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Predicting and understanding the response to
short-term intensive insulin therapy in people
with early type 2 diabetes
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ABSTRACT

Objective: Short-term intensive insulin therapy (IIT) early in the course of type 2 diabetes acutely improves beta-cell function with long-lasting
effects on glycemic control. However, conventional measures cannot determine which patients are better suited for IIT, and little is known about
the molecular mechanisms determining response. Therefore, this study aimed to develop a model that could accurately predict the response to IIT
and provide insight into molecular mechanisms driving such response in humans.
Methods: Twenty-four patients with early type 2 diabetes were assessed at baseline and four weeks after IIT, consisting of basal detemir and
premeal insulin aspart. Twelve individuals had a beneficial beta-cell response to IIT (responders) and 12 did not (nonresponders). Beta-cell
function was assessed by multiple methods, including Insulin Secretion-Sensitivity Index-2. MicroRNAs (miRNAs) were profiled in plasma
samples before and after IIT. The response to IIT was modeled using a machine learning algorithm and potential miRNA-mediated regulatory
mechanisms assessed by differential expression, correlation, and functional network analyses (FNA).
Results: Baseline levels of circulating miR-145-5p, miR-29c-3p, and HbA1c accurately (91.7%) predicted the response to IIT (OR ¼ 121 [95%
CI: 6.7, 2188.3]). Mechanistically, a previously described regulatory loop between miR-145-5p and miR-483-3p/5p, which controls TP53-
mediated apoptosis, appears to also occur in our study population of humans with early type 2 diabetes. In addition, significant (fold
change> 2, P < 0.05) longitudinal changes due to IIT in the circulating levels of miR-138-5p, miR-192-5p, miR-195-5p, miR-320b, and let-7a-
5p further characterized the responder group and significantly correlated (jrj> 0.4, P< 0.05) with the changes in measures of beta-cell function
and insulin sensitivity. FNA identified a network of coordinately/cooperatively regulated miRNA-targeted genes that potentially drives the IIT
response through negative regulation of apoptotic processes that underlie beta cell dysfunction and concomitant positive regulation of
proliferation.
Conclusions: Responses to IIT in people with early type 2 diabetes are associated with characteristic miRNA signatures. This study represents a
first step to identify potential responders to IIT (a current limitation in the field) and provides important insight into the pathophysiologic de-
terminants of the reversibility of beta-cell dysfunction.
ClinicalTrial.gov identifier: NCT01270789.
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1. INTRODUCTION

Type 2 diabetes is characterized by multiple metabolic abnormalities
including insulin resistance and beta-cell dysfunction which precede
and predict the onset of the disease [1,2]. Metabolic function continues
to deteriorate after diagnosis, leading to worsening hyperglycemia and
necessitating insulin therapy in many cases. The progression of type 2
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diabetes is thought to be due to a decline in pancreatic islet beta-cell
function which can be explained by considering two components: 1) a
“reversible” component due to the metabolic milieu (e.g. glucotoxicity,
lipotoxicity), and 2) an “irreversible/intrinsic” component (e.g. loss of
beta-cell capacity/mass due to beta-cell death), each independently
contributing to the pathological process of the disease [3e5].
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Short-term (two to four week) intensive insulin therapy (IIT) adminis-
tered early in the course of type 2 diabetes acutely improves beta-cell
function by eliminating glucotoxicity and lipotoxicity [6e9]. Remark-
ably, this strategy can induce “glycemic remission” in some patients
who can subsequently maintain normoglycemia without antidiabetic
drugs for up to 1e2 years [10]. However, this beneficial effect is not
seen in all patients [11]. Similarly, short-term IIT is also effective in
patients with established type 2 diabetes of longer duration, albeit with
more variability in the response [12]. This heterogeneity in the
response to short-term IIT may reflect varying contributions of
reversible and irreversible beta-cell dysfunction, components that
cannot be determined using clinical parameters or conventional
measures of beta-cell function. Thus, the identification of biomarkers
that can predict the response to short-term IIT and other therapeutic
interventions would be valuable for improving treatment decisions and
outcomes. Such biomarkers might also provide insight into novel
molecular mechanisms involved in disease pathogenesis.
MicroRNAs (miRNAs) are endogenous, noncoding RNAs that are
abundantly expressed in most cell types and tissues and play impor-
tant roles in the regulation of a broad spectrum of physiological and
pathological processes, including diabetes [13e16]. Altered miRNA
levels in the circulation have been associated with a variety of disease
states including obesity [17e21] and diabetes [22e27]. We hypoth-
esized that circulating levels of miRNAs implicated in beta-cell
dysfunction and insulin resistance (e.g., involving adipose tissue,
liver, skeletal muscle) might be useful to predict responses to therapies
such as short-term IIT. To test this hypothesis, we assessed changes
in a panel of miRNAs implicated in diabetes in response to short-term
IIT in patients with early type 2 diabetes and explored potential
mechanisms underlying the reversibility of beta-cell dysfunction. This
study is the first assessing the miRNA response to short-term IIT and
offers novel mechanistic insights into the pathophysiology of beta-cell
dysfunction in early type 2 diabetes.

