 min in a 1.5% H2O2 in 50% methanol/PBS to suppress

endogenous peroxidase activity. Next, blocking of nonspecific

binding sites was by incubation in blocking buffer (10% fetal calf

serum, 0.1% Triton X-100 in PBS). The sections were incubated

at 4uC overnight with primary monoclonal antibodies: HT7 and

AT100 (Innogenetics, Gent), AT180 and AT8 (Thermo Scientific),

appropriately diluted in blocking buffer.

After rinsing in 0.1% Triton X-100 in PBS, sections were

incubated for 1 hr with the appropriate secondary antibodies

(1:500 in blocking buffer). Alternatively as required, sections were

incubated with avidin-biotin complex (Vector Laboratories -

Vectastain ABC Elite kit) for 30 min, rinsed in PBS and incubated

for 5 min in 50 mM Tris-HCl (pH7.6). Enzymatic staining was

performed using a solution of 3,39-diaminobenzidine (0.5 mg/ml),

0.3% H2O2 in 50 mM Tris-HCl (pH 7.6). Hematoxylin counter-

staining was prior to dehydration in a graded ethanol series. After

two washes in 100% xylol, the sections were mounted with

DePeX. Quantification of IHC staining was performed blindly,

assigning ascending scores from 0 to 2, for negative to intense

staining, respectively.

CA1 SLM Tracking with DiI crystals implanted in the
entorhinal cortex

Mice were anesthetized (Nembutal; 100 mg/kg, i.p.) before

transcardiac perfusion with ice-cold saline (4 ml/min, 2 min)

followed by 4% paraformaldehyde perfusion (4 ml/min, 10 min).

Brains were removed and post-fixed by immersion in 4%

paraformaldehyde at 4uC for 3 days. A single crystal of the

carbocyanine 1,19-dioctadecyl-3,3,39,39-tetramethylindocarbocya-

nine perchlorate (DiI, D-3911, Invitrogen) [35,36] was implanted

in the entorhinal cortex at coordinates: 5 mm posterior to bregma,

2.8 mm lateral to midline and 3 mm ventral, determined using a

Vernier caliper. Brains were stored in 4% paraformaldehyde at

room temperature for 14 months, to allow the dye to diffuse. After

rinsing the brains in PBS, vibratome sections (40 mm) were cut and

mounted on glass slides under coverslip, in 65% glycerol in PBS

[37]. Microscopic images were collected (Leica microscope with

appropriate filters). Higher magnifications were acquired by

confocal microscopy (Olympus Fluoview 1000). Quantification

was performed with dedicated software (Qwin, Leica).

CMC myelin tissue staining
Sagittal free-floating sections (40 mm) from the same brains used

for DiI tracings were incubated for myelin staining with

3-(4-aminophenyl)-2H-chromen-2-one (CMC) [38]. Briefly, sec-

tions were incubated in 1% H2O2 in 10% Triton X-100 (in PBS)

for 10 minutes, before 30 min incubation at room temperature
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with 100 mM CMC (#9869 Matrix Scientific) in 1% DMSO

diluted in PBS. Sections were rinsed with PBS three times for 5

minutes before microscopic analysis.

Dendritic spines
Dendritic spines were analyzed as published [29] by confocal

microscopy (Olympus Fluoview 1000) in the region of interest,

CA1 SLM in brain of Tau.P301LxYFP bigenic mice. In total 9

independent images per mouse from 5 mice per genotype were

acquired and analyzed on confocal z-stacks (0.3 mm) without post-

processing. Spines were defined visually and counted manually.

Spine density is expressed as the number of spines per 10 mm

length of dendrite. Spine maturation index is defined as the ratio

of mushroom spines to all other spine types, with mushroom spines

defined by the spine head at least twice as wide as the spine neck

[29].

Electron microscopy-ultrastructure analysis
Mice were anesthetized (Nembutal; 100 mg/kg, i.p.) before

transcardiac perfusion with ice-cold saline (4 ml/min, 2 min)

followed by perfusion with Karnovsky fixative for 10 minutes.

Brains were quickly removed and fixed in Karnovsky solution for 5

days. Thick vibratome sections (300 mm) were incubated in 1%

OsO4 solution at room temperature prior to dehydration in a

graded ethanol series, and finally embedded in agar100 epoxy

resin. Regions of interest were trimmed and 70 nm serial sections

were cut using a diamond knife (Reichert ultramicrotome).

Sections were collected on formvar-coated single slot grids.

The CA1 SLM region was explored for spines at 4000x

magnification (Jeol JEM 1400 microscope) and for myelin

structural analysis at 25000x magnification (Jeol JEM 1010

microscope). Spine reconstruction was performed based on

ribbons composed of at least 25 serial sections (70 nm thick),

and from 10 different areas within the CA1 SLM. Serial sections

were aligned (sEM software), and spine and PSD contours were

delineated manually (Reconstruct software, http://synapses.clm.

utexas.edu), allowing 3D reconstruction of each structure of

interest. Spine density was assessed using the optical dissector for

mushroom, thin spines and shaft synapses. Spine volume, PSD

parameters and spine length were calculated by the same software.

Mushroom, thin and stubby spines were categorized following

similar criteria [39], with threshold set to 250 nm for spine heads

to distinguish mushroom from thin spines.

Myelin structure in CA1 SLM and TA pathway was analyzed in

at least 20 image per mouse, which in total contained more than

300 axons representing between 1.5 to 2 mm of myelin sheath.

The G-ratio of inner axonal diameter over the total outer diameter

including myelin was measured on the same myelin axonal

structures.

Electrophysiology
Acute hippocampal slices were prepared as described [40].

Briefly, brains were quickly removed and cut horizontally into

250 mm slices in ice-cold artificial cerebrospinal fluid (ACSF)

containing (in mM) 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2,

1.25 KH2PO4, 25 NaHCO3, and 25 glucose, saturated with

95% O2/5% CO2 (pH 7.2–7.3). The CA3 and DG regions were

sectioned to separate the SLM layer of the CA1 region from the

trisynaptic circuit. Sectioned slices were incubated in a recovery

chamber containing oxygenated ACSF at room temperature for at

least two hour before recording.

Extracellular stimulation and recordings were performed using

a multi-electrode array (MEA) (Multi Channel Systems, Martins-

ried, Germany) as described [40]. Sections were continuously

perfused with oxygenated ACSF (3 ml/min) at 31uC containing

20 mM bicuculline to block fast inhibitory transmission. TA was

stimulated by electrodes positioned under SLM near the

hippocampal fissure. Evoked field excitatory postsynaptic poten-

tials (fEPSPs) were monitored [41,42]. Input/Output curves were

generated by collecting responses to a series of increasing biphasic

voltage pulses of 200 ms duration. The stimulus intensity used in

subsequent recordings was set to evoke fEPSP of 50% of maximal

amplitude. Short-term plasticity was addressed before LTP

induction. Paired-pulse facilitation (PPF) was evaluated using two

stimulations at inter-pulse intervals (IPI) between 20 and

500 msec. Short-term depression was assessed by measuring

fEPSP amplitude in response to a train of pulses at 100 Hz.

