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Abstract

Free amino acids are an important indicator of the freshness of yellow tea. This study inves-

tigated a novel procedure for predicting the free amino acid (FAA) concentration of yellow

tea. It was developed based on the combined spectral and textural features from hyperspec-

tral images. For the purposes of exploration and comparison, hyperspectral images of yel-

low tea (150 samples) were captured and analyzed. The raw spectra were preprocessed

with Savitzky-Golay (SG) smoothing. To reduce the dimension of spectral data, five feature

wavelengths were extracted using the successive projections algorithm (SPA). Five textural

features (angular second moment, entropy, contrast, correlation, and homogeneity) were

extracted as textural variables from the characteristic grayscale images of the five charac-

teristic wavelengths using the gray-level co-occurrence matrix (GLCM). The FAA content

prediction model with different variables was established by a genetic algorithm-support

vector regression (GA-SVR) algorithm. The results showed that better prediction results

were obtained by combining the feature wavelengths and textural variables. Compared with

other data, this prediction result was still very satisfactory in the GA-SVR model, indicating

that data fusion was an effective way to enhance hyperspectral imaging ability for the deter-

mination of free amino acid values in yellow tea.

1. Introduction

Tea is one of the world’s three most popular drinks.[1] As important chemical components of

tea, amino acids not only determine the taste and quality of the tea[2–4] but also provide many

health benefits as necessary human nutrients.[5–7] Many studies have focused on the analysis

of amino acids in red tea, black tea or green tea.[8–10] There is very little research on yellow

tea, a traditional Chinese tea that many people like to drink.[11] The amount of free amino

acids (FAA) in yellow tea is an important index of the freshness, taste and aroma of yellow tea.

Hence, in this study, we focus on building prediction models based on hyperspectral images to

predict the amount FAA in yellow tea.

PLOS ONE | https://doi.org/10.1371/journal.pone.0210084 February 20, 2019 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yang B, Gao Y, Li H, Ye S, He H, Xie S

(2019) Rapid prediction of yellow tea free amino

acids with hyperspectral images. PLoS ONE 14(2):

e0210084. https://doi.org/10.1371/journal.

pone.0210084

Editor: George-John Nychas, Agricultural

University of Athens, GREECE

Received: April 6, 2018

Accepted: December 16, 2018

Published: February 20, 2019

Copyright: © 2019 Yang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: Funded by Natural Science Foundation of

Anhui Province (1808085MF195 to BY), http://

www.ahkjt.gov.cn/; the Natural Science Research

Project of Anhui Province (KJ2016A837 to BY),

http://www.ahedu.gov.cn/; the Open Fund of the

Key Laboratory of Technology Integration and

Application in Agricultural Internet of Things,

Ministry of Agriculture (2016KL02 to BY), http://

www.ahau.edu.cn/; and the National Key R&D

http://orcid.org/0000-0003-4996-492X
https://doi.org/10.1371/journal.pone.0210084
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210084&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210084&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210084&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210084&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210084&domain=pdf&date_stamp=2019-02-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210084&domain=pdf&date_stamp=2019-02-20
https://doi.org/10.1371/journal.pone.0210084
https://doi.org/10.1371/journal.pone.0210084
http://creativecommons.org/licenses/by/4.0/
http://www.ahkjt.gov.cn/
http://www.ahkjt.gov.cn/
http://www.ahedu.gov.cn/
http://www.ahau.edu.cn/
http://www.ahau.edu.cn/


Hyperspectral images are three-dimensional blocks of data cubes with a series of images at

different wavelengths, and they have two spatial dimensions and one spectral dimension.