2. METHODS

2.1. Study population
The study population consisted of 24 adult patients with early type 2
diabetes who underwent short-term IIT to determine eligibility for
randomization in the LIraglutide and Beta-cell RepAir (LIBRA) Trial
(clinicaltrial.gov identifier: NCT01270789) [4,11,28]. The LIBRA trial
included participants with 1) duration of diabetes �7 years, 2) treat-
ment with none or up to two oral antidiabetic medications (which were
stopped before starting IIT), and 3) hemoglobin HbA1c at screening
between 5.5 and 9.0% inclusive if on oral antidiabetic medications or
between 6.0 and 10.0% inclusive if not on antidiabetic medications.
Exclusion criteria included insulin therapy, renal dysfunction, hepatic
dysfunction, malignancy and chronic infection. The study protocol was
approved by the Mount Sinai Hospital Research Ethics Board, and all
participants provided written informed consent.

2.2. Study design
In the LIBRA trial [28], 63 participants underwent 4-weeks of intensive
insulin therapy (IIT). On the final day of IIT, the last insulin dose was the
bolus insulin before dinner, with no bedtime basal insulin. To be
eligible for randomization, participants needed to be able to maintain
fasting venous glucose <7.0 mmol/l the next morning, reflecting the
capacity of endogenous insulin secretion to maintain fasting glucose in
the non-diabetic range. The achievement of this threshold was pre-
viously shown to identify reversibility of beta-cell dysfunction in
response to IIT [12]. Of the 63 LIBRA participants, there were 12
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individuals who did not achieve this threshold and hence were not
eligible for randomization. These 12 individuals comprised the
nonresponder (NR) group for the current study (this study). Conversely,
the responder (R) group was comprised of the 12 LIBRA participants
who had the largest improvement in beta-cell function from baseline to
the post-IIT assessment (as defined by the percentage increase in
Insulin Secretion-Sensitivity Index-2 (ISSI-2)). While there was no
prospective measure of efficacy of IIT in the current analysis, it should
be recognized that the beneficial effect of IIT on beta-cell function in
early type 2 diabetes has been well-established in previous studies,
including a meta-analysis of the studies comprising this literature [10].
In the current study, all participants thus underwent assessment of
beta-cell function before and after IIT, which enabled systematic
assessment of the impact of IIT on beta-cell function and stratification
of participants into responders and nonresponders on this basis.
The specific short-term IIT protocol, methods for laboratory measure-
ments, and calculation of physiologic indices performed in this trial are
described elsewhere [4,11,28]. Glucagon measurements were per-
formed using a glucagon enzyme-linked immunosorbent assay 10-1271-
01 from Mercodia (Uppsala, Sweden) as recently described [29]. Beta-
cell function was measured with the ISSI-2 index, which was the pri-
mary outcome measure in the LIBRA Trial [28]. In addition, other indices
of beta-cell function and insulin resistance were calculated from the
OGTT, including the DISR0-120/DGluc0-120�Matsuda index and the ho-
meostatic model assessment of insulin resistance (HOMA-IR) [4,11,28].
miRNA was isolated from the fasting baseline pre-IIT OGTT and post-IIT
OGTT plasma samples. A custom panel of 94 miRNAs (Supplementary
Table ST1) reported to play roles in metabolically-involved tissues such
as adipose, brain, kidney, liver, muscle, and pancreas was measured by
real-time PCR. All baseline clinical and biochemical data was used to
generate a classifier with predictive value by implementing a machine
learning approach based on the random forest algorithm [30] (see
Methods section: Predictive modeling). To gain additional biological
insight of the mechanism of response to short-term IIT, we conducted
differential miRNA expression analysis by implementing mixed-effect
models for repeated measures (see Methods section: Statistical
analysis) and miRNAemRNA interaction network analysis (as
described in the Methods section: Functional network analysis).

2.3. Measurement of plasma miRNAs
miRNAs from 200 ml plasma were extracted using the miRNeasy Serum/
Plasma Kit (Qiagen, Hilden, Germany), reverse transcribed, preamplified,
and measured by quantitative real-time PCR using TaqMan� reagents
and ViiA-7� instrument from ThermoFisher Scientific (Waltham, MA),
following the manufacturer’s instructions. Custom TaqMan� Array
MicroRNA Cards from a single production batch were used. Data was
analyzed using the HTqPCR package in the R 3.5.1 statistical computing
environment [31]. Data from each sample were first normalized to the
levels of recovered spike-in cel-miR-39, then subjected to quantile
normalization using the normalizeCtData function. The median of the
quantile-normalized data for the NR group, pre-IIT time point, was then
subtracted from each quantile-normalized value to generate �DDCt
data equivalent to log2 fold change data (denoted herein logFC). As
hemolysis during plasma isolation could contaminate the specific pool of
circulating miRNAs and contribute to degradation of sample quality [32],
its impact was assessed by calculating the difference in logFC values
between erythrocyte-enriched miR-451 and reference miR-23a-3p
(hemolysis score ¼ logFCmiR-451 � logFCmiR-23a-3p; equivalent to the
log2 ratio between miR-451 and miR-23a-3p), which can detect very
low levels of hemolysis [33,34]. A hemolysis score lower than 7 was
required by study design for samples to be included in the final analysis.
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Only miRNAs with greater than 2-fold baseline-adjusted differences
between R and NR groups were included in the reported differential
abundance analysis.