LTP was induced, after recording a stable baseline for 15 min, by

4 trains of high frequency stimulation (HFS) at 100 Hz for 1 sec

with 20 sec intervals. At the end of the recordings, the mGluR2

agonist 2-(2,3-dicarboxycyclopropyl)glycine (DCG IV, Tocris,

UK), was routinely added (3 mM final concentration) to verify

TA responses [42,43]. All MEA data were collected at 10 kHz

sampling frequency and 1100 amplifier gain. fEPSPs were

recorded and analyzed by dedicated software (MC_Rack &

MC_Data Tool software, Multi Channel Systems, Germany).

Statistical analysis
Statistical analysis was performed using dedicated software

(GraphPad Prism v5.03; San Diego, CA). Data were plotted as

median (for scoring) or mean6SEM. Data-sets were analyzed

either by Student’s t-test (unpaired, two-tailed) or One-way

ANOVA, followed by Bonferroni post hoc test as indicated in the

figure legends. For electrophysiological experiments, data (mean 6

SEM) from transgenic and wild-type mice were compared by One-

or Two-way ANOVA (Origin 8.0, Origin Lab). Statistical

significance was defined as p,0.05.

Results

Most recently, we demonstrated that neuronal expression of

human protein Tau, either wild-type or mutant, engendered

pronounced and specific reduction of Nectin-3, the major synaptic

cell adhesion molecule (CAM) [25]. The defect was most

pronounced in the SLM, the connection hub between ERC and

hippocampus proper, two brain regions at the center of attention

in clinical and experimental studies in AD. The ERC projects by

myelinated axons forming the TA to the CA1 SLM by excitatory

synapses on distal sections of the apical dendrites of the CA1

pyramidal neurons.

Here we studied the early functional and structural repercus-

sions of tauopathy in the preclinical models, denoted Tau.P301L

and biGT mice, from early age (3 months) when significant

Nectin-3 expression was already lost, prior to the more classical

tangle tauopathy [25]. We investigated the surmised relation of

lacking Nectin-3 to impaired cognition in Tau.P301L mice. We

subsequently measured density and morphology of dendritic

spines, as well as their post-synaptic densities (PSD), all prime

structural parameters of synaptic plasticity, essential for learning

and memory [29,44,45].

We went on to define progression of Tauopathy in the Tau.P301L

mice and comparatively also in the other validated model for

tauopathy: bigenic Tau.P301LxGSK3b.S9A mice, denoted biGT.

Both models present with tauopathy progressing with age but on

different time-scales: age 7–11 months for Tau.P301L mice, and 10–

18 months for biGT mice [26,27]. Besides age of onset, both models

present regional differences in their intensity of eventual tauopathy

[26,27,29,46–50]. Nevertheless, the terminal phase was very similar
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in both models, despite the age difference, by combination of clinical

indices that progress rapidly (2–3 weeks) leading to death: reduction

in bodyweight, increased clasping of hind- and then fore-limbs,

hyperkyphosis and inactivity, upper airway dysfunction caused by

defective brainstem circuits [46,50,51]. The endpoint was invariably

precocious death, for Tau.P301L mice mostly between age 8–12

months (average 9 months) without survivors beyond age 12 months

[29]. The age of death of biGT mice was less sharply defined,

ranging from 10 to 22 months [26,27,46,50,51]. The mechanistic

contributions of GSK3b in the biGT model to the delay in

tauopathy and to clinical phenotype are subject of ongoing studies.

Cognitive defects in ageing tau.P301L mice
Tau.P301L mice were analyzed for cognitive capacity in two tasks

of different complexity: the novel object recognition task (NORT)

and passive inhibitory avoidance (PIA). Both tasks do not depend

heavily on physical and motor abilities, which become compromised

in Tau.P301L mice, as in most Tau transgenic mice [26]. Moreover,

the NORT, as performed, measures predominantly hippocampal

plasticity [52]. PIA is a more complex task, involving not only the

hippocampus but also amygdala and cortical regions [53].

NORT demonstrated cognitive defects in ageing Tau.P301L

mice that approached but were not yet terminal and still devoid of

clasping (Fig. 1). Conversely, the PIA task revealed cognitive

defects in Tau.P301L mice already at young age. Some variation

with age was attributed to the complexity of the task and the

known involvement of different brain regions, differently attained

by the progressing tauopathy (Fig. 1). Of note, the molecular

characteristics of Tau.P301L differ in different brain regions and

change with age in terms of phosphorylation and aggregation [50].

Most interesting, the behavioral defects in Tau.P301L mice

correlated with defective Nectin-3 levels in CA1 SLM [25]. We

therefore engaged to approach functional and brain-structural

aspects, first in Tau.P301L mice, and then extended the analysis to

biGT mice, to define pathological contributions of GSK3b
[27,29,31].

Figure 1. Defective cognition of Tau.P301L mice at different ages. Analysis by novel object recognition (ORT) (upper panel) and passive
inhibitory avoidance (PIA) task (lower panel) of Tau.P301L mice at age 2 to 9 months compared to age-matched wild-type FvB mice. Student t-Test,
unpaired, two-tailed, n = 8 per age group. *p,0.05, ****p,0.0001.
doi:10.1371/journal.pone.0087605.g001
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Dendritic spines in CA1 SLM of Tau.P301L mice
The cognitive analysis implicated that synaptic plasticity was

already affected in young Tau.P301L mice, which was corrobo-

rated by analysis of dendritic spines in the SLM [29]. Spine density

was, however, not affected in sub-regions SO and SR of the

hippocampal formation of Tau.P301LxYFP mice up to age 6

months (Fig. 2A). We concluded that early stages of tauopathy did

not negatively affect the development and maintenance of

dendritic spines.

The spine maturation index, defined as the ratio between the

density of mushroom spines to all other spines, is an index for active

and functional synapses [29,54]. Unexpectedly, in young Tau.P301L

mice the spine maturation index was increased, significantly in

stratum radiatum (SR), and borderline in stratum oriens (SO)

(p = 0.0068 and 0.0646, respectively; Student t-test unpaired, two-

tailed; Fig. 2A). In contrast, the spine maturation index tended to be

decreased in the SLM of Tau.P301L mice (Fig. 2A).