Hyperspectral imaging is nondestructive, combining the advantages of traditional imaging

and spectroscopy techniques to obtain spatial and spectral information of detected objects

simultaneously. It can simultaneously obtain all continuous spectral information for each pixel

and continuous image information for each spectral band. [12] The spectral information can

reflect the chemical composition and organizational structure of the sample, and image infor-

mation can reflect the spatial distribution of samples, external attributes and geometric struc-

ture. Many researchers have attempted to visualize the chemical concentration of

hyperspectral images using a nonlinear correction model, such as the back-propagation neu-

tral network (BP-NN) algorithm,[13] the self-organizing map algorithm,[14] the random-frog

algorithm,[15,16] radial basis function support vector regression (RBF-SVR) algorithms,[17]

the least squares-support vector machine (LS-SVM) algorithm and the adaptive boosting

(AdaBoost) algorithm.[18–20]

An objective and nondestructive technique would have many applications in the analysis

of tea, such as different tea classifications and quality testing. [21–25] Xie et al. (2004) used

this technique to measure the color components of tea with different drying periods. [26]

Deng et al. (2015) used hyperspectral imaging to predict the moisture content of longjing

tea. [27] Zhao et al. (2011) demonstrated that the chlorophyll content and distribution in tea

leaf can be measured by hyperspectral imaging. [28] These findings have shown that hyper-

spectral imaging provides an objective and reliable technique for tea analysis. It can not only

overcome the shortcomings of spectral information and image information in the fusion pro-

cess but also take into account both the external and internal quality testing of tea at the same

time.

In this study, we proposed a hyperspectral imaging technique-based method to predict

FAA in yellow tea. A hyperspectral imaging system was built to acquire hyperspectral images

of yellow tea samples. We first obtained spectral information from these images, i.e., the fea-

ture wavelengths were extracted with successive projections algorithms (SPA), and the texture

was extracted from the images of five feature wavelengths. Second, prediction models based on

genetic algorithm-support vector regression (GA-SVR) were constructed using different data

fusions of spectral and textural features. Finally, we evaluated these models with two measure-

ments: coefficient of determination (R2) and root mean square error (RMSE). It was found

that the GA-SVR-based model combining spectral and textural information together achieved

the best results among the models. The main contributions of this work are as follows. (1) We

focused on the poorly studied problem about free amino acid analysis in yellow tea with a

hyperspectral imaging system. (2) We built and evaluated models using different data fusions

to predict the free amino acid amount in yellow tea. Specifically, SPA was used to extract five

feature wavelengths of spectral information in hyperspectral images of yellow tea samples, and

a gray-level co-occurrence matrix (GLCM) was used to generate the textural features from

these five feature wavelengths images. (3) We achieved better prediction results using the

GA-SVR model with data fusion, which provided a possible method for predicting the amount

of FAA in yellow tea.

2. Materials and methods

The main data-processing procedures for predicting FAA value in yellow tea by our hyper-

spectral imaging system are presented in Fig 1. According to Chinese national standard GB/

T8314-2013, the amount of FAA in yellow tea should be measured using the ninhydrin colori-

metric method. The amount of FAA in tea is expressed as dry mass percentage (%), calculated

Data fusion and prediction model
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according to following formula:

Amount ¼
c=1000� v1=v2

m� o
� 100% ð1Þ

where c is the amount of theanine and glutamic acid in milligrams (mg); v1 is the total amount

of solution in milliliters (ml); v2 is the amount of test solution in milliliters (ml); m is the

amount of solution in grams (g); ω is sample dry matter (%).

2.1 Yellow tea samples

Five typical yellow tea samples were purchased from the local market in Anhui, China, and

were treated as experimental materials in this work, including Pingyang huangtang (PY),

Mogan huangya (MG), Huoshan huangya (HS), Mengding huangya (MD), and Junshan

Fig 1. Flowchart of main data-processing procedures to predict FAA with hyperspectral images.

https://doi.org/10.1371/journal.pone.0210084.g001
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yinzhen (JS). Their places of production were as follows: PY was from Pingyang of Zhejiang

Province; MG was produced in Deqing, Zhejiang Province; HS was produced in Huoshan,

Anhui Province; MD was produced in Mingshan, Sichuan Province; and JS was produced in

Yueyang, Hunan Province. We had 30 samples of each of them, for a total of 150 samples. All

teas were produced in 2017. All samples were dried in a forced-air oven at 50˚C (Shanghai

Yiheng Machinery Co., Ltd., Shanghai, China) for approximately 2 hours. To minimize the

oxidation rate and aging of yellow tea under high-temperature or normal-temperature condi-

tions, the yellow tea was packaged into a sealed plastic bag and randomly divided into 5 groups

(30 samples per group), which were stored at 5 ± 1˚C for 30 days. Among the 150 samples, 100

samples were randomly selected to construct a calibration model, and the remaining 50 sam-

ples were used to establish a prediction model.

