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Abstract. The current study aimed to identify the poten-
tial clinical significance and molecular mechanisms of
kinesin (KIF) family member genes in lung adenocar-
cinoma (LUAD) using genome-wide RNA sequencing
(RNA-seq) datasets derived from The Cancer Genome
Atlas (TCGA) database. Clinical parameters and RNA-seq
data of patients with LUAD from the TCGA database enabled
the assessment of the clinical significance of KIF genes, while
the potential mechanisms of their interactions in LUAD were
investigated by gene set enrichment analysis (GSEA). A gene
signature with potential prognostic value was constructed via
a stepwise multivariable Cox analysis. In total, 23 KIF genes
were identified to be differentially expressed genes (DEGs)
between the LUAD tumor and adjacent non-cancerous
tissues. Of these, 8 differentially expressed KIF genes were
strongly found to be strongly associated with the overall
survival of patients with LUAD. Three of these genes were
found to be able to be grouped as a potential prognostic gene
signature. Patients with higher risk scores calculated using
this gene signature were found to have a markedly higher
risk of mortality (adjusted P=0.003; adjusted HR, 1.576;
95% CI, 1.166-2.129). Time-dependent receiver operating
characteristic analysis indicated that this prognostic signa-
ture was able to accurately predict patient prognosis with
an area under curve of 0.636, 0.643,0.665, 0.670 and 0.593
for the 1-, 2-, 3-, 4- and 5-year survival, respectively. This
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prognostic gene signature was identified as an independent
risk factor for LUAD and was able to more accurately predict
prognosis in comparison to other known clinical parameters,
as shown via comprehensive survival analysis. GSEA enrich-
ment revealed that that KIF 14, KIF18B and KIF20A mediated
basic cell physiology through the regulation of the cell cycle,
DNA replication, and DNA repair biological processes and
pathways. On the whole, the findings of this study identified
23 KIF genes that were DEGs between LUAD tumor and
adjacent non-cancerous tissues. In total, 8 of these genes
had the potential to function as prognostic and diagnostic
biomarkers in patients with LUAD.

Introduction

Lung cancer is the primary contributor towards cancer
mortality and morbidity in the developed world, including
in countries such as China. The latest global cancer statistics
report an estimated 2,093,876 new cases and 1,761,007 deaths
due to lung cancer worldwide in 2018 (1). These statistics are
reflected in China, where there were 733,300 new lung cancer
cases and 610,200 deaths due to lung cancer in 2015 (2).
Lung cancer presents as either non-small cell (NSCLC) or
small cell lung cancer, with the latter further classified into
lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC). In recent years, an increased number of
cases of LUAD has been observed, which has surpassed the
incidence of LUSC. LUAD is mostly associated with genetic
factors, environmental and other external factors, including
smoking. Genetic factors are able to function as more objec-
tive biomarkers for the diagnosis, treatment and prognosis of
lung cancer.

The kinesin (KIF) family member genes are mainly
found in eukaryotic cells, primarily in microtubules. In vitro
experiments have demonstrated that the transport of proteins is
unidirectional, moving along the negative pole of microtubule
towards the positive pole. Therefore, the KIF family genes
control mass protein transfer both intracellularly and extracel-
lularly, including functions, such as transporting organelles
and material vesicles, and participating in cell mitosis (3-5).



1018

The use of whole-genome sequencing data combined with
bioinformatics analysis is an effective method with which
to explore prospective molecular mechanisms. The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov) is an
open-source project using large-scale genomic sequencing
to map the genomes of 33 types of human cancer (6,7),
including complete RNA sequencing (RNA-seq) data for
LUAD. Numerous studies have reported that KIF family
member genes are dysregulated in multiple types of cancer,
and can be used as diagnostic and prognostic biomarkers
for cancers (5,8-10). In our previous study, we analyzed
genome-wide breast cancer RNA-seq dataset from the TCGA
database and found that multiple genes belonging to the KIF
family could be used as biomarkers for the diagnosis and
prognosis of breast cancer (11). Therefore, we concluded that
some of the KIF family genes may also be used as diagnostic
and prognostic biomarkers of LUAD. In addition, previous
studies have also reported that some of the KIF family genes
may be used as prognostic indicators of LUAD (12-14).
However, the comprehensive systemic analysis of KIF family
genes in LUAD has not yet been reported, at least to the
best of our knowledge, and thus the potential underlying
molecular mechanism still require further investigation. In
order to fill this gap in knowledge, the present study aimed to
elucidate the potential molecular mechanisms of KIF family
member genes, and to determine their prognostic value in
LUAD.