The morphology of mushroom and thin spines was analyzed in

ultrastructural detail by 3D reconstruction of electron micrographs

[39,55]. The results confirmed that the overall density of spines

was not significantly affected in young Tau.P301L mice relative to

wild-type mice, matched for age, gender and genetic background

(Table 1). Moreover, the ultrastructural data on Tau.P301L mice

corroborated the foregoing spines dataset obtained by confocal

microscopy in Tau.P301LxYFP mice: the density of mushroom

spines in SLM was significantly lower in young Tau.P301L mice

than in wild-type mice (age 4 months; p = 0.0037; Student t-Test

unpaired, two-tailed; Table 1). The volume of mushroom spines

was not affected in Tau.P301L mice, while a trend of decreased

volume of thin spines was noted (Table 1). The third parameter

analyzed, the mean overall length of mushroom and thin spines

within the CA1 SLM was similar in both genotypes.

Interestingly, both the area and the volume of the post-synaptic

density (PSD) were larger in mushroom spines in the SLM of

Tau.P301L mice compared to wild-type mice (p = 0.0177 and

p = 0.0138, respectively; t-Test; Table 1). Of note, a compensatory

increase in PSD area was proposed based on higher than normal

levels of the PSD95 protein in brain of AD patients [56].

We concluded that dendritic spines were altered in the early

stages of progressive tauopathy in pre-clinical Tau.P301L mice.

These defects correlated with defective Nectin-3 levels, and fit the

context of their cognitive defects, all predating the development of

classical tauopathy defined by large intra-neuronal tau aggregates.

We therefore went on to characterize the status of phosphorylation

of protein tau, focusing mainly on the ERC and SLM regions, and

compared Tau.P301L to biGT mice in an attempt to define the

contributions of GSK3b.

Time-line of tauopathy parameters in hippocampal
sub-regions of Tau.P301L and biGT mice

In the hippocampal formation, the ERC communicates with the

hippocampus proper by the PP and TA projections that classically

Figure 2. Analysis of dendritic spines in SLM of Tau.P301L mice. A. Dendritic spines in Tau.P301Lx YFP bigenic mice (n = 5) in different brain
regions: stratum oriens (SO), stratum radiatum (SR), CA1 SLM as indicated in the captions. Upper panel: spine density is expressed as number of
spines per 10 mm of dendritic shaft. Statistical analysis by Student t-Test, unpaired, two-tailed: SO, p = 0.066; SR, p = 0.0068; SLM, p = 0.47. Lower
panel: spines maturation ratio, expressed as number of mushroom spines to all spines. Statistical analysis by Student t-Test, unpaired, two-tailed: SO,
p = 0.58; SR, p = 0.17; SLM, p = 0.87. B. Representative reconstructions of dendritic spines in wild-type FvB and Tau.P301L mice.
doi:10.1371/journal.pone.0087605.g002
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originate in ERC layers II and III respectively [19,57,58]. In AD,

the loss of neurons starts and becomes most extensive in the ERC

and CA1 [11,59–61]. The tri-synaptic pathway constitutes a major

feature of the hippocampal circuitry that is essential for learning

and memory (L&M), but also prime suspect for contributions to

spreading of pathology and cognitive defects in AD [11,19,60].

Tau pathology was analyzed by immunohistochemistry, first for

phospho-epitope pT231 defined by antibody AT180, because it is

one of the earliest markers for tauopathy in AD, and widely used

as clinical biomarker in CSF for early diagnosis [62–64]. We then

supplemented phospho-epitope pS199/S202-Tau define by anti-

body AT8 as another classical marker in general use for post-

mortem staging of brain tauopathy in AD, although not for as

CSF-biomarker in clinical diagnosis [11,12,60].

ERC. In both genotypes, and already at young age (3 months)

the pT231-Tau epitope was evident in many neurons in layer II of

the medial ERC (Fig. 3, upper left). In contrast, only some neurons

were immunoreactive in layer III of the lateral ERC, and even less

in the medial ERC (Fig. 3). With age, AT180 immunoreactivity

progressed in all ERC layers and all sub-regions in both

Tau.P301L and biGT mice, without marked differences with the

genotype until age 9 months, before mice entered the terminal

phase.

In terminal Tau.P301L mice, the ERC was mildly marked by

IHC with AT180, in contrast to terminal biGT mice in which the

ERC was heavily loaded with AT180 positive neurons (Fig. 3,

upper right). IHC with antibody AT8 yielded similar labeling to

AT180 in young Tau.P301L and biGT mice, but much more

positive neurons that also stained more densely in ERC and

hippocampus of terminal biGT mice than in terminal Tau.P301L

mice (Fig. 3).

We concluded that not the terminal phenotype, but old age was

the more important determinant for tauopathy in the ERC of the

Tau.P301L and biGT mice, which is reminiscent of the fact that

ageing is the most important determinant in AD.

CA1 and SLM. Pyramidal neurons in CA1 of Tau.P301L and

biGT mice stained uniformly positive by IHC with AT180,

demonstrating that protein Tau.P301L became readily and

similarly phosphorylated at the pT231 epitope in both genotypes,

and already at young age. Neither age, nor terminal stage

markedly affected the phosphorylation of protein Tau at T231

(Fig. 3, Fig. 4A). Of note, CA1 neurons in wild-type FvB mice

remained completely devoid of immunoreaction for this epitope,

even at old age.

In the SLM, AT180 immunoreactive neuronal processes in both

Tau.P301L and biGT mice were evident already at young age,

without marked age-dependent changes (Fig. 3, Fig. 4A). Inter-

estingly, the reduction in AT180 immunoreactivity in terminal

biGT mice was fully accounted for by the extensive neurodegen-

eration in the CA1 sub-region bordering the subiculum (Fig. 3, red

asterisk; Fig. 4A).

We similarly analyzed phospho-epitope pS199/S202-Tau

defined by antibody AT8 for evolution with age. AT8 staining

was less intense than AT180 in SLM of Tau.P301L mice, except in

terminal mice (Fig. 4). Unexpected was the lesser AT8 reactivity in

the SLM of biGT mice relative to age-matched Tau.P301L mice

(Fig. 4). Clearly, neuronal tracts in the SLM of ageing biGT mice

remained longer devoid of the AT8 epitope, which became more

intense only in old, terminal biGT mice (13–18 months). Even

then, AT8 immunoreaction remained less pronounced than in

terminal, but younger Tau.P301L mice (Fig. 4B).

The combined data demonstrated that the progression of

phosphorylation of protein Tau leading to tauopathy was

particularly evident in the medial and lateral ERC and in the
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hippocampal sub-regions, including the SLM with its myelinated

axons from ERC. We concluded that the tauopathy in the SLM

differentiated Tau.P301L and biGT mice with respect to two

major phospho-epitopes, AT8 and AT180. Nevertheless, because

of inherent higher GSK3b activity in biGT mice, the anticipated

higher levels of AT180 and AT8 reflecting more extensive

phosphorylation of protein Tau by GSK3b was not substantiated

by the experimental observations.