2.4. Predictive modeling
To the limitations of a small sample size, we selected a machine learning
approach based on the random forests (RF) method, which implements
an out-of-bag (“bagging”) technique to monitor error and ensure unbi-
ased prediction with reduced risk of overfitting [30]. As reported by [30],
“by using bagging in tandem with random feature selection, the out-of-
bag error estimate is as accurate as using a test set of the same size as
the training set. Therefore, using the out-of-bag error estimate removes
the need for a set aside test set.” [30] In short: each new training set is
drawn, with replacement, from the original training set (with each
bootstrapped training set leaving about one-third of the instances out e
the out-of-bag (OOB) set); then a tree is grown on the new training set
using random feature selection. Furthermore, because the RF variable
selection process uses only a small random subset of predictor variables
for each tree split in the classification tree, the technique can handle the
“small n large p” problem, where the number of predictor variables (p) is
greater than the number of subjects (n) [35]. Regarding the diagnosis of
human disorders, it has been demonstrated that, by means of the
repeated random sampling from the learning data, RF automatically
generates realistic estimates of the prediction accuracy on validation
data [35,36].
For our analysis, the RF algorithm was implemented using the ran-
domForest package [37] in the R environment. Only baseline values for
all profiled miRNAs and clinical and metabolic measures were included
as variables for tree splitting and classification. A twofold-iterative pro-
cess of repeated, sequential backward elimination (SBE) [38] was
implemented. Each repetition of SBE (the “inner loop”) consisted of
successive cycles of RF classification whereby the less informative
variable (as calculated by the Gini variable importance index) was
eliminated after every cycle, until a single variable remained in the
classifier. The number of trees (ntree) in the forest was always set to
5000 and the number of variables to be randomly sampled at each tree
split (mtry) set equal to the total number of variables included in the
given SBE “inner cycle”. The OOB prediction error rate calculated for
each instance of the RF classifier was recorded and the instance(s)
generating the lower error rate selected as the optimal RF classifier(s) for
the given SBE repetition. The SBE process was repeated 100 times (the
“outer loop”), while choosing a distinct random number generator seed
for each “outer cycle”. The collection of optimal RF classifiers with
minimal OOB error rates for all 100 repetitions of the SBE process was
then summarized and the most frequent instance of the RF classifier
consistently producing the lowest OOB error rate was identified. Per-
formance and sensitivity analysis of the best classifier was evaluated
and visualized using the ROCR package in the R environment. ROC
curves were generated by using the random forest responder/nonre-
sponder vote fractions (based on the OOB data) as prediction scores to
construct the ROC curves by stepping through different thresholds for
calling responder versus nonresponder. By comparing these predictions
based on the out-of-bag data to their known class, estimates of the
performance of the classifier can be obtained.

2.5. Functional network analysis (FNA)
Our previous experience and that from others studying disparate
molecular mechanisms regulated by miRNAs indicate that global
biologically significant miRNA-driven regulatory events commonly
occur in a coordinated/cooperative fashion [39e46]. This process can
be readily described by a compact network of interactions between
MOLECULAR METABOLISM 20 (2019) 63e78 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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relevant miRNAs and corresponding “miRNA-overtargeted” genes
[40,42e45]. The “overtargeted” genes in a particular network appear
to interact with a significantly higher number of miRNAs than expected
by chance (as determined by hypergeometric tests of network pro-
portions compared to the respective proportions in the miRNAetarget
interaction universe/background). In this study, we similarly conducted
miRNA-overtargeting analyses following our published methodology
[40,42,44,45]. Significance of the cooperative (more than 1 miRNA
targeting a given gene) and overtargeting effect (significant higher
number of miRNA-targeting events than expected by chance on a given
gene) was assessed by comparing IIT-specific network proportions
and relevant number of events against a collection of 10,000 simulated
equivalent random networks. The list of validated targets supported by
strong experimental evidence (i.e., reporter assay or Western blot)
used for this analysis was downloaded from miRTarBase (file: miR-
TarBase_SE_WR.xls) using the SpidermiR package [47]. Interaction
networks were constructed using Cytoscape 3.5.1 [48]. Enrichment of
gene ontology annotations among sets of overtargeted genes was
assessed using the GOCluster_Report function of the systemPipeR
package [49] in the R environment.

2.6. Statistical analysis
Data normality was tested with the ShapiroeWilk test. Data were log
or square root transformed to approximate normality when neces-
sary. Differences in baseline clinical characteristics were assessed
using the Welch two sample t test (for continuous variables) or the
Fisher exact test (for categorical variables). Standard Pearson’s
correlations between baseline levels of clinical/metabolic variables
and the percent change in ISSI-2 were calculated to identify potential
confounding covariates. For assessment of longitudinal differences in
clinical, metabolic, and circulating miRNA variables, mixed-effect
models for repeated measures were implemented using the lme4
package. Age, duration of diabetes, baseline HbA1c, baseline AUC
glucagon, and baseline HOMA-IR measures were included in the
model as covariates to adjust for potential confounding effects, given
their relevant correlations with the percent change in ISSI-2 (absolute
jrj> 0.4, P< 0.05). Post-hoc analysis was performed using the phia
package. Partial correlations adjusting for the same covariates, were
calculated using the ppcor package. Calculated effects and partial
correlations were considered significant at P < 0.05. False discovery
rates (FDR) correcting for multiple testing were calculated using the
Benjamini-Hochberg correction. Principal component analysis (PCA)
using functions from the HTqPCR packages was used for high
dimensional assessment and visualization of miRNA expression
changes.