Materials and methods

Data source and pre-processing. Clinical data, as well as
the complete RNA sequencing (RNA-seq) library of TCGA
LUAD cohort were derived from the TCGA database (https://
portal.gdc.cancer.gov/projects/TCGA-LUAD) (6,7,15). Raw
RNA-seq was normalized using the R platform of the DESeq
package (http://www.bioconductor.org/packages/release/bioc/
html/DESeq.html), allowing the identification of the differen-
tially expressed genes (DEGs) of KIF family members between
LUAD tumor and adjacent non-cancerous tissues (16). This
study does not contain any experiments using human partici-
pants or animals performed by any of the authors. Since all
datasets included in tge current study were downloaded from
the TCGA database and data acquisition and application are
consistent with the publication guidelines of TCGA, additional
approval by an ethics committee is thus not necessary.

Prognostic KIF gene screening. The inclusion criteria and
exclusion criteria of the patients with LUAD for survival
analysis were as follows: Inclusion criteria: i) LUAD tumor
tissues RNA sequencing data set were available; ii) overall
survival (OS) time was available and not zero. Exclusion
criteria: i) Patient tumor tissues were not subjected RNA
sequencing; ii) the OS time was zero or unavailable. Survival
analysis was performed using the normalized mRNA gene
expression dataset of KIF-related genes and clinical outcome
parameters. The subjects were grouped as having either a low
or high-expression based on the median expression value of
each gene. The prognostic values of KIF family member genes
were evaluated via multivariate Cox proportional hazards
regression analysis using the R platform of the survival

ZHANG et al: CLINICAL SIGNIFICANCE AND MOLECULAR MECHANISMS OF KIF GENES IN LUAD

package (https://cran.r-project.org/web/packages/survival/
index.html). The group that had a low KIF gene expression
was used as the reference group, with all data adjusted for
tumor stage. A P-value <0.05 was considered to indicate a
statistically significant difference, with the respective gene
designated as a prognostic KIF genes.

Construction of a prognostic gene signature based on KIF
gene expression. A prognostic gene signature was constructed
based on the linear combination of gene expression levels
multiplied by a regression coefficient (3), which was derived
from multivariate Cox proportional hazards regression
analysis. The prognostic KIF family member genes were
inserted into the multivariate Cox regression model using
overall survival as the dependent variable. The risk score
formula of the prognosis signature was as follows (17-22):
Risk score = expression of KIF, x 3, KIF, + expression of
KIF, x B, KIF, + ... expression of KIF, x 3, KIF,. Patients
were classified as having low or high risks based on the
median value of risk scores. A time-dependent receiver oper-
ating characteristic (ROC) curve was drawn by the R platform
of the survivalROC package (https://cran.r-project.org/web/
packages/survivalROC/index.html) in order to evaluate the
predictive accuracy of KIF genes expression based prognostic
signature for the prognosis of LUAD (23).

Comprehensive survival analysis of mRNA expression-based
prognostic signature. The association between LUAD clinical
features and the contrasted prognostic signature was inves-
tigated using stratified and joint effects survival analysis. A
nomogram was generated to evaluate the individualized prog-
nosis risk score based on clinical characteristics and KIF gene
expression-based prognostic signature.

Gene set enrichment analysis (GSEA). To further assess the
biological pathways that underlie prognostic KIF genes in
LUAD OS, GSEA (http://software.broadinstitute.org/gsea/
index.jsp) was performed (24,25). GSEA uncovered the poten-
tial mechanisms of prognostic-KIF genes using the Molecular
Signatures Database (MSigDB, http://software.broadinstitute.
org/gsea/msigdb/index.jsp) c2(c2.all.v6.2.symbols.gmt) and
c5(c5.all.v6.2.symbols.gmt) (26). The results of GSEA that had
a false discovery rate (FDR) <0.25, INormalized Enrichment
Score (NES)I >1 and a nominal P-value <0.05 were considered
to indicate a statistically significant difference.