Electrophysiology of synapses in SLM
The unexpected negative contribution of GSK3b in biGT mice

to the levels of phospho-epitopes and to the delayed tauopathy,

would be substantiated by biochemical examination, which is

evidently not possible for the tiny sub-regions of the hippocampus.

Therefore, we engaged to define functional and structural

parameters and defects inflicted by tauopathy to the hippocampal

formation, concentrating in particular on the SLM sub-region.

Synaptic activity in the SLM was examined ex vivo in brain

sections of two age-groups of Tau.P301L and biGT mice,

respectively 4–6 and 9–10 months, and compared to wild-type

FvB mice, matched for age and gender and with the identical

genetic background. Evoked fEPSPs were recorded in the SLM of

CA1 by stimulating ERC efferent axons (Fig. 5A). Responses at

SLM synapses were recorded without contamination from the SC

synapses by surgical sectioning the SC CA1 pathway. Stimulation

of the TA pathway evoked negative (sink) and positive (source)

fEPSPs in SLM and SR, respectively [41,42,65]. Selective blocking

of excitatory transmission at TA synapses with DCG IV, a specific

mGluR2 agonist [42,43] reduced nearly completely the evoked

fEPSPs, confirming that TA responses were recorded.

We measured LTP using our standard protocol of stimulation: 4

trains of 100 Hz pulses of 1 sec each, separated 20 sec apart. We

successfully induced LTP in all three genotypes, with the expected

amplitude at SLM synapses [41]. LTP at SLM synapses in young

and old Tau.P301L mice was similar to those in age-matched

Figure 3. Timeline of phospho-Tau in hippocampal formation of Tau.P301L and biGT mice. IHC for pT231-Tau (AT180) and pS199–202
(AT8) in the sub-regions of the hippocampal formation of Tau.P301L and biGT mice at 3 months of age and at terminal stage (see text for details). Red
asterisk marks CA1 pyramidal layer degeneration. Images are representative for the median levels of AT180 and AT8 staining (n = 6–8 mice per age
group). Denoted are layers I, II and III of the entorhinal cortex and CA1 hippocampal sub-regions stratum radiatum (SR) and stratum lacunosum
moleculare (SLM).
doi:10.1371/journal.pone.0087605.g003

Tauopathy and Stratum Lacunosum Moleculare

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e87605



wild-type FvB mice (Fig. 5B). Conversely, LTP was significantly

reduced in SLM of young biGT mice (Fig. 5B,D). In old biGT

mice, the LTP at SLM synapses was also decreased but did not

reach statistical significance because of the known inherent greater

variation of electrophysiological parameters in sections from old

mice (Fig. 6B, lower panel).

Basal synaptic transmission was measured by compilation of

Input/Output (I/O) curves with stimulus strengths between 0.5

and 4 V. In young mice, the I/O data in both genotypes were

similar to wild-type mice (Fig. 6A, left panel). In old biGT mice

(age 9–10 months) the fEPSP initial slopes were significantly

decreased, whereas again, old Tau.P301L mice did not differ from

age-matched wild-type mice (Fig. 6A, right panel).

Interesting in this context was the observation that in about

40% of old biGT mice, fEPSP could not be recorded in

hippocampal subfields SLM, SR and DG because the amplitudes

were below the detection limit set at peak-to-peak amplitude

,50 mV using 2V stimuli for 200 ms (Table 2). The biGT mice

clearly displayed an age-dependent disruption of basal activity at

the TA synapses, but also at the Schaffer collaterals and at PP

dependent synapses.

Short-term regulation of neurotransmitter release was measured

by paired-pulse facilitation (PPF) and short-term depression at TA

synapses. In young biGT mice, but not in young Tau.P301L mice,

PPF was significantly reduced, while in old mice (age 9–10

months) the TA synapses showed reduced facilitation in both

Tau.P301L and biGT mice, compared to wild-type mice (Fig. 6B).

Short-term depression was readily observed at TA synapses,

induced by 100 Hz pulses for 1 sec. In young mice (4–6 months),

short-term depression was not affected by either genotype, while in

older mice (9–10 months) short-term depression was less

pronounced in biGT mice (Fig. 6C).

Combined, the results demonstrated that Tau.P301L mice

showed normal baseline transmission and normal LTP, but

displayed reduced PPF at the SLM synapses. In contrast, synapses

in the SLM of biGT mice were deficient in base-line transmission,

and in short-term and long-term plasticity.

Analysis of white matter and myelinated axons
It was obvious from the current detailed analysis of ERC and

CA1 SLM that phosphorylation of protein tau was increased as

early as age 3 months in both models. Moreover, age-dependent

aggravation of tauopathy was demonstrated in the tri-synaptic

pathway, essential for learning and memory. Of note, late

hippocampal pathology, defined by IHC with AT100, was far

more extensive in biGT mice than in Tau.P301L mice [27,50],

which demonstrates the essential contribution of GSK3b, although

the molecular details and sub-regional differences remain to be

Figure 4. Timeline of phospho-Tau in the CA1 SLM of Tau.P301L and biGT mice. IHC for AT180 (A) and AT8 (B) staining in CA1 SLM region
of Tau.P301L and biGT mice at ages 3, 6 and 9 months and terminal. Data are represented as median intensity score for immunoreactivity with AT180
(A) and AT8 (B) in CA1 SLM. Grey symbols denote mice with clasping and black symbols denote terminal mice (see text for details)(n = 6–8 mice per
age group). CA1 hippocampal sub-regions stratum radiatum (SR) and stratum lacunosum molecular (SLM) are marked.
doi:10.1371/journal.pone.0087605.g004
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Figure 5. Electrophysiological analysis of LTP in SLM synapses in Tau.P301L and biGT mice. A. Image of hippocampal section on the MEA
chip, with superimposed fEPSPs recorded in the SLM (yellow oval) in response to stimulation of the TA pathway (white triangle). White solid lines
indicate where the section was cut to obtain pure TA responses. White dashed lines indicate granule and pyramidal cell body layers; black solid line
indicates the hippocampal fissure. Electrode 15 (white circle) was used as internal ground electrode. B. fEPSPs tracings (mean6SEM) recorded in SLM
in horizontal brain sections from young and old Tau.P301L and biGT mice. LTP was induced by 4 trains of high frequency stimulation (HFS) after
15 min of baseline recording. At the end of all recordings, DCG IV (3 mm) was added for 10 min. C. Representative tracings of fEPSPs at baseline
(grey), at 60 min after HFS (black) and 10 min after DCG IV (green). D. fEPSPs amplitudes recorded between 30 and 60 min after HFS in young and old
Tau.P301L and biGT mice (mean6SEM). Number of sections and mice: 4–6 months: FvB, n = 12 sections/8 mice; Tau.P301L, 11sections/6 mice; biGT 12
sections/6 mice; 9–10 months: FvB, n = 9 sections/6 mice; Tau.P301L 11 sections/6 mice; biGT, 8 sections/6 mice.
doi:10.1371/journal.pone.0087605.g005
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Figure 6. Electrophysiological analysis of SLM synapses in Tau.P301L and biGT mice. A. Basal synaptic transmission measured as the initial
slope of fEPSPs in response to increasing stimulus intensities in young (left panel) and old mice (right panel). Old biGT mice differed significantly from