2.2 Hyperspectral imaging system and image acquisition

Hyperspectral imaging is a combination of visible/near-infrared spectroscopy techniques and

vision techniques, as shown in Fig 2. It is also known as imaging spectroscopy. [29] The hyper-

spectral imaging system contained a spectrograph (Imspector V17E, Spectral Imaging Ltd.,

Fig 2. The hyperspectral imaging system. 1 dark room; 2 CCD camera; 3 imaging spectrograph; 4 lens; 5 light source; 6

Sample stage; 7 mobile platform; 8 mobile platform controller; 9 fiber; 10 light source controller; 11 computer.

https://doi.org/10.1371/journal.pone.0210084.g002
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Oulu, Finland), a charge-coupled device (CCD) camera (Hamamatsu, Japan), two 150-W

tungsten halogen lamps for illumination (3900, Illumination Technologies Inc., New York,

USA), a mobile platform, a black box, a computer for data collection, a conveyer belt

(MTS120, Beijing Optical Instrument Factory, China), image acquisition and preprocessing

software (Spectral Image Software, Isuzu Optics Corp., Taiwan, China).

Typically, when the beam is reflected from the sample and enters the objective lens, it is sep-

arated into its component wavelengths by the diffractive optical element contained in the dif-

fractive optics. Then, a two-dimensional image (space size—wavelength size) is formed on the

camera and stored on the computer. The sample is moved through the objective lens on the

electric platform, and the process is repeated. The two-dimensional line images obtained at

adjacent points on the object are stacked to form a three-dimensional hypercube that can be

stored on the PC for further analysis. [30] To obtain the hyperspectral images of a yellow tea

sample, 20 ± 0.5 g dry tea samples were collected and put evenly on a laboratory tray of size 9

cm×1 cm. The exposure time of the camera was set as 2 ms to ensure the clarity of the collected

images. The speed of the conveyor was preset at 8 mm/s to avoid image-size and spatial resolu-

tion distortion. The vertical distance between the lens and the sample was 28 cm. Due to the

presence of dark current noise and the nonuniform illumination, hyperspectral images of a

sample collected under weak light waves contain a large amount of noise. Therefore, in this

study, to eliminate the difference in illumination and detector sensitivity, the original raw

hyperspectral image was calibrated to reflection mode and saved in the original format for fur-

ther analysis. The raw hyperspectral image was calibrated with a black reference and a white

reference before the data analysis. The whole black calibration image was obtained by

completely closing the shutter of the camera. The white calibration image was obtained by

opening the shutter and scanning a standard white correction board. Then, the raw images

were converted into corrected images as follows:

R ¼
Iraw � Iblack
Iwhite � Iblack

ð2Þ

where R is the corrected image, Iraw is the original hyperspectral image, Iblack is the black image

and Iwhite is the white reference image.

2.3. Feature extraction

2.3.1. Mean reflectance spectra extraction and preprocessing. After acquiring and cali-

brating the hyperspectral image, the region of interest (ROI) was separated from the yellow tea

sample, and the average spectral data within the ROI were manually extracted using the soft-

ware ENVI version 4.8 (ITT Visual Information Solutions, Boulder, CO, USA). The extracted

spectrum of the 40x40 region selected from each image was the average spectrum of the sam-

ple. A total of 150 samples of hyperspectral images were extracted. The raw average spectra

obtained were in the range of 908–1735 nm, which altogether contained 508 wavelengths.