Statistical analysis. SPSS version 20.0 software (IBM Corp.)
and R3.3.1 (https://www.r-project.org). were used to compute
all statistical analyses. The diagnostic receiver operating
characteristic (ROC) curves of KIF genes between tumor and
adjacent non-cancerous tissues were analyzed and plotted by
SPSS version 20.0. The independent samples t-test was used to
compare the mRNA expression levels of tumor and adjacent
normal tissues. The co-expression correlation between KIF
family member genes was assessed by Pearson's correla-
tion coefficient. Survival analyses were assessed using the
Kaplan-Meier method and Cox proportional hazard regression
model. Clinical parameters with a log-rank test P-value <0.05
in LUAD OS were subjected to further multivariate Cox
proportional hazards regression model for adjustment. A value
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Figure 1. Heatmap of KIF family genes in LUAD tumor and adjacent normal tissues. KIF, kinesin; LUAD, lung adenocarcinoma.

Log2 fold change

Figure 2. Fold change of KIF family genes between LUAD tumor and adjacent normal tissues. KIF, kinesin; LUAD, lung adenocarcinoma.

of P<0.05 was considered to indicate a statistically significant
difference.

Results

Study cohort. A total of 515 patients that contributed 535 tumor
tissues and 59 adjacent non-cancerous tissues were extracted
from the TCGA database LUAD project. In total, 500 patients
with LUAD had complete clinical outcome parameters
and RNA-seq data, and these were included into further

survival analysis. Univariate survival analysis of the clinical
parameters in LUAD OS suggested that tumor stage was
significantly associated with LUAD OS (Table I). Expression
heatmaps and differential expression fold changes are shown
in Figs. 1 and 2, respectively. In total, 25 KIF genes were
found to be significantly dysregulated between the LUAD
tumor and adjacent non-cancerous tissues, of these, 23 KIF
genes were identified as DEGs based on the following criteria:
llog2 Fold Change(FC)l =1, P-value <0.05 and FDR <0.05. In
total, 5 DEGs were found to be downregulated in the LUAD
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Table I. Clinical parameters of patients with LUAD from TCGA.

Variables Patients (n=500) MST (days) Crude HR (95% CI) Log-rank P-value
Age (years)® 0.386
<65 215 1,499 1
>65 264 1,454 1.143 (0.845-1.546)
Sex 0.754
Female 270 1,454 1
Male 230 1,528 1.048 (0.783-1.403)
Tumor stage® <0.0001
Stage I 268 2,620 1
Stage 11 119 1,209 2473 (1.719-3.559)
Stage 111 80 879 3.495 (2.383-5.126)
Stage IV 25 826 3.819 (2.201-6.629)
Tumor stage® <0.0001
Stage I+11 387 1,632 1
Stage II+IV 105 826 2.585 (1.894-3.528)

‘[nformation of age was unavailable for 21 patients; *Information of tumor stage was unavailable for 8 patients. TCGA, The Cancer Genome
Atlas; MST, median survival time; LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval.
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Figure 3. Co-expression heatmap of KIF family genes in LUAD tumor tissues. KIF, kinesin; LUAD, lung adenocarcinoma.

tumor tissues, whereas the others were upregulated (Table II).
Further analysis of the co-expressed KIF genes in the tumor
tissues revealed that a majority of KIF genes existed in complex
co-expression associations (Fig. 3 and Table SI).

Prognostic KIF gene screening. Survival analysis of KIF
genes in the present study cohort based on multivariate Cox
proportional hazards regression model demonstrated a total of
8 KIF genes that were significantly associated with LUAD OS
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Table II. Differential expression analysis and survival analysis of KIF family genes in patients with LUAD.

Differential expression analysis Survival analysis

Genes log2 Fold change P-value FDR HR® Low 95% CI High 95% CI P-value®
KIF14 3.761199 <0.0001 <0.0001 1.686098 1.246964 2.279878 0.000689
KIF18A 1.373027 0.002178 0.00919 1.610726 1.190265 2.179715 0.002012
KIF23 2.582725 <0.0001 <0.0001 1.51088 1.117299 2.043104 0.007355
KIF20A 3.14896 <0.0001 <0.0001 1.478097 1.092943 1.998979 0.011181
KIF11 2.689239 <0.0001 <0.0001 1.437782 1.064161 1.94258 0.01803