2.7. Power calculation
Based on our data using equivalent miRNA profiling technology, we
previously determined that a minimum sample size of N¼ 11 subjects
per group will detect a 1.5-fold change in the levels of circulating
miRNAs with 80% power at a two-sided significance level a ¼ 0.05
[50,51]. This study, with a slightly larger sample size (N ¼ 12 per
group) and a larger effect size required as per study design (miRNA fold
change between groups greater than two), was designed to detect
significant differences with greater than 80% statistical power.

3. RESULTS

3.1. Study participants
Table 1 shows the baseline characteristics of the study cohort and
highlights baseline group differences and correlations to the
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 65

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Original Article
primary outcome variable, namely percent change in ISSI-2. These
baseline imbalances (in duration of diabetes, HbA1c, HOMA-IR and
AUC glucagon, P < 0.05) and most notably, the existence of sig-
nificant correlations (absolute jrj > 0.4, P < 0.05) between the
percent change in ISSI-2 and the baseline levels of HbA1c, AUC
glucagon, and age, respectively, identified these variables as po-
tential confounders that needed to be adjusted for during statistical
modeling.

3.2. Improvements in beta-cell function and insulin sensitivity in
response to short-term IIT
As reported in the parent trial [28] and by selection in the current
secondary analysis, people in the R group experienced a dramatic
Table 1 e Baseline characteristics of the study cohort.

A. Baseline characteristics Level Nonresponder
(n ¼ 12)

Responder
(n ¼ 12)

P
value

Gender (%) Female 4 (33.3) 3 (25.0) 1
Male 8 (66.7) 9 (75.0)

Ethnicity (%) Other 2 (16.7) 2 (16.7) 1
White 10 (83.3) 10 (83.3)

Age (years) 62.8 (8.3) 56.0 (10.2) 0.085
Duration of diabetes (years)y 4.5 (2.3) 2.3 (2.4) 0.026
Pre-study metformin (%) 0 2 (16.7) 5 (41.7) 0.369

1 10 (83.3) 7 (58.3)
Pre-study sulfonylurea (%) 0 10 (83.3) 11 (91.7) 1

1 2 (16.7) 1 (8.3)
Pre-study oral agents (%) 0 2 (16.7) 5 (41.7) 0.369

1 10 (83.3) 7 (58.3)
BMI (kg/m2) 28.7 (4.6) 30.7 (4.1) 0.283
Waist circumference(cm) 97.9 (10.2) 105.5 (11.8) 0.104
HbA1c (%)x 6.7 (0.4) 7.6 (1.2) 0.022
Fasting glucose (mmol/L) 7.6 (1.1) 7.5 (1.6) 0.883
Fasting insulin (mmol/L)x 91.9 (59.6) 159.7 (149.5) 0.058
Fasting glucagon (Mercodia)
(mmol/L)

6.2 (2.3) 7.9 (3.5) 0.169

AUC glucagon (Mercodia) 19.3 (4.6) 27.5 (9.5) 0.013
2-hour glucose on OGTT (mmol/L) 17.3 (2.5) 16.1 (4.0) 0.391
HOMA IRx 4.5 (3.1) 7.5 (6.5) 0.086
ISSI-2 113.0 (31.4) 135.0 (62.7) 0.289
ISR0-120/Gluc0-120�Matsuda
index

0.10 (0.04) 0.09 (0.07) 0.698

B. Standard baseline correlations to
% change in ISSI-2

n cor P
value

HbA1cx 24 0.69 2.1E-
04

AUC glucagon (Mercodia) 24 0.54 0.007
Age 24 �0.44 0.032
Duration of diabetesy 24 �0.44 0.033
HOMA IRx 24 0.42 0.044
Waist circumference 24 0.36 0.081
Fasting insulinx 24 0.36 0.082
Fasting glucagon (Mercodia) 24 0.35 0.093
Fasting glucose 24 0.31 0.141
BMI 24 0.29 0.171
ISR0-120/Gluc0-120�Matsuda 24 �0.29 0.173
2-hour glucose 24 0.13 0.537
ISSI-2 24 �0.12 0.572

Data sqrt(y) or log(x) transformed to approximate normality for statistical inference
tests.
Unadjusted differences in baseline measures were determined using the Welch two
sample t test (for continuous variables) or the Fisher exact test (for categorical vari-
ables). Data is presented as mean with standard deviation or as percentage (%).
Standard Pearson’s correlation between baseline levels of clinical/metabolic variables
and the percent change in ISSI-2 were calculated to identify potential confounding
covariates.
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increase in ISSI-2 (greater than 2-fold increase), whereas people in the
NR group displayed a nonsignificant reduction (Group-by-Time inter-
action effect FDR < 0.001, Supplementary Table ST2), even after
adjusting for confounding effects of age, duration of diabetes, and
baseline levels of HbA1c, HOMA-IR, and AUC glucagon. Notably, insulin
resistance (as measured by the HOMA-IR index) significantly improved
in the R group only (Group-by-Time interaction effect FDR < 0.01,
Supplementary Table ST2). In addition, people that responded to short-
term IIT significantly reduced their fasting glucose and insulin levels
and were able to significantly reduce their levels of glycated hemo-
globin HbA1c by close to a full percent unit on average, as compared to
the respective baseline levels (all three comparisons displaying Group-
by-Time interaction effects with P � 0.0268 and FDR � 0.0603,
Supplementary Table ST2). Although to a lesser extent, short-term IIT
also reduced HbA1c levels in the NR group resulting in a significant
Time effect for this measure (P ¼ 0.001, FDR < 0.01).