Tauopathy and Stratum Lacunosum Moleculare

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e87605



defined. After we defined by AAV-Tau injection in the ERC that

protein Tau made use of both the TA and PP pathways to reach

the hippocampal formation (Fig. S1), we went on to assess the

effects of protein Tau alone and in combination with GSK3b on

the white-matter tracts within the CA1 SLM in both pre-clinical

tauopathy models.

Impaired diffusion of DiI from ERC to CA through

myelinated pathways. The reported electrophysiological data,

especially the affected paired pulse facilitation (PPF) strongly

implied presynaptic changes in Tau.P301L mice, exacerbated by

GSK3b in the biGT mice. In addition, Nectin-3, despite being

claimed as a post-synaptic CAM, was reported to co-localize with

myelinated axons, and therefore hypothesized to be essential for

TA myelinated axons [66,67]. Consequently, we investigated

presynaptic parameters for alterations of myelinated axons of the

TA pathway within CA1 SLM.

The carbocyanine dye DiI is the preferred tracer for long axonal

tracts, despite the drawback of slow diffusion, because its

distribution relies on lateral diffusion within the axonal mem-

branes, also in fixed tissues. Moreover, DiI labels myelin sheaths

over very long distances [68]. DiI crystals were implanted in the

ERC in fixed brains from adult pre-symptomatic Tau.P301L mice

(age 6–7 months) and age-matched wild-type FvB mice. Brains

were analyzed histologically after 14 months of incubation.

In wild-type mouse brain, the PP and TA were easily identified

by the bright staining of their axons (Fig. 7A). In contrast, in brain

from Tau.P301L mice, the intensity of staining of both TA and PP

axonal pathways was significantly reduced compared to wild-type

mice (Fig. 7). Also the alvear pathway (denoted AP in Fig. 7)

located below the corpus callosum (CC) was brightly stained in

wild-type mice, and significantly less in the brain of Tau.P301L

mice (Fig. 7C,D). Interestingly, both AP and TA originate in ERC

layer III and were observed to be similarly defective for DiI

diffusion, while PP was affected as well although originating in

ERC layer II. Obviously, all the major ERC-CA connections were

structurally and functionally compromised by neuronal expression

of protein Tau.P301L.

Defective myelination of TA axons in Tau.P301L,

exacerbated in biGT mice. The SLM comprises the projec-

tion of myelinated axons in the TA pathway that originate in the

ERC and synapse onto CA1 pyramidal neurons. Because myelin

sheaths are easily recognized ultrastructurally, we observed during

the ultrastructural analysis of spines, described in a foregoing

section, that myelin structures of TA axons in Tau.P301L mice

appeared damaged, already at the very young age of 4 months.

Surprisingly, the ultra-structure images showed many defective

myelin sheaths, referring to similar observations first in the brain of

aged primates, later also in elderly humans and AD patients

[2,69].

Operationally, we here defined myelin defects as sections of

axons surrounded by myelin sheaths that were malformed,

uncompacted, and presenting with split lamellae (Fig. 8A). The

G-ratio, defined as the ratio of the diameter of axon to that of the

total myelinated fiber, is the preferred parameter of myelinated

axons, with a normal value of around 0.77 in CNS of mice [70]. In

Tau.P301L mice, the G-ratio of TA axons was distributed around

the median of 0.70, with a small shift in distribution to lower

values compared to wild-type FvB mice (Fig. 8B; Table 3). In

contrast, in the SLM of biGT mice a significant deviation from the

mean G-ratio, with the median value decreased to 0.59, while

moreover the distribution was strongly skewed to lower values

(Fig. 8B, Table 3).

Additional parameters and means of quantification of the

observed myelin defects were applied to the TA axons in the SLM.

We first measured the relative number of TA axons that showed

myelin disruptions, which indirectly confirmed the data of the

G-ratio for the biGT mice but not for the Tau.P301L mice.

Indeed, despite the normal G-ratio observed in Tau.P301L mice, a

significant number of TA axons in the SLM were damaged with

respect to myelin structure compared to FVB mice (Fig. 8C, left

panel). Moreover, in biGT mice nearly all axons in the SLM were

covered by damaged myelin sheaths (85.863.6%; One-way

ANOVA: F(2,6) = 49.05, p = 0.0002; Fig. 8C, left panel).

The final parameter assessed for myelin defects in the SLM, the

relative length of disrupted axonal myelin sheaths indicated a

trend to increased length of damaged axons in Tau.P301L mice

(,10% of their length). Conversely, in biGT mice more than 50%

of the total length of the myelinated axons in the SLM contained

damaged myelin sheaths (One-way ANOVA: F(2,6) = 320.6,

p,0.0001; Fig. 8C, right panel).

CNPase as marker of defective myelinated TA axons in

Tau.P301L mice and biGT mice. We went on to molecularly

characterize the myelin defects in both transgenic models by

biochemical and immunohistological analysis of CNPase, a

myelin-associated enzyme that is among the first expressed in

differentiating oligodendrocytes that are responsible for myelina-

tion of axons in the CNS [71,72].

Biochemically, the two known isoforms of CNPase were

investigated and quantified by western blotting (Fig. 9A). In

Tau.P301L mice the levels of CNP2 were significantly decreased,

while CNP1 also tended to lower levels (Fig. 9A). In adult biGT

mice (age 6 months) the hippocampal levels of both the isoforms of

CNPase were significantly reduced (Fig. 9A). The ratio of the levels

of both CNPase isoforms was significantly lower in the

hippocampus of both Tau.P301L and biGT mice (Fig. 9A, right

panel).