However, in the process of hyperspectral imaging, the collected raw data often contained vari-

ous noise due to interference from the acquisition environment, sensor noise, and other uncer-

tainties. Only 944–1688 nm was considered to be valid, so 457 wavelengths were selected for

further analysis, and the obtained spectra were combined into the spectral matrix (150 sam-

ples×457 wavelengths). Since spectral acquisition is affected by factors such as temperature,

the original spectral data may have contained adverse effects from high-frequency random

noise, sample inhomogeneity, baseline drift, and light scattering. Therefore, to reduce the base-

line offset and eliminate random noise, the spectra were preprocessed by a Savitzky-Golay

(SG) smoothing filter before selecting the feature wavelengths (Fig 3). However, in SG
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smoothing, if the smoothing window is too small and the denoising effect is poor, it will still

affect the quality of the analysis model. If the window is too large and smooth, it will lose too

much spectral information. For these reasons, the frame size and polynomial order must be

specified. The frame size must be odd and was set to 21, and the polynomial order must be less

than the frame length and was set to 3 in this study.

2.3.2 Features wavelength selection. A hyperspectral image contains both one-dimen-

sional spectral information and two-dimensional image information. There are usually redun-

dant information and collinear problems in the direct analysis of the raw hyperspectral

images. Therefore, feature wavelength selection was first performed during image processing.

Feature wavelength selection not only helps to improve the efficiency of the processing by

reducing calculation time but also helps to produce more simple and robust models. [31,32]

The successive projections algorithm (SPA) is a forward-loop algorithm that uses vector pro-

jection analysis to select the variable group with the least redundant information through mul-

tiple iterations. As the collinearity between variables is minimized, the speed and efficiency of

the model are improved. [27, 32]

The successive projections algorithm (SPA) is a variable selection technique designed to

minimize collinearity problems in multiple linear regression (MLR). The SPA was initially

proposed by Araújo et al. for multivariate calibration analysis. The main purpose of the algo-

rithm is to achieve the minimum redundancy of the selected wavelength. The main steps of

the SPA can be summarized as follows, assuming that the first wavelength k(0) and the number

N are given [33]:

Step 1: before the first iteration (n = 1), let Xj = jth column of Xcal; j = 1,2� � �,J;

Step 2: let S be the set of wavelengths that have not been selected yet. That is, S = {j such that

1�j�J and j=2{k(0),� � �k(n−1)}};

Step 3: calculate the projection of xj on the subspace orthogonal to xk(n−1) as:

Fig 3. Full spectrum of yellow tea preprocessed by SG smoothing filter.

https://doi.org/10.1371/journal.pone.0210084.g003
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pxj ¼ xj � ðx
T
j xkðn� 1ÞÞxkðn� 1Þðx

T
kðn� 1Þ

xkðn� 1ÞÞ
� 1

ð3Þ

for all j2S, where P is the projection operator;

Step 4:

KðnÞ ¼ argðmaxkPxjk; j 2 SÞ; xj ¼ Pxj; j 2 S; ð4Þ

Step 5: let n = n+1. If n<N go back to Step 1;

End: the resulting wavelengths are {k(n);n = 0� � �N−1}.

2.3.3 Textural feature extraction. The gray-level co-occurrence matrix (GLCM) is an

important method for analyzing the textural features of images based on the second-order

combined conditional probability density function of the estimated image. It extracts textural

features from the co-occurrence matrix with statistical methods. Many of the details of the

GLCM protocol have been described. [34] In this paper, the five feature parameters with the

strongest texture description function were quantified[35]:

GLCM correlation was quantified as:

Scor ¼

XL� 1

i¼0

XL� 1

j¼0

i; jpði; jjd; yÞ � m1m2

s2
1
s2

2

ð5Þ

In the formula μ1, μ2, s2
1
, s2

2
, they are defined as:

m1 ¼
XL� 1

i¼0

i
XL� 1

j¼0

pði; jjd; yÞ; m2 ¼
XL� 1

i¼0

j
XL� 1

j¼0

pði; jjd; yÞ

s2

1
¼
XL� 1

i¼0

ði � m
1
Þ

2
XL� 1

j¼0

pði; jjd; yÞ; s2

1
¼
XL� 1

j¼0

ðj � m2Þ
2
XL� 1

i¼0

pði; jjd; yÞ

GLCM angular second moment was determined as:

SE ¼
XL� 1

i¼0

XL� 1

j¼0

fpði; jjd; yÞg2
ð6Þ

GLCM homogeneity was calculated according to:

SH ¼
XL� 1

i¼0

XL� 1

j¼0

fpði; jjd; yÞg
2

1þ ði � jÞ2
ð7Þ

GLCM contrast was calculated according to:

Scon ¼
XL� 1

i¼0

XL� 1

j¼0

ði � jÞ2pði; jjd; yÞ ð8Þ
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Finally, GLCM entropy was determined as:

SP ¼ �
XL� 1

i¼0

XL� 1

j¼0

pði; jjd; yÞlog pði; jjd; yÞ ð9Þ

where i and j are the grayscale values in the co-occurrence matrix, and μ is the mean and σ the

standard deviation, which are determined from pixel pair p(i,j|d,θ). Here, the correlation

(COR) is a measure of the similarity of spatial gray-level dependence matrix elements in a row

or column, reflecting the local gray correlation in the image. When the matrix element values

are nearly equal, the correlation value is large; conversely, if the matrix pixel values differ

greatly, the correlation value is small. Angular second moment (ASM) is used to measure the

degree of gray-scale stability of the image texture, which reflects the uniformity of the image

gray distribution and texture thickness. If all values of the co-occurrence matrix are equal, the

ASM value is small; conversely, if some of the values are large and the other values are small,

the ASM value is large. Homogeneity (H) is the measure of the local change in image texture

and describes the regularity of the texture. Contrast (CON) is used to measure the distribution

of matrix values and local variations in the image, reflecting the sharpness of the image and the

texture of the grooves. Entropy (ENT) is used to measure the amount of information that an

image has, which reflects the degree of complexity or complexity of the texture in the image. In

previous studies, feature images in hyperspectral data were selected by principal component

analysis (PCA) conversion. Although some results were obtained, the results were general,

probably because principal component analysis causes the original information to be lost. In

this study, the images at the selected feature wavelengths were characteristic images. The tex-

tural information was extracted from characteristic images with GLCM.

2.4 Models and evaluation index

2.4.1 Support vector regression. Support vector regression (SVR) is used to describe the

regression of the support vector machine (SVM). SVR constructs a linear decision function in

high-dimensional space to achieve linear regression, which can transform the original low-

dimensional nonlinear problem into a high-dimensional space to give good solutions to com-

plex multivariate equations and has been successfully applied to NIR spectroscopy prediction

models. [36]

Assuming that the existing input samples are n-dimensional vectors, samples and corre-

sponding output values (x1,y1),(x2,y2),. . .,(xk,yk), the regression problem is to find a mapping

such that the corresponding values are found by mapping outside the sample. The basic princi-

ple of SVR is to transform the complex low-dimensional nonlinear regression problem into a

linear regression of high-dimensional space through mapping. SVR aims to find the regression

function, that is,

f ðxÞ ¼ wφðxÞ þ b ð10Þ

where w is the weight vector and b is the threshold. The formula (11) can be transformed into

the problem of minimizing the number of targets of the following formula, that is, w and b, by

minimizing the following formula:

RðwÞ ¼ min½
1

2
wTwþ C

Xn

i¼1

ðxi þ x
�

i Þ� ð11Þ
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subject to

yi � f ðxiÞ � εþ xi

f ðxiÞ � yi � εþ x
�

i

xi; x
�

i � 0

ð12Þ

8
><

>:

where ξ and ξ� are non-negative slack variables; ε is insensitive loss function parameters; and

C represents punishment factors, whose role is to find a balance between empirical risk and

model complexity.

Introducing the Lagrangian method can transform the above formula into its dual problem,

namely:

Jðai; a
�

i Þ ¼ max½
1

2

Xn

i¼1

Xn

j¼1

ðai � a
�

i Þðaj � a
�

j Þ� � Kðxi; xjÞ þ
Xn

i¼1

a�i ðyi � εÞ �
Xn

i¼1

aiðyi � εÞ ð13Þ

subject to

Xn

i¼1

ðai � a
�

i Þ ¼ 0

0 � ai; a
�
i � C

ð14Þ

8
><

>:

where K(xi,xj) is the kernel function of SVR. Different kernel functions have different kernel

function parameters. The kernel function used in this paper is a Gaussian kernel, namely

Kðxi; xjÞ ¼ exp½�
kxi � xk2

2s2
� ð15Þ

where σ is the kernel width and is the only adjustable parameter in the Gaussian radial basis

kernel function. Formula (16) is solved to get the SVR regression function, i.e.,

f ðxÞ ¼
Xn

i¼1

ðai � a
�

i ÞKðxi; xjÞ þ b ð16Þ

where K(xi,xj) is the kernel function of SVR. Different kernel functions have different kernel

function parameters. In this paper, the Gaussian radial basis kernel function was chosen as the

kernel function.