3.3. MiRNA-based score of plasma quality
The quality of the initial plasma samples was assessed by calculating a
hemolysis score per sample, as described in Material and Methods. All
samples produced hemolysis scores below five (Supplementary
Figure SF1). Therefore, following reported guidance [33,34], the risk
of contamination by hemolysis was considered insignificant.

3.4. Baseline abundance of miR-145-5p, miR-29c-3p, together
with baseline measures of glycated hemoglobin HbA1c accurately
predict response to short-term IIT
To assess the potential of circulating miRNAs and clinical/metabolic
measures to predict, at baseline, responses to short-term IIT, we
implemented a comprehensive classification approach based on an RF
algorithm using the randomForest package in the R environment. By
implementing 100 iterations of an SBE approach, 159 optimal clas-
sifiers with minimal cross-validated error rate (OOB error rate¼ 8.3%)
were generated. Baseline measurements of the trio miR-145-5p, miR-
29c-3p, and HbA1c produced the best classifier 100 percent of the
time, while the simpler classifier containing miR-145-5p and miR-29c-
3p also attained the lowest error rate but only 56 percent of the time. A
third more complex classifier including the above-mentioned trio and
miR-326 also attained the lowest error rate but with a 2 percent fre-
quency only. No combination of clinical parameters only (excluding
miRNAs) generated an optimal classifier. Therefore, the RF classifier
based on baseline measures of miR-145-5p, miR-29c-3p, and HbA1c
was selected as the best RF classifier of response to short-term IIT.
Figure 1 and Supplementary Figure SF2 show the longitudinal data for
the three features comprising the best classifier and a variety of
performance measures demonstrating the high sensitivity (area under
the receiver operator characteristic AUC ¼ 0.951) and accuracy
(positive and negative predictive values both equal to 91.7%) of the
classifier. Although the baseline-adjusted changes in miR-145-5p and
miR-29c-3p in response to short-term IIT were not significantly
different between the two groups as per our study criteria (Table 2),
there was a trend (Group-by-Time interaction P ¼ 0.0547) for miR-
145-5p to differentially increase with time in the responder group.
However, the median post-therapy miR-145-5p level in this group was
still lower than the nonresponder level (Figure 1A). Importantly, the
baseline levels of plasma miR-145-5p significantly correlated with the
percent change in ISSI-2 (r ¼ �0.66, P ¼ 0.0005; Figure 1D upper
panel), the change in HbA1c (r ¼ 0.48, P ¼ 0.0164; Figure 1E, upper
panel), and with the change in fasting glucose levels (r ¼ 0.51,
P ¼ 0.0101; Figure 1F, upper panel). These correlations support the
identification of miR-145-5p as a key variable in the RF classifier
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1: Identification of an optimal miRNA classifier for response to short-term IIT and summary of performance measures following an iterative random forests (RF) approach.
(AeC) Dual plots for features comprising the best classifier of response. (DeG) Correlations between baseline levels of miR-145-5p and changes in measures of beta cell function
and glucose control. ISSI-2 was the main outcome measure of beta-cell function, in the parent LIBRA trial, in response to short-term IIT. (H) Sensitivity analysis using the receiver
operator characteristic curve (ROC). (I) Odds ratio plot for the classification using the best RF classifier. (J) Confusion matrix for the best RF classifier. (K) Performance measures for
the best RF classifier. Orange-filled circles represent individual values for Responder (R) group. Blue-filled circles represent individual values for Nonresponder (NR) group. AUC:
area under the ROC curve; PPV: positive predictive value; NPV: negative predictive value; FPR: false positive rate; FNR: false negative rate.
predictive of short-term IIT response and indicate that the lower the
baseline levels of circulating miR-145-5p, the larger the subsequent
short-term IIT-driven improvement in beta-cell function (as estimated
by ISSI-2), reduction in HbA1c levels, and reduction in fasting glucose
levels. Additionally, baseline levels of miR-145-5p significantly
correlated with baseline levels of HbA1c (r ¼ �0.59, P ¼ 0.0024;
Figure 1E, lower panel) and insulin resistance, as indicated by the
HOMA-IR index (r ¼ �0.48, P ¼ 0.0183; Figure 1G, lower panel).
MOLECULAR METABOLISM 20 (2019) 63e78 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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3.5. Validation of a potential regulatory association between miR-
145-5p and miR-483-5p/3p
While revising the recent literature for the predictive miRNAs, we
uncovered a potential mechanistically-relevant link between IIT
response-predictive miR-145-5p and miR-483-5p/3p (the sense and
corresponding antisense miRNAs originating from the same primary
miR-483). The latter miRNAs were not originally included in our panel.
Specifically, miR-145-5p and miR-483-3p are reported to be involved
cess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 67
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Table 2 e Several miRNAs are differential abundant in the circulation of participants in responders and nonresponders.