KIF20B 1.301735 <0.0001 0.000271 143011 1.059873 1.929678 0.019265
KIF18B 3.766396 <0.0001 <0.0001 1.421903 1.052975 1.920092 0.021631
KIF4A 3.830272 <0.0001 <0.0001 1.405441 1.04261 1.894539 0.025494
KIF1B 0.008518 0.925271 0.972874 0.749876 0.558315 1.007161 0.055805
KIF27 -0.11005 0.603581 0.758646 0.763263 0.567524 1.02651 0.073954
KIFC1 2.734491 <0.0001 <0.0001 1.307037 0.968747 1.763459 0.079741
KIF4B 1.122955 0.585909 0.74532 1.282052 0.954614 1.721803 0.098684
KIFC2 1.792038 <0.0001 <0.0001 0.79411 0.590222 1.068429 0.127819
KIF2C 3.573061 <0.0001 <0.0001 1.25987 0.93572 1.696312 0.127964
KIFAP3 -0.1271 0.49553 0.668045 0.820523 0.610544 1.102719 0.189646
KIF16B -0.04692 0.831639 0.914865 0.822771 0.611296 1.107406 0.198118
KIF1BP 0.032733 0.883941 0.946259 1.196995 0.890981 1.608112 0.232603
KIF13A -0.5605 0.00104 0.00482 0.838206 0.624352 1.125311 0.240241
KIF5A 2.712286 0.007712 0.026645 0.850435 0.633679 1.141335 0.280467
KIF17 -1.99907 <0.0001 0.000566 0.854866 0.637723 1.145947 0.29427

KIF21B 0.316249 0.296082 0.472991 0.863796 0.641166 1.163729 0.335624
KIF3C 1.08788 0.000112 0.000682 1.155325 0.860101 1.551884 0.337567
KIF21A 0471146 0.078692 0.175791 0.869257 0.647914 1.166216 0.35006

KIF5B -0.11057 0.509291 0.680306 1.149144 0.857356 1.540238 0.352275
KIF26A -1.46358 0.000133 0.000793 0.877007 0.652637 1.178514 0.38403

KIF12 177177 <0.0001 <0.0001 0.878517 0.6541 1.179931 0.389461
KIF24 0.658401 0.275437 0.450236 1.132135 0.843729 1.519126 0.408083
KIF15 2.685009 <0.0001 <0.0001 1.133063 0.842076 1.524602 0.40941

KIF25 1.190456 0.336607 0.51667 0.918596 0.685346 1.23123 0.569947
KIF7 0.621628 0.265307 0.439337 1.083857 0.807299 1.455156 0.592125
KIF6 -1.28474 0.013328 0.042003 0.924712 0.688201 1.242503 0.603526
KIF13B -0.09452 0.4315 0.610314 1.07943 0.804877 1.447637 0.609761
KIF19 -1.23658 0.000403 0.002133 0.931921 0.694829 1.249914 0.637848
KIF5C 1.444426 0.067916 0.156645 0.937923 0.697936 1.260429 0.670823
KIF26B 3.141348 <0.0001 <0.0001 0.938876 0.698727 1.261564 0.675623
KIF1A 5.445563 <0.0001 <0.0001 1.064054 0.791266 1.430885 0.681207
KIF2A 0.760907 0.001016 0.004726 1.062085 0.791335 1.42547 0.688285
KIF22 1.166602 <0.0001 <0.0001 1.057282 0.787208 1.420012 0.711293
KIFC3 0.108768 0.504868 0.675814 1.056382 0.787667 1.41677 0.714182
KIF3B -0.13168 0.409013 0.588436 0.954955 0.712533 1.279855 0.757712
KIF3A -0.14052 0.500277 0.671849 0.955389 0.71235 1.281346 0.760587
KIF1C -1.31875 <0.0001 <0.0001 0.990563 0.737947 1.329656 0.949668
KIF9 -0.34716 0.253979 0.425275 0.992495 0.739871 1.331377 0.959913

“Low expression group is the reference group; Padjusted for tumor stage in the Cox proportional hazard regression model. KIF, kinesin;

LUAD, lung adenocarcinoma; FDR, false discovery rate; HR, hazard ratio; CI, confidence interval.

(Table II and Fig. 4). The upregulation of these 8 prognostic  risks in the patients with LUAD. In addition, we also observed
KIF genes was associated with significantly higher mortality  that these 8 prognostic KIF genes were notably upregulated
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Figure 4. The Kaplan-Meier curves of 8 prognostic KIF family genes in LUAD.