IHC for CNPase in brain sections of young, old and terminal

mice of both genotypes, compared to wild-type FvB mice,

visualized the perturbations of myelin by weaker immunostaining

in the CA1 SLM of Tau.P301L and biGT mice (Fig. 9B). CNPase

immunoreactivity was mainly confined to the myelinated axons

within the SLM, implicating that the decrease in CNPase isoforms

detected biochemically, was contributed primordially by SLM

axons. Technically, it proved not possible to reliably quantify the

CNPase immunostaining to assign the decreased CNPase is in the

number of myelinated fibers or in their deficient myelination,

wild-type FvB mice: *p = 0.005. B. Paired-pulse facilitation are expressed as amplitude ratio of second to first peak. Tracings are averaged at 50 ms IPI
in young and old FvB, Tau.P301L and biGT mice. Statistical analysis at 4–6 months: *p = 0.021 biGT vs FvB; at 9–10 months: *p = 0.039 biGT vs FvB and
p = 0.004 Tau.P301L vs FvB.
doi:10.1371/journal.pone.0087605.g006

Table 2. Electrophysiological parameters.

FvB Tau.P301L biGT

Age (months) 4–6 9–10 4–6 9–10 4–6 9–10

success ratio (recorded/attempts) 12/12 9/9 11/11 11/11 12/12 8/14

number of mice 8 6 6 6 6 6

success-rate (%) 100 100 100 100 100 57

doi:10.1371/journal.pone.0087605.t002
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although the overall number of axons was not affected.

Conversely, the defective CNPase levels corroborated the DiI

diffusion data and the myelin defects, presented in the foregoing

sections.

The combined outcome illustrated not only the stronger effect

of the early stages of beginning tauopathy on the CNP2 isoform,

but also the synergistic impact of GSK3b with Tau.P301L on

axonal myelination in the hippocampus of the bigenic biGT mice,

with inherently higher GSK3b activity. The combined data-sets

demonstrated that myelination of axons within the TA was already

altered at young age in Tau.P301L mice, and that this clinical

phenotype was dramatically aggravated by co-expression of

GSK3b with Tau.P301L in the biGT mice.

Discussion

Indications that tauopathy, and pathological components of

AD, originate in the trans-entorhinal cortex were proposed long

ago [11]. To unravel the elusive molecular mechanisms that act

early in sporadic AD, we need to define and understand the

temporal and spatial origin and progression of the molecular

changes in amyloid and protein tau and their associated

pathology. Mouse models are most informative to define

parameters that with current technologies are impossible to

address in humans.

Protein Tau and the ERC-SLM-CA1 connection
Here we addressed the functional and structural problems

caused by tau pathology in the entorhinal cortex and hippocampus

in our two validated tauopathy models [25–27,46,49,51,52]. We

established that increased phosphorylation of protein tau was

evident in neurons in the medial and lateral entorhinal cortex.

Interestingly, the lateral ERC layer III was affected at younger age

than the medial ERC, as observed in patients [12]. The

observations were extended from the Tau.P301L mice to the

bigenic biGT mice that contain the same homozygous Tau.P301L

transgenic make-up, with the extra addition of one allele of the

GSK3b.S9A transgene [25,27,73].

Phosphorylation of protein Tau was prominent in the SLM in

both models, which led us to investigate the TA and PP pathways

that connect ERC and CA1 SLM, deriving from our observation

of specific reduction of the synaptic CAM Nectin-3 in the SLM of

these models [25]. Additionally, we now highlighted by unilateral

injection of AAV-Tau.4R in the ERC, the primary connections of

interest in the PP and TA pathways leading from ERC to the

hippocampus proper (Fig. S1). Our observations, combined with

literature data discussed in the next sections, demonstrated that

increased phosphorylation of protein Tau, as prelude of or for

beginning tauopathy, inflicted important functional and structural

defects within the CA1 SLM region.

The TA pathway has been overlooked in studies of the

hippocampal formation, its wiring and functions. Its physiological

importance was enforced by complex genetic manipulation in

Figure 7. DiI diffusion is reduced in brain of Tau.P301L mice. A,B: images of DiI diffusion patterns from implants in the ERC of brains from FvB
(A) and Tau.P301L mice (B) after 14 months incubation. These are representative confocal images but with strongly different contrast and
enhancement for the Tau.P301L mice (+3 gain, +4 exposure) which was needed to visualize the pathways. C. Double histological staining of DiI
pattern combined with CMC staining for myelin (blue) to locate the alvear pathway (AP) relative to the corpus callosum (CC). D. DiI staining intensity
in indicated brain regions of FvB (n = 8) and Tau.P301L mice (n = 8). Statistical analysis: Student’s t-test (unpaired, two-tailed). **p,0.01 and
***p,0.001.
doi:10.1371/journal.pone.0087605.g007
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Figure 8. Myelin defects in SLM of Tau.P301L mice. A. Representative images of the ultrastructure of myelinated axons in wild-type, Tau.P301L
and biGT mice, with myelin defects indicated by the symbols explained in the caption. B. G-ratio distribution of TA axons in SLM in wild-type FvB,
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mice to specifically and reversibly inactivate synapses in CA1

formed by TA axons originating in ERC layer III [20,74].

The pathological contributions of a functional ERC-CA

connection to the temporal and spatial progression of AD was

corroborated recently in mice expressing mutant APP or protein

Tau in ERC layers II/III [13,75–77]. The comparable

Tau.P301L model failed to show behavioral defects, although

tauopathy was induced in the projection areas of the ERC [76].

Two more models expressing Tau.P301L in the ERC supported

the hypothesis that tauopathy progresses from the ERC to the

hippocampus what was attributed to the PP, which does originate

in the ERC layer II but targets mainly the DG [13,77].

Protein Tau and cognitive parameters of SLM-CA1
The various defects in the tauopathy models are substantiated

by electrophysiological and behavioral analysis. The defective

cognition of young Tau.P301L mice was extended to later age

when still preclinical with respect to progressive motor impairment

incurring at older age. The electrophysiological analysis ex vivo,

corroborated the performance of in vivo tasks that defined the

hippocampal cognitive impairment of Tau.P301L mice.

We recently described impaired levels of Nectin-3 in CA1 SLM

in Tau.P301L mice, already at young age [25]. Combined with

the timeline of cognitive defects described here, the data

demonstrate that defective Nectin-3 levels correlate with defective

hippocampal/ERC based learning and memory. Interestingly,

most recent knock-down of hippocampal Nectin-3 caused loss of

dendritic spines and spatial memory defects [78]. The combined

data underpin the important contribution of Nectin-3 in memory

processing, and the negative effects of tau pathology, even in its

most early stages of augmented phosphorylation at young age. The

latter was recently observed in post-mortem human brain of young

adults and even children [79].