Nonresponders (NR) (n ¼ 12) Responders (R) (n ¼ 12) P values FDR values

Pre Post Pre Post Group Time Group-by-Time Group Time Group-by-Time

Pattern A
miR.192 0.0 (�3.2, 3.5) 0.9 (�1.2, 3.2) 2.0 (�1.5, 3.3) �1.6 (�5.7, 1.9) 0.0759 0.5175 0.0004 0.4089 0.6116 0.0104
miR.320b 0.0 (�0.8, 2.0) 0.2 (�0.8, 2.7) 0.7 (�0.4, 1.6) �0.1 (�1.6, 1.0) 0.1489 0.4613 0.0325 0.4839 0.5825 0.2028
miR.195 0.0 (�2.3, 1.4) 0.7 (�0.1, 2.4) 0.3 (�0.1, 1.7) 0.4 (�0.5, 2.5) 0.1101 0.0018 0.0364 0.4089 0.0156 0.2028
let.7a 0.0 (�1.7, 0.5) �0.4 (�3.5, 0.5) �0.7 (�1.5, 0.9) �0.2 (�1.1, 0.9) 0.7438 0.0562 0.0384 0.9205 0.1624 0.2028
miR.138 0.0 (�3.2, 7.8) �3.0 (�3.6, 6.5) �0.9 (�3.6, 6.5) 4.4 (�3.5, 7.1) 0.7129 0.1627 0.0390 0.9205 0.3525 0.2028
Pattern B
miR.20a 0.0 (�0.5, 1.7) 1.3 (0.9, 2.6) 0.3 (�0.3, 2.6) 1.5 (�0.1, 2.6) 0.2863 0.0001 0.3905 0.6203 0.0026 0.7529
let.7b 0.0 (�1.1, 0.3) 0.6 (�0.1, 1.9) �0.1 (�0.8, 0.8) 0.9 (0.6, 2.2) 0.3767 0.0002 0.6532 0.7534 0.0026 0.7949
miR.802 0.0 (�3.6, 4.2) �3.3 (�5.1, 2.8) �1.0 (�3.6, 2.2) �4.1 (�5.0, 6.1) 0.4783 0.0031 0.3959 0.8291 0.0201 0.7529
miR.34a 0.0 (�3.4, 2.2) �1.1 (�4.3, 1.9) �0.5 (�2.0, 1.7) �1.3 (�3.6, 0.7) 0.8851 0.005 0.7357 0.9205 0.026 0.8317
miR.144 0.0 (�6.1, 3.9) 3.1 (�1.9, 4.7) �0.5 (�6.8, 4.1) 2.4 (�2.1, 3.9) 0.8685 0.0117 0.9194 0.9205 0.0507 0.9562
miR.183 0.0 (�7.5, 1.6) 1.7 (�6.7, 4.0) 0.9 (�2.9, 3.0) 1.2 (�2.9, 3.5) 0.0725 0.0191 0.1832 0.4089 0.0709 0.5954
miR.15b 0.0 (�0.4, 2.0) �0.6 (�2.9, 0.7) �0.2 (�3.1, 0.7) �0.9 (�4.2, 2.9) 0.7236 0.0331 0.4054 0.9205 0.1076 0.7529
Predictive
miR.145 0.0 (�0.9, 0.5) 0.1 (�1.5, 0.6) �0.8 (�2.0, 0.7) �0.4 (�1.4, 0.8) 0.2702 0.3457 0.0547 0.5404 0.3457 0.1094
miR.29c 0.0 (�1.1, 0.4) 0.5 (�0.6, 2.2) 0.5 (�0.8, 1.1) 0.6 (�0.2, 1.8) 0.5649 0.0057 0.4415 0.5649 0.0114 0.4415
Correlative
miR.483.5p 0.0 (�1.1, 0.7) �0.6 (�2.1, 0.2) 0.6 (�1.2, 1.9) �0.6 (�1.8, 0.4) 0.2423 0.0041 0.1376 0.8211 0.0178 0.4763
miR.483.3p 0.0 (�1.5, 1.4) �1.0 (�4.1, 0.7) 0.2 (�1.0, 1.6) �0.5 (�2.4, 0.2) 0.713 0.0018 0.6664 0.9209 0.0116 0.7726