The order of the Kaplan-Meier curves of the 8 prognostic KIF family genes was

as follows: (A) KIF11; (B) KIF14; (C) KIF18A; (D) KIF18B; (E) KIF20A; (F) KIF20B; (G) KIF23; (H) KIF4A. KIF, kinesin; LUAD, lung adenocarcinoma.
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Figure 5. Differential expression distribution and diagnostic ROC curves of 8 prognostic KIF family genes in LUAD tumor and adjacent normal tissues.
(A) Differential expression distribution of 8 prognostic KIF family genes between LUAD tumor and healthy adjacent tissues; the order of ROC curves for the
8 prognostic KIF family genes was as follows: (B) KIF11; (C) KIF14; (D) KIF18A; (E) KIF18B; (F) KIF20A; (G) KIF20B; (H) KIF23; (I) KIF4A. KIF, kinesin;

LUAD, lung adenocarcinoma; ROC: receiver operating characteristic.

in the LUAD tumor tissues (Fig. 5A), and ROC curve analysis
also substantiated that these 8 prognostic KIF genes may serve
as potential diagnostic biomarkers for LUAD (Fig. 5B-I).

Construction of a prognostic gene signature. The 8 KIF
genes that were significantly associated with LUAD OS on

single gene survival analysis were subjected to screening
for potential prognostic gene signature combination using
the ‘step’ function. The most significant KIF candidate gene
combinations of these 8§ KIF genes were further screened
for prognostic signature construction. Finally, KIFI4,
KIFI8B and KIF20A were used for the prognostic signature
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construction based on the following formula: Expression of
KIF14 x (0.2437) + expression of KIFI8B x (-0.1541) + expres-
sion of KIF20A x (0.1926). Survival analysis revealed that
patients with high risk scores were more likely to have an
increased risk of death (log-rank P=0.0002, adjusted P=0.003;
adjusted HR, 1.576; 95% CI, 1.166-2.129; Fig. 6A and B) and
a poorer clinical outcome (median survival time, high risk vs.
low risk: 1,081 vs. 1,725 days). The predictive accuracy of this
prognostic signature was determined using time-dependent
ROC curve analysis, with the results suggesting that the
constructed signature was able to accurately predict the 1-, 2-,
3-,4- and 5-year patient survival, based on the respective area
under curves 0.636, 0.643,0.665, 0.670 and 0.593 (Fig. 6C),
respectively. We also noted that the expression levels of the
KIF14, KIFISB and KIF20A genes exhibited a strongly and
positive correlation with each other (Pearson's correlation
coefficient r=0.713 for KIF14 and KIFI18B; r=0.760 for KIF14
and KIF20A; r=0.722 for KIF20A and KIF18B; Table SI).

Stratified and joint effects analysis. A comprehensive analysis
of the nomogram and stratified and joint effects survival anal-
ysis was used to further investigate the association between
clinical parameters and the prognostic gene signature. Patients
that had stage I and stage I+II disease, were of the female sex
and were >65 years of age were more likely to succumb to
the disease if they also had higher risk scores (Fig. 7A). A
nomogram constructed of the risk scores and clinical LUAD
parameters demonstrated that the KIF gene expression-based
prognostic signature was more accurate compared to other
parameters (Fig. 7B).

Joint effects survival analysis between the KIF gene
expression-based clinical parameters and prognostic gene

signatures indicated that the constructed signature was able to
accurately predict the OS of patients with LUAD, particularly
when combined with clinical parameters (Fig. 8 and Table III).