2.4.2 GA for parameter selection of SVR models. Genetic algorithms are global optimi-

zation search algorithms based on natural selection and inheritance developed by Darwin. [37]

It is a method of searching for optimal solutions by simulating natural evolutionary processes,

which includes parameter encoding, initial population setting, fitness function design, genetic

operation design, and control parameter setting. [38] Some parameters in SVR will be opti-

mized by GA. In this study, a GA-SVR model was constructed to predict FAA in yellow tea to

obtain good predictive performance.

The SVR model has three free parameters (C, ε, σ), which are determined by the user.

Although determining these parameters is often an iterative process, these parameters greatly

affect the performance of the SVR model. In this study, a genetic algorithm (GA) was applied

to select the optimal parameters for the SVR model. Let g ¼ 1

2
s2. Then there are three parame-

ters C, ε, g in the SVR model. The main steps were as follows:

a. Initialization: An initial chromosome population was randomly established, which repre-

sented the values of the parameters C, ε and g in the SVR model. The range of C was

defined as [0, 100], the range of ε was defined as [0.0001, 0.01], and the range of g was

Data fusion and prediction model
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defined as [0, 1000]. The largest evolutionary algebra was 200, and the maximum number

of populations was 20.

b. Evaluation of fitness function: Calculate the fitness function of each chromosome. In this

study, the root mean square error (RMSE) was used as a fitness function.

c. Choice: Select excellent chromosomes for reproduction.

d. Crossover and variation: Genetic manipulation of selected individuals based on cross-

mutation probability.

e. Stop conditions: If the termination condition was satisfied, the individual with the highest

fitness was output, and the optimal solution was obtained by decoding, and if it was not sat-

isfied, the execution was repeated from steps b to d until the condition was satisfied.

2.4.3 Evaluation index. To assess the accuracy of the established model, leave-one-out

cross-validation was used to verify the established model. One test sample was removed each

time in the calibration set, and then a new model was created to predict the removed model

based on the remaining calibration samples.[39] This process was repeated for each sample,

and finally, the model was applied to predict the FAA value of the new sample to provide a

more realistic assessment of the performance of the model. We evaluated the models with the

determination coefficient (R2) and root mean square error (RMSE) on the calibration set and

prediction set, which were indicators of the average error in the analysis and are expressed in

the original measurement units.[40] These indexes were also used to judge the consistency

between the measured and the predicted values. The performance of the model was established

by determining the calibration factor (R2c), prediction (R2p) and their corresponding calibra-

tion root mean square error (RMSEC) and prediction (RMSEP). In detail, R2 represents the

ratio of the variance in the predictor variable (Y), which can be explained by the variance of

the independent variable (X), and the values of RMSEC and RMSEP measure the regression fit

and prediction during calibration. In general, relatively high R2 values and low RMSE values

indicate the model has better performance. A reliable model is expected to have higher R2c

and R2p values, close to 1, while the values of RMSEC and RMSEP would be closer to zero.

[41]

RMSEC and RMSEP are defined as follows:

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc

Xnc

i¼1
ðM0

i � NiÞ
2

s

ð17Þ

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

Xnp

i¼1
ðM0

i � NiÞ
2

s

ð18Þ

The correlation coefficient (R) is defined as follows:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �

Xn

i¼1
ðNi � M0

iÞ
2

Xn

i¼1
ðNi � MiÞ

2

v
u
u
u
t ð19Þ

where n is the number of samples M0

i and Ni are the predicted and measured values of the ith

observation, and �M is the mean value of the calibration or prediction sets. All models,
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validations and evaluations were performed with MATLAB R2010b (The MathWorks Inc.,

Natick, MA, USA) for Windows 10.