Spines, synapses and Myelin affected by protein tau and
GSK3b

Needless to state that integrity of myelin sheaths is essential for

proper axonal functioning. The defective synaptic transmission at

TA synapses in the SLM can be contributed at least in part to

myelin defects, further corroborated by the aggravating contribu-

tion of GSK3b. The biGT mice at any age produce weaker LTP

than the Tau.P301L mice, indicating that postsynaptic influx of

Ca2+ through NMDA receptors and voltage-gated L-type Ca2+

channels can be affected [80,81]. The data imply that protein Tau

and GSK3b affect pre- and post-synaptic functions and mecha-

nisms of synaptic signal transmission.

Phosphorylated protein Tau did not affect dendritic spine

density in the SLM in young mice (4–6 months), in contrast with

the surprising increased spine density in other hippocampal sub-

regions of Tau.P301L mice [29]. Nevertheless, ultrastructure of

mushroom spines was affected in the SLM of clinically pre-

symptomatic Tau.P301L mice that were cognitively impaired

[26,27,29,52; this study]. The concomitant increase in PSD

volume and area in Tau.P301L mice is to be regarded as a

compensatory effect that is reminiscent of the increased PSD95

levels in patients [56]. Of note, thinning of the SLM and stratum

radiatum is correlated with cognitive decline in humans [82]. In

addition, the combination of ERC and hippocampal Tau

pathology, as well as that within the TA track, paralleled the

early cognitive decline in behavioral tasks, although to our

knowledge, no behavioral task specifically relies on the TA

pathway or on the SLM.

Defective Myelinated axons and Tauopathy
AD is by definition a neurodegenerative disease striking gray

matter. White matter pathology is rarely discussed, but comprises

myelin defects and demyelination, along with axonal degeneration

[2–4,7–9,61]. Defects were reported in myelinated PP axons

[7,10], while white matter microstructure was closely associated

with levels of protein Tau and Ab42 in CSF [83]. In animal

models, myelin defects were observed in the cortex of tau mice

[84], while combined amyloid and tau pathology caused minor

myelin defects of axons denoted as Schaffer collaterals that

connect CA3 to CA1 [85]. As a caveat, one must note that in

rodents the Schaffer collaterals are not myelinated [86–90]. Only

very recently were myelin defects described in an amyloid mouse

model [91]. The combined data indicate that myelinated axons

are affected early by amyloid but particularly by protein Tau,

before the classical AD pathology is evident [92].

Our observation of altered PPF, indicative for presynaptic

defects and therefore axonal signal disruption, as well as the

potential contribution of Nectin-3 to myelination [66,67], led us to

examine ultrastructurally the TA axons. Our data corroborates

and considerably extend the records of myelin defects in AD-

models.

Neuronal protein Tau damaged myelinated TA axons, with

dramatic aggravation by the neuronal co-expression of GSK3b.

This unexpected extra axonal damage by increased phosphoryla-

tion of protein Tau by GSK3b, is proposed to disable surrounding

oligodendrocytes in maintaining myelination of TA axons in biGT

mice. The underlying mechanisms are to be found in the complex

interplay of axons and oligodendrocytes, which remain largely

elusive and are intensely investigated in demyelinating diseases.

The prime interest is in multiple sclerosis, in which a recent

provocative hypothesis poses that degenerating axons induce

damage of surrounding myelin, not the other way around [93].

Our data on CNPase corroborate the structural defects of myelin

sheaths, in line with decreased CNPase activity in the hippocam-

pus in AD [94,95]. Also in this framework fits the remarkable

correlation of CSF biomarkers with white matter defects in AD,

promoting interest in white matter disruption as a diagnostic

criterion in AD, as measured by MRI diffusion tensor imaging

[9,82,83,96].

The combined data-sets demonstrate that increased levels of

protein Tau are sufficient to profoundly impair the functional and

Tau.P301L and biGT mice (see also Table 2). C. Quantitation of axons harboring morphological defects (left panel) and of axonal length with disrupted
myelin sheaths (right panel) in TA axons of SLM in the three genotypes. Data are mean6SEM, statistically analyzed by one-way ANOVA followed by
Bonferroni Multiple Comparison Test post hoc test; *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0087605.g008

Table 3. G - ratio of TA axons.

wild-type FvB Tau.P301L biGT

n % n % n %

O,G-ratio ,1 499 100 527 100 533 100

G-ratio ,0.7 243 48.7 309 58.6 443 83.1

G-ratio .0.7 256 51.3 218 41.4 90 16.9

doi:10.1371/journal.pone.0087605.t003
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structural organization of the entorhinal - hippocampal complex.

In particular the synapses and axons in the stratum lacunosum

moleculare were concerned, which engendered severe white

matter pathology along the myelinated axons of the transammonic

pathway. The severe extra negative impact on the white matter

defects by GSK3 implies a direct relation of axonal damage to the

functioning of surrounding oligodendrocytes, stemming from

increased phosphorylation of neuronal protein Tau.

Figure 9. Analysis of oligodendrocyte marker CNPase. A. Representative western for CNPase in hippocampal protein extracts from wild-type
FvB, Tau.P301L and biGT mice (n = 3 per genotype). The two CNPase isoforms are marked CNP1 and CNP2. B. Representative IHC images for CNPase in
SLM of the three genotypes, at ages indicated in the captions. CA1 hippocampal sub-regions of interest are defined as stratum pyramidale (py),
radiatum (SR) and stratum lacunosum molecular (SLM).
doi:10.1371/journal.pone.0087605.g009
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Supporting Information

Figure S1 Intracerebral injection of AAV-Tau.4R in ERC
highlights TA and PP pathways. Unilateral injection of AAV-

Tau.4R in the ERC of wild-type FvB mice was analyzed 14 days

post injection by IHC for human Tau with HT7 on coronal brain

sections. A. Representative images of hippocampal formation and

ERC in ipsi- and contra-lateral hemispheres. The middle panels

are enlarged views of the boxed areas in the left panels to illustrate

neuronal expression of human Tau in the ERC and CA1 sub-

regions. B. Enlarged view of the relevant strata: SR, stratum

radiatum; SLM, stratum lacunosum moleculare; ml, molecular

layer; PP, perforant pathway; gl, granular layer; hilus of the gyrus

dendatus.
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32. Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, et al. (2002) Neuronal

deficiency of presenilin 1 inhibits amyloid plaque formation and corrects

hippocampal long-term potentiation but not a cognitive defect of amyloid

precursor protein [V717I] transgenic mice. J Neurosci 22: 3445–3453.

33. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, et al. (2000)

Enrichment induces structural changes and recovery from nonspatial memory

deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3: 238–244.

34. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, et al. (1999)

Genetic enhancement of learning and memory in mice. Nature 401: 63–69.

35. Capetillo-Zarate E, Staufenbiel M, Abramowski D, Haass C, Escher A, et al.

(2006) Selective vulnerability of different types of commissural neurons for

amyloid b-protein-induced neurodegeneration in APP23 mice correlates with

dendritic tree morphology. Brain 129: 2992–3005.