GSEA. Additional exploration of the biological pathways of
the selected KIF genes in relation to LUAD was carried out
using a single gene GSEA. An enrichment of c5 suggested
that a high expression of KIF14 was involved in DNA repair,
DNA replication, cell cycle, tumor protein p53 (TP53) binding
and mitotic sister chromatid separation biological processes
(Fig. 9 and Table SII). Whereas, an enrichment of c2 indicated
that a high expression of KI/FI4 influenced the cell cycle,
DNA replication, lung cancer poor survival, metastasis, base
excision repair, the PLK1 pathway, nuclear factor-xB (NF-«kB)
and the TP53 pathway (Fig. 10 and Table SIII). c5 enrich-
ment suggested that a high expression of KIFIS8B was also
involved in cell division, the cell cycle, DNA replication and
DNA repair (Fig. 11 and Table SIV), whereas c2 enrichment
suggested that a high expression of KIFI8b was involved in
the cell cycle, DNA replication, lung cancer poor survival,
metastasis, base excision repair, the PLK1 pathway, NF-kB
and TP53 pathway (Fig. 12 and Table SV). Similar results
were also found for KIF20A, where c5 enrichment suggested
that a high expression of KIF20A was involved in cell divi-
sion, cell cycle, DNA replication, DNA repair and the NF-xB
pathway (Fig. 13 and Table SVI), whereas c2 enrichment
suggested that high expression of KIF20A was involved in cell
cycle, DNA replication, lung cancer poor survival, apoptosis,
metastasis, DNA repair, the PLK1 and TP53 pathway (Fig. 14
and Table SVII). It is evident that the potential mechanisms
of KIFI4, KIFI8B and KIF20A are likely mediated through
their influence on cell cycle regulation, DNA replication and
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Figure 9. (A-L) GSEA results of c5 reference gene set of high KIF14 expression group. ES, enrichment score; NES, normalized enrichment score; FDR, false
discovery rate; GSEA, gene set enrichment analysis; KIF, kinesin.

of SHEDDEN_LUNG_CANCER_POOR_SURVIVAL_AG®6,
which indicated that the upregulated expression levels of the

DNA repair. Furthermore, all the c2 enrichment analyses of
KIFi4, KIFIS8B and KIF20A were enriched in the gene set
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Table III. Joint effects survival analysis of clinical parameters and the risk score in LUAD patients from TCGA.

Group Risk Variables  Events/total MST Crude HR (95% CI) Crude P Adjusted HR (95% CI) Adjusted
score (n=500) (days) P-value®

Age (years)

1 Low risk <65 29/95 1,501 1 1

2 Low risk >65 43/144 1653 0.958 (0.598-1.536) 0.86 0.984 (0.607-1.595) 0.948

3 High risk <65 45/120 1,357 1.362(0.853-2.173)  0.195 1.223 (0.760-1.967) 0.406

4 High risk >65 56/120 999 2.021(1.288-3.171)  0.002 1.937 (1.226-3.060) 0.005

Sex

I Low risk Female 43/151 1,600 1 1

11 Low risk Male 32/99 2,318 1.011 (0.638-1.601) 0.963 0.935 (0.582-1.503) 0.781

III High risk Female 53/119 999 1.763 (1.177-2.640)  0.006 1.644 (1.088-2.4830 0.018

v High risk Male 54/131 1,235 1.747 (1.169-2.609)  0.006 1.434 (0.952-2.159) 0.084
Tumor stage

A Low risk Stage 1 34/154 3,169 1 1

B Low risk Stage 11 17/48 1,501 1.751 (0.977-3.140) 0.06 1.751 (0.977-3.140) 0.06

C Low risk Stage 111 15/32 952  3.025(1.643-5.571)  0.0004 3.025 (1.643-5.571) 0.0004

D Low risk Stage IV 711 976  3.957 (1.749-8.952)  0.001 3.957 (1.749-8.952) 0.001

E High risk Stage | 31/114 2,620 1.317(0.809-2.144) 0.268 1.317 (0.809-2.144) 0.268

F High risk Stage 11 37/71 864 3.883(2.421-6.227) <0.0001 3.883 (2.421-6.227) <0.0001

G High risk Stage 111 30/48 593  4.697 (2.868-7.694) <0.0001 4.697 (2.868-7.694) <0.0001

H High risk Stage IV 9/14 826 4.712(2.244-9.892) <0.0001 4.712 (2.244-9.892) <0.0001
Tumor stage

a Lowrisk  Stage I+II 51/202 1,798 1 1

b Low risk  Stage III+IV 22/43 952 2.767 (1.674-4.574) <0.0001 3.948 (2.024-7.699) <0.0001

c Highrisk  Stage I+II 68/185 1,258 1.750 (1.216-2.520) 0.003 1.644 (1.139-2.373) 0.008

d High risk  Stage III+IV 39/62 656 3974 (2.612-6.047) <0.0001  5.700 (3.061-10.613)  <0.0001

*Adjusted for tumor stage in the Cox proportional hazard regression model. TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma;

MST, median survival time; HR, hazard ratio; CI, confidence interval.

genes of this gene set in patients with lung cancer were predic-
tors of a poor survival outcome.