3. Results and discussion

3.1 Free amino acid content of yellow tea

The contents of FAA in 100 samples used for the calibration model were different because

FAA content is positively correlated with freshness. During the production of yellow tea,

amino acids in tea are degraded and transformed to produce aroma components and other

taste components. Therefore, the differences in processing technology of the five varieties of

yellow tea caused amino acids to react and change differently. The free amino acid contents of

different samples of the same variety of yellow tea were more evenly distributed. FAA are the

main source of umami in tea. During the fermentation of yellow tea, the protein is hydrolyzed

to form FAA. With the further oxidation of the fermentation, some FAA form the correspond-

ing polymers, and the relative content of FAA in the yellow tea decreases. Therefore, the FAA

of yellow tea is an important factor that reflects the quality and flavor of yellow tea, and an esti-

mation model of FAA will help to further identify the quality of yellow tea.

3.2 Selection of feature wavelengths and textural variables

To decrease the dimensionality of the spectral data and reduce the computation time, SPA was

employed to select the feature wavelengths from the whole spectral range. Then, SPA was used

to extract the feature wavelengths from the spectral data of these 100 samples, and the ranges

of SPA variables were set from one to ten. The root mean square error (RMSE) trends change

when extracting different feature variables that are used to build the model based on partial

least squares (PLS). [42] When the number of the selected feature variables increased from 2 to

5, the RMSE value dropped significantly, and the lowest value of it was 0.0166 when the

selected variable number was 5. Therefore, five feature variables were selected as optimal spec-

tral variables (944, 955, 1112, 1473, 1683 nm), as shown in Fig 4.

In addition, textural features were extracted from the feature grayscale images of the five

feature wavelengths using GLCM. Yellow tea contains a large number of active ingredients

related to amino acids. These active ingredients are mostly hydrogen-containing groups (C-H,

O-H, N-H, etc.), which are absorbed at some specific wavelengths. Different varieties of yellow

tea may have different active ingredient contents and proportions. These differences yield dif-

ferences in the specific wavelength of light absorption intensity, that is, the performance of dif-

ferent spectral reflectance. Different varieties of yellow tea also have a certain relationship with

the external quality of tea, which can describe the external quality of tea by five textural fea-

tures, such as entropy, energy, correlation moment, moment of inertia and inverse gap. Thus,

the gray value of the point on the selected sensitive wavelength image corresponds to the spec-

tral value. According to formulas (6)–(10), the COR, ASM, H, CON and ENT at the angles of

0˚, 45˚, 90˚ and 135˚ in the corresponding image were calculated. As a result, 100 textural fea-

tures variables were extracted.

3.3 Prediction of FAA values using spectral and textural variables

The GA-SVR model was used to predict the FAA value of yellow tea, wherein the independent

variable FAA value was predicted by the full band variables, the feature wavelengths variables

and the textural variables. Table 1 shows the main statistics used to evaluate the performance of

the models built in the calibration and prediction procedures. It can be seen from Table 1 that

the GA-SVR model based on the full-band showed poor results (R2p = 0.69, RMSEP = 18.81%),
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demonstrating the applicability of spectral features in predicting FAA values. The performance

of the simplified GA-SVR model constructed by the five feature wavebands selected by the SPA

was further improved, with R2p of 0.74 and RMSEP of 17.25%, indicating that the selected best

bands were representative and could replace the full band for further prediction. The perfor-

mance improvement may have been due to the SPA-selected band having minimal redundancy

and containing most of the information related to the feature. [43] Compared with the model

based on the feature wavelengths, although the performance of the model based on the textural

variable was slightly improved, it also showed good prediction performance: R2p was 0.81, and

RMSEP was 14.71%. Thus, spectral information can explain the chemical properties of yellow

tea samples, which are closely related to FAA changes. Textural information usually represents

the quality of different yellow teas, and textural features can also predict FAA values well.

Fig 4. The selected feature wavelengths after SPA algorithm.

https://doi.org/10.1371/journal.pone.0210084.g004

Table 1. Performance of GA-SVR models based on different data for prediction of FAA.