36. Deng J-B, Yu D-M, Wu P, Li M-S (2007) The tracing study of developing

entorhino-hippocampal pathway. Int J Dev Neurosci 25: 251–258. doi:10.1016/

j.ijdevneu.2007.03.002.

37. Elberger AJ, Honig MG (1990) Double-labeling of tissue containing the

carbocyanine dye DiI for immunocytochemistry. J Histochem Cytochem 38:

735–739.

38. Wang C, Popescu DC, Wu C, Zhu J, Macklin W, et al. (2010) In situ

fluorescence imaging of myelination. J Histochem Cytochem 58: 611–621.

39. Kraev I, Henneberger C, Rossetti C, Conboy L, Kohler LB, et al. (2011) A

peptide mimetic targeting trans-homophilic NCAM binding sites promotes

spatial learning and neural plasticity in the hippocampus. PLoS One 6: e23433.

40. Chong S-A, Benilova I, Shaban H, De Strooper B, Devijver H, et al. (2011)

Synaptic dysfunction in hippocampus of transgenic mouse models of Alzheimer’s

disease: A multi-electrode array study. Neurobiol Dis 44: 284–291.

41. Dvorak-carbone H, Schuman EM (1999) Long-Term Depression of Tempor-

oammonic-CA1 Hippocampal Synaptic Transmission. J Neurophysiol 81:

1036–1044.

Tauopathy and Stratum Lacunosum Moleculare

PLOS ONE | www.plosone.org 16 February 2014 | Volume 9 | Issue 2 | e87605



42. Speed HE, Dobrunz LE (2009) Developmental changes in short-term facilitation

are opposite at temporoammonic synapses compared to Schaffer collateral
synapses onto CA1 pyramidal cells. Hippocampus 19: 187–204.

43. Tsukamoto M, Yasui T, Yamada MK, Nishiyama N, Matsuki N, et al. (2002)

Mossy fibre synaptic NMDA receptors trigger non-hebbian long-term

potentiation at entorhino-CA3 synapses in the rat. J Physiol 546: 665–675.

44. Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or
consequence of neurological disorders? Brain Res Brain Res Rev 39: 29–54.

45. Bayés A, van de Lagemaat LN, Collins MO, Croning MDR, Whittle IR, et al.

(2011) Characterization of the proteome, diseases and evolution of the human
postsynaptic density. Nat Neurosci 14: 19–21.

46. Dutschmann M, Menuet C, Stettner GM, Gestreau C, Borghgraef P, et al.

(2010) Upper airway dysfunction of Tau-P301L mice correlates with tauopathy
in midbrain and ponto-medullary brainstem nuclei. J Neurosci 30: 1810–1821.

47. Jaworski T, Dewachter I, Seymour CM, Borghgraef P, Devijver H, et al. (2010)

Alzheimer’s disease: old problem, new views from transgenic and viral models.

Biochim Biophys Acta 1802: 808–818.
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59. Chan-Palay V, Lang W, Haesler U, Köhler C, Yasargil G (1986) Distribution of

altered hippocampal neurons and axons immunoreactive with antisera against
neuropeptide Y in Alzheimer’s-type dementia. J Comp Neurol 248: 376–394.

60. Delacourte A, David J, Sergeant N, Buée L, Wattez A, et al. (1999) The

biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s
disease. Neurology 52: 1158–1165.

61. Duyckaerts C, Delatour B, Potier M-C (2009) Classification and basic pathology

of Alzheimer disease. Acta Neuropathol 118: 5–36.

62. Buerger K, Teipel SJ, Zinkowski R, Blennow K, Arai H, et al. (2002) CSF tau

protein phosphorylated at threonine 231 correlates with cognitive decline in
MCI subjects. Neurology 59: 627–629.

63. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, et al. (2002) Differential

diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein
phosphorylated at threonine 231. Arch Neurol 59: 1267–1272.

64. Hampel H, Bürger K, Pruessner JC, Zinkowski R, DeBernardis J, et al. (2005)

Correlation of cerebrospinal fluid levels of tau protein phosphorylated at
threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch

Neurol 62: 770–773.

65. Colbert C, Levy W (1992) Electrophysiological and pharmacological character-

ization of perforant path synapses in CA1: mediation by glutamate receptors.
J Neurophysiol 68: 1–8.

66. Molyneaux BJ, Arlotta P, Fame RM, MacDonald JL, MacQuarrie KL, et al.

(2009) Novel subtype-specific genes identify distinct subpopulations of callosal
projection neurons. J Neurosci 29: 12343–12354.

67. Niederkofler V, Baeriswyl T, Ott R, Stoeckli ET (2010) Nectin-like molecules/

SynCAMs are required for post-crossing commissural axon guidance. Develop-

ment 137: 427–435.

68. Chen BK, Miller SM, Mantilla CB, Gross L, Yaszemski MJ, et al. (2006)
Optimizing conditions and avoiding pitfalls for prolonged axonal tracing with

carbocyanine dyes in fixed rat spinal cords. J Neurosci Methods 154: 256–263.

69. Peters A, Moss MB, Sethares C (2000) Effects of aging on myelinated nerve

fibers in monkey primary visual cortex. J Comp Neurol 419: 364–376.
70. Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated

fibers in the rat CNS? A theoretical approach. PLoS One 4: e7754.

71. Rasband MN, Tayler J, Kaga Y, Yang Y, Lappe-Siefke C, et al. (2005) CNP is
required for maintenance of axon-glia interactions at nodes of Ranvier in the

CNS. Glia 50: 86–90. doi:10.1002/glia.20165.
72. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, et al. (2003)

Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and

myelination. Nat Genet 33: 366–374. doi:10.1038/ng1095.
73. Spittaels K, Van den Haute C, Van Dorpe J, Geerts H, Mercken M, et al. (2000)

Glycogen synthase kinase-3b phosphorylates protein tau and rescues the
axonopathy in the central nervous system of human four-repeat tau transgenic

mice. J Biol Chem 275: 41340–41349.
74. Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S (2011) Entorhinal

cortex layer III input to the hippocampus is crucial for temporal association

memory. Science (802 ) 334: 1415–1420.
75. Harris JA, Devidze N, Verret L, Ho K, Halabisky B, et al. (2010) Transsynaptic

progression of amyloid-b-induced neuronal dysfunction within the entorhinal-
hippocampal network. Neuron 68: 428–441.

76. Harris JA, Koyama A, Maeda S, Ho K, Devidze N, et al. (2012) Human P301L-

Mutant Tau Expression in Mouse Entorhinal-Hippocampal Network Causes
Tau Aggregation and Presynaptic Pathology but No Cognitive Deficits. PLoS

One 7: e45881.
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