Discussion

KIF family member genes encoded proteins are required
for numerous processes, including intracellular transport,
chromosome segregation, mitotic spindle formation and cyto-
kinesis, and multiple family member genes have been reported
to be dysregulated in various types of cancer (5,8,12,27-29).
The prognostic and diagnostic capabilities of KIF family
member genes have been demonstrated in various types of
cancer. In a previous study, immumohistochemical staining
suggested that KIF3A expression was significantly higher
in breast cancer (BC) tumor tissues than healthy adjacent
tissues (8). Previous studies have demonstrated that an
increased KIF2A expression is a predictor of an unfavorable
clinical outcome in patients with LUAD and diffuse large
B cell lymphoma (12,30). An increased KIF4A expression
has also been shown to be strongly associated with a poorer
prognosis of patients with BC (9), prostate cancer (PCa) (10)
and hepatocellular carcinoma (HCC) (31,32). Similar prog-
nostic values of KIF11 in oral cancer (33) and BC (34) have

also been reported. Other members of the KIF gene family
have also exhibited similar prognostic values in other types
of cancer, such as KIF26B in ovarian cancer (OC) (35) and
KIF20B in HCC (36). In the present study, we observed that
26 KIF family member genes were differentially expressed in
LUAD and healthy adjacent tissues and identified as DEGs,
with 5 DEGs were downregulated and 18 DEGs were upregu-
lated. In total, 8 of these DEGs were identified as diagnostic
and prognostic genes for LUAD, which was consistent with
the findings of the above-mentioned studies. Three of these
genes were used to construct a potential prognostic signature
for LUAD.

For 3 KIF genes of the prognostic signature that were
identified in the present study, previous studies have observed
that KIFI14 is notably upregulated in tumor tissues of
OC (37,38), pancreatic carcinoma (39), cervical cancer (40),
BC (41), PCa (28), glioma (42) and gastric cancer (GC) (43).
The prognostic analysis of previous studies has demonstrated
that an elevated KIFI4 expression confers unfavorable
clinical outcomes in patients with OC (37,38), pancreatic carci-
noma (39), cervical cancer (40), BC (41), PCa (28), glioma (42),
medulloblastoma (44), lung cancer (45), HCC (46) and GC (43).
The function of KIFI4 may serve as an oncogene in cancers,
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Figure 10. (A-L) GSEA results of c2 reference gene set of high KIF14 expression group. ES, enrichment score; NES, normalized enrichment score; FDR, false
discovery rate; GSEA, gene set enrichment analysis; KIF, kinesin.

and inhibiting KIF14 has been shown to inhibit the growth of  of medulloblastoma and NSCLC (44,45), to decrease cancer
PCa and LUAD cell lines (13,28), to suppress the proliferation  cell migration and induce apoptosis in HCC (46), as well as to
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Figure 11. (A-L) GSEA results of c5 reference gene set of high K/F18B expression group. ES, enrichment score; NES, normalized enrichment score; FDR, false
discovery rate; GSEA, gene set enrichment analysis; KIF, kinesin.

inhibit tumor metastasis in GC (43), PCa (28) and LUAD (13).  consistent with those of these previous studies. Our results
In the present study, our results of KIF14 in LUAD were also  suggest that KIF /4 may be adopted as diagnostic and prog-
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Figure 12. (A-L) GSEA results of c2 reference gene set of high KIF18B expression group. ES, enrichment score; NES, normalized enrichment score; FDR, false
discovery rate; GSEA, gene set enrichment analysis; KIF, kinesin.

nostic indicator for LUAD. Similar with the KIFi4, we also
identified that KIF'18B was upregulated in LUAD tumor tissues,

suggesting its utility as a diagnostic and prognostic biomarker
in patients with LUAD. Wu er al demonstrated that KIFISB
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Figure 13. (A-L) GSEA results of c5 reference gene set of high K/F20A expression group. ES, enrichment score; NES, normalized enrichment score; FDR, false
discovery rate; GSEA, gene set enrichment analysis; KIF, kinesin.

expression was increased in cervical cancer tumor tissues with  tion as a cervical cancer oncogene, as the downregulation of
an advanced tumor grade and stage. This gene may also func-  KIFI8B has been shown to inhibit cervical cancer migration,
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Figure 14. (A-L) GSEA results of c2 reference gene set of high KIF20A expression group. ES, enrichment score; NES, normalized enrichment score; FDR,
false discovery rate; GSEA, gene set enrichment analysis; KIF, kinesin.

invasion and cell in vitro (47). Itzel et al identified KIFI8B as  results were very consistent with the results of these previous
a novel oncogene that drives carcinogenesis in HCC (48). Our  studies. To the best of our knowledge, this study was the first
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to suggest that KIFI8B may serve as potential diagnostic and
prognostic indicator for LUAD.