Modeling data Variables Calibration set Prediction set

R2
c RMSEC (%) R2

p RMSEP (%)

Full Wavelengths 457 0.84 15.09 0.69 18.81

Feature Wavelengths 5 0.82 15.91 0.74 17.25

Texture variables 100 0.99 0.83 0.81 14.71

Data fusion 105 0.99 0.78 0.87 12.02

https://doi.org/10.1371/journal.pone.0210084.t001
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3.4 Enhanced prediction of FAA based on data fusion

Image fusion is an important part of image processing, whose aim is to fit the characteristics of

spatial and spectral high resolution presented separately by the original images together in one

image. [44] As discussed above, spectral and textural characteristics indicate their good ability

to predict the free amino acid content of yellow tea. Therefore, spectral and textural features

were integrated in the hyperspectral image to optimize predictive capability. Usually, the

fusion process can be carried out at different levels and can be divided into signal level, pixel

level, feature level, and decision level. Among them, signal-level image fusion is the optimal

concentration or distribution detection problem of signals, which requires the highest registra-

tion time and space. Pixel-level fusion requires a large amount of data to be processed, and the

time consumed when processing is relatively long, which is easily influenced by noise, and the

data cannot be processed in real time. Decision-level fusion is the feature extraction of image

data and the participation of some auxiliary information. This valuable information is com-

bined to obtain comprehensive decision results to improve the recognition and interpretation

capabilities. Feature-level fusion is the feature extraction of the original information from the

sensor, followed by comprehensive analysis and processing of the feature information, which

can keep more original information. Therefore, spectral and textural variables in hyperspectral

images were merged at the feature level, and then the SVR-based prediction model of FAA in

yellow tea was established based on data fusion of different features.

Table 1 shows the main statistical indicators in the calibration set and the forecast set of two

different kinds of fusion data. As seen from Table 1, the GA-SVR model built using the inte-

grated spectrum and texture had good performance, possibly because the change in FAA in

yellow tea was well reflected in the spectral and textural features of yellow tea. The spectral

information can explain the chemical properties of the yellow tea sample that are closely

related to changes in free amino acid-related compounds. As shown in Table 1, the model

developed based on data fusion was more effective, and excellent results were obtained (R2
p =

0.87, RMSEP is 12.02%). Compared with the GA-SVR model using spectral data or textural

data alone, the improvement was more than 10% in the R2
p value of the model, indicating that

data fusion is an effective method to improve the hyperspectral imaging ability and determine

the FAA value reflecting the yellow tea quality. Furthermore, to visualize the performance of

the GA-SVR model, a linear fit between the measured FAA values obtained by the conven-

tional method and the predicted values obtained by the corresponding GA-SVR models is

shown in Fig 5. It can be clearly observed that the measured FAA value was best suited for

FAA values predicted by the data fusion based on the GA-SVR model, probably because the

data fusion simultaneously obtained the chemical and physical information of yellow tea,

which completely explained the change in the FAA value of yellow tea.

4. Conclusion

In this study, the fusion of spectral and textural data improved the ability to quickly predict the

FAA content of yellow tea using hyperspectral images. The quantitative GA-SVR models were

established using the feature wavelengths (944, 955, 1112, 1473, 1683 nm) selected by SPA.

The textural features were extracted from the characteristic images using GLCM at the selected

wavelengths. The FAA content the prediction model with different combinations of variables

was established by the genetic algorithm-support vector regression (GA-SVR) algorithm. After

analysis and comparison, we found that the full-wavelength-based GA-SVR model and the fea-

ture wavelength-based GA-SVR model showed good performance in predicting free amino

acids, with R2
p of 0.69 and RMSEP of 18.81%. The spectral and textural data were integrated

by feature-level fusion. Our genetic algorithm-support vector regression model built based on
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data fusion yielded excellent results with a coefficient of 0.87. The performance of the model

was improved when compared with the full wavelengths, the feature wavelengths or textural

data alone. The results show that the method based on data fusion was effective for predicting

the free amino acid content of yellow tea using hyperspectral imaging. The results of this work

can facilitate the use of hyperspectral images to detect the free amino acid value of fresh tea

online and improve the accuracy of the technique.
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