Pattern A miRNAs are characterized by significant Group-by-Time interaction effects (Fold Change > 2, P < 0.05 and FDR � 0.2028), generally due to changes either in only one of
the groups or in opposite directions in both R and NR groups. Pattern B miRNAs are characterized by significant Time effect (Fold Change> 2, P< 0.05 and FDR< 0.1), generally due
to either a significant reduction or significant increase in plasma levels in both R and NR groups. Predictive miRNAs (as part of an RF classifier), although not considered differentially
expressed by the study design criteria, are able to predict response to short-term IIT at baseline (pre-treatment stage). Both strands of miR-483 (-5p/-3p, potentially involved in
regulatory loop with miR-145-5p) are stably detected and highly correlated among themselves and with miR-145-5p and miR-29c, respectively. Data is presented as median log2 fold
change [relative to the median of the NR group baseline (Pre-IIT time point)], with 95% confidence interval in parenthesis. FDR calculated using the Benjamini-Hochberg correction.
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in a glucose level-dependent loop that regulates miR-145-induced
TP53-dependent cell death in hepatocellular carcinoma [52]. On the
other hand, the complementary strand miR-483-5p has been reported
to be differentially expressed in pancreatic a and b cells, and to protect
against proinflammatory cytokine-induced apoptosis of b cells in
culture and in mice, while increasing insulin transcription and secretion
by the b cells and reducing glucagon transcription and secretion by the
a cells [53]. Therefore, we hypothesized that the miR-145/miR-483
regulatory loop may play a mechanistic role contributing to the
response to short-term IIT in humans. To assess the potential asso-
ciation between miR-145-5p and miR-483 in humans with diabetes,
we then profiled both miR-483-3p and miR-483-5p in this study’s
plasma samples using TaqMan� assays and quantitative real time PCR
(these measurements were normalized against the expression of the
internal/endogenous control miR-191, Figure 2A, D). Supporting our
hypothesis, we found that circulating levels of miR-483-5p signifi-
cantly negatively correlated with circulating levels of miR-145-5p
(r ¼ �0.34, P ¼ 0.0203, Figure 2B) and positively with miR-192-
5p (an IIT-responsive miRNA reported in the next section, r ¼ 0.38,
P ¼ 0.009, Figure 2C). Remarkably, the baseline circulating levels of
miR-483-5p significantly correlated (absolute jrj > 0.3 and P < 0.05)
with the baseline levels and the change in levels of HbA1c, fasting
insulin, HOMA IR, AUC of the response to glucagon (Figure 2HeG), as
well as with the change in fasting glucose levels (Figure 2L). On the
other hand, levels of miR-483-5p expectedly and highly significantly
correlated with the levels of miR-483-3p (r¼ 0.53, P¼ 1.30� 10�04,
Figure 2E), and the levels of miR-483-3p highly significantly negatively
correlated with the levels of miR-29c-3p, the other IIT response-
predictive miRNA (r ¼ �0.58, P ¼ 2.32 � 10�05, Figure 2F) and
with miR-195-5p (an IIT-responsive miRNA reported in the next sec-
tion, r ¼ �0.47, P ¼ 0.001, Figure 2G). Despite these strong corre-
lations with clinical changes relevant to the response to short-term IIT,
68 MOLECULAR METABOLISM 20 (2019) 63e78 � 2018 The Authors. Published by Elsevier GmbH. T
when baseline normalized miR-483 data was included among the set
of baseline variables used to generate the RF classifiers and the BSE
iterative RF process repeated, the optimal RF classifier continued to be
comprised of the same three variables, namely miR-145-5p, miR-29c-
3p, and HbA1c.

3.6. Circulating levels of miR-138-5p, miR-192-5p, miR-195-5p,
miR-320b, and let-7a-5p differentially change in response to short-
term IIT
To gain insight into potential miRNA-regulated mechanisms in response
to short-term IIT, we evaluated the baseline and four-week follow-up
changes in circulating miRNA levels and assessed the correlations
between these changes and the changes in clinically relevant measures
of beta-cell function (i.e., ISSI-2 and DISR0-120/DGluc0-120�Matsuda
index), insulin resistance (i.e., HOMA-IR), glycemic control (e.g., HbA1c),
and glucagon response (e.g., AUC glucagon). We anticipated that
changes in short-term IIT-responsive miRNAs would track with im-
provements in beta-cell function and insulin sensitivity, among others.
As shown in Table 2, five circulating miRNAs (Pattern A: miR-138-5p,
miR-192-5p, miR195-5p, miR-320b, and let-7a-5p) displayed signif-
icant differential expression changes (as denoted by the significant
Group-by-Time interactions (P < 0.05 and FDR � 0.2)) in response to
short-term-IIT. This effect was due to changes in the plasma miRNA
levels either only in one of the groups or in opposite directions in both R
and NR groups (Figure 3AeE, Supplementary Figure SF4). In contrast
to miR-145-5p and miR-29c-3p, which did not significantly change
with treatment but were predictive of treatment response at baseline,
Pattern A miRNAs did not significantly differ at baseline (as evidenced
by their non-significant group effects) but changed in response to
short-term IIT and their changes effectively separated responders from
nonresponders as assessed by PCA (Table 2, Figure 3AeF). Inter-
estingly, the changes in let-7a-5p, miR-195-5p, miR-320b, and miR-
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Expression profiling of miR-483-5p and miR-483-3p in circulation of humans with type 2 diabetes. Quantitation using real time PCR and TaqMan� assays. Mea-
surements were normalized against the expression of the internal/endogenous control miR-191. Blue and orange circles represent nonresponder (NR) and responder (R) group data
points, respectively, in panels HeL. Black, red, green, and blue represent nonresponder-post, nonresponder-pre, responder-post, and responder-pre, respectively, in panels EeG.
138-5p appear coregulated to some extent, as suggested by signifi-
cant (jrj > 0.4, P < 0.05) and marginally significant (jrj > 0.4,
P � 0.062) correlations among them (Figure 3GeI). Of note, the
changes in the circulating levels of Pattern A miRNAs significantly
correlated (see Figure 4) with changes in measures of b-cell function
(rDmiR.192wDISSI2 ¼ �0.51, P ¼ 0.024; rDmiR.138wD(DISR0..120/