Another of our candidate prognostic signature gene,
KIF20A, has also been reported to be strongly expressed in
nasopharyngeal carcinoma (NPC) (49), NSCLC (14,50,51),
HCC (52), cervical cancer (53), glioma (54), OC (55) and
clear cell renal cell carcinoma (ccRCC) (56). Furthermore, a
high expression of KIF20A in these types of cancer has also
been shown to be associated with an increased risk of an
unfavorable prognosis (14,49-53,55,56). In addition, previous
studies have also demonstrated that a high KIF20A expression
is associated with a poor clinical outcome in patients with
melanoma (57) and ovarian clear cell carcinoma cells (58).
Previous studies have also observed that KIF20A is signifi-
cantly related to tumor progression, and advanced stage tumor
tissues exhibit an inceased KIF20A expression level (55,56).
Functional experiment assessment in cancers infers that
KIF20A may play a carcinogenic role in cancer, and cancer
cell proliferation can be regulated by the overexpression or
inhibition of KIF20A (14,52,54,55,58).

In the present study, we also identified the prospective
molecular mechanisms using GSEA. KIF family genes play
critical roles in chromosome segregation, mitotic spindle
formation and cytokinesis. GSEA analysis further verified that
KIF14, KIFI8B and KIF20A were significant participators in
cell cycle regulation, thereby influencing the clinical outcome
of patients with LUAD. Previous studies have demonstrated
that KIFI4 functions to regulate cell apoptosis and prolif-
eration, cytokinesis and cell division (46,59,60). Xu et al
demonstrated that inhibiting KIF14 in HCC cell lines can
influence the cell cycle and cytokinesis biological process (29).
The overexpression of KIFI4 in colorectal cancer (CRC)
has been shown to promote cell proliferation and accelerate
cell cycle progression (61). A similar oncogenic function
of KIF20A in the cell cycle and proliferation has also been
reported in pan-cancers (14,55,58,62). Itzel et al observed that
the overexpression of KIFI8B increased the proliferation of
HCC cells (48). Based on literature reviewing and prospective
molecular mechanism analysis from the current study, it can
be concluded that the one of the molecular mechanisms of
KIF family genes is the involvement in the prognosis of LUAD
mainly by affecting cell cycle-related biological processes and
pathways.

Among one of the limitations of this study is that clinical
information derived from TCGA was not comprehensive,
barring a complete assessment of risk profiles. The results
of the current study were also based on a single cohort and
lack additional validation cohorts, with verification in larger
sample sizes across differing cohorts needed to further
verify the findings. Furthermore, the results of this study
were derived from RNA sequencing data from the TCGA
LUAD cohort and were not validated in additional cohorts by
RT-PCR and immunohistochemistry in both the mRNA and
protein level. Nevertheless, the resultant 3 KIF gene-signa-
ture developed in this study was proven to be a more accurate
prognosticator in contrast to other clinical data. These results
lay the foundation for further studies into the mechanistic
functions of KIF genes as regards the prognosis of patients
with LUAD, allowing for further development targeted
LUAD therapy.

ZHANG et al: CLINICAL SIGNIFICANCE AND MOLECULAR MECHANISMS OF KIF GENES IN LUAD

In conclusion, in this study, using an integrated assessment
of KIF family member genes RNA-seq dataset and clinical data
of LUAD derived from the TCGA database, we systematically
evaluated the differential expression and prognostic values of
KIF family member genes, and found that 23 KIF genes were
DEGs between LUAD tumor and adjacent normal tissues.
In total, 8 of these were found to be potential prognostic and
diagnostic biomarkers in patients with LUAD. In addition, we
also developed a novel 3 KIF gene-expression-based signature,
including KIF14, KIFI8B and KIF20A, which may aid in the
prognosis of patients with LUAD.
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