Dgluc0..120� ¼ 0.48, P ¼ 0.039; and rDmiR.320bwDISSI2 ¼ �0.48,
P ¼ 0.037; all with FDR < 0.10), insulin resistance
(rDmiR.192wDHOMA.IR ¼ 0.69, P ¼ 0.001, FDR < 0.01), and fasting
insulin (rDmiR.192wDfasting.insulin ¼ 0.69, P ¼ 0.001, FDR < 0.01). The
MOLECULAR METABOLISM 20 (2019) 63e78 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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change in levels of miR-192-5p and miR-195-5p additionally tracked
with the change in measures of whole body composition
(rDmiR.192wDWaist.circumference ¼ 0.56, P ¼ 0.012;
rDmiR.192wDBMI ¼ 0.46, P ¼ 0.046; and rDmiR.195wDBMI ¼ �0.49,
P ¼ 0.034, all with FDR < 0.10, Figure 4F,H). miR-195-5p displayed
an additional trend with fasting glucose (rDmiR.195w
Dfasting.glucose¼�0.44, P¼ 0.062, FDR< 0.1). MiRNAs with a second
pattern of change displaying significant Time effect but nonsignificant
Group-by-Time interaction (Pattern B, Table 2, Supplementary
Figures SF4 and SF5), were also identified.
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Figure 3: Longitudinal changes and correlations in microRNAs (miRNAs) that significantly change in response to short-term intensive insulin therapy (IIT). (AeE) Pattern A miRNAs
with significant Group-by-Time interaction (P < 0.05, FDR < 0.2). Data presented as quantile-normalized log2 fold changes relative to the median of the nonresponders group at
pre-IIT (NR.Pre) time point. The connected dots represent corresponding pre-therapy and post-therapy measurements for each individual participant (R: Responder group, orange
filling; NR: Nonresponder group, blue filling; n ¼ 12 per group). In the boxplots, the box delineates the first and third quartiles (the interquartile range, IQR), whereas the whiskers
delineate the smallest and largest values inside a 1.5 box-length from the end of the box. The boxplot summarizes the data presented in the corresponding side-by-side dot plot,
while the dot plot reveals valuable information about the longitudinal changes taking place per subject. Note that some samples have similar normalized logFC values, therefore
multiple lines may converge onto a single dot. The number of lines, not the number of dots, represents the number of samples contributing data for the specific plot. Red dots
represent data points located at greater than 1.5 IQR from the end of the box. Blue filling used for NR group and orange filling for R group. (F) Principal component analysis plot
based on changes in Pattern A miRNAs effectively separate the responders from the nonresponders subjects. (GeI) Correlated changes in the circulating levels of Pattern A miRNAs
in response to short-term IIT.
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Figure 4: Correlations between changes in Pattern A circulating miRNA levels and changes in relevant clinical variables and indices of interest. Partial correlations calculated using
the ppcor R package and adjusting for age, duration of diabetes, baseline HbA1c, and baseline AUC glucagon. Blue-filled circles represent individual values for the Nonresponder
(NR) group. Orange-filled circles represent individual values for the Responder (R) group.
3.7. A network of cooperatively regulated validated miRNA targets
is enriched in genes that regulate cell death and proliferation
To gain additional general mechanistic insight, we assessed the
functional relevance of the putative network of genes targeted (sup-
ported by strong experimental evidence, specifically reporter assay or
western blot) by both the IIT predictive and responsive miRNAs
(denoted herein as IIT miRNAs). The IIT miRNA-target gene network
analysis identified a total of 1672 genes that are experimentally
demonstrated to physically interact with at least one of the IIT miRNAs
(note that there were no targets with strong validation support in the
miRTarBase database for miR-483-5p/3p etherefore, these miRNAs
do not appear in our Figure 5 network). Remarkably, 109 of those
(6.5%, P¼ 0.0306 as empirically determined by comparison to 10000
simulated equivalent random networks) are targeted by more than one
IIT miRNAs (“cooperatively targeted”) (Supplementary Table ST3).
Furthermore, 91 of the cooperatively targeted genes were significantly
overtargeted by the IIT miRNA set (hypergeometric P < 0.05 and
FDR < 0.05, as compared to targeting proportions in the interaction
universe/background, Supplementary Table ST3, interaction network
MOLECULAR METABOLISM 20 (2019) 63e78 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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shown in Figure 5A). Consequently, this relatively large number of
overtargeted genes was also highly significant (P ¼ 0.0039, as
empirically determined by comparison to 10000 simulated equivalent
random networks). As shown in Figures 5A and 4B, the overtargeted
gene network depicted a 9-gene central cluster including BCL2, CDK6,
SPTBN1, DICER1 (these four genes targeted by four IIT miRNAs each),
RPS6KB1 SERPINE1, SENP1, CDC25A, and SIRT1 (these five genes
targeted by three IIT miRNAs each). Gene set enrichment analysis (for
GO biological processes) highlighted the enrichment in overtargeted
genes that regulate cell death, cell cycle, proliferation, and cell and
tissue morphogenesis, among the most relevant processes
(Figure 5C,D, Supplementary Tables ST4 and ST5).

4. DISCUSSION

In this study, we provide evidence of a predictive multimodal signature
in patients with early type 2 diabetes who were treated with short-term
IIT. In addition, the longitudinal comparison of circulating miRNA levels
between the group with considerable reversibility in beta-cell
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Figure 5: Functional network analysis. (A) Network of experimentally validated interactions between seven IIT miRNAs and corresponding 91 overtargeted genes. Overtargeted
genes appear to interact with a significantly higher number of miRNAs than expected by chance (as determined by hypergeometric tests of network proportions compared to the
respective proportions in the miRNAetarget interaction universe/background). (B) Enrichment of gene ontology annotations among the complete set of 91 overtargeted genes
(method set to ‘slim’ annotations and significance value cutoff Padj < 0.05). (C) Re-drawn subnetwork for the central cluster of 9 highly overtargeted genes (3 or more targeting
miRNAs per gene) and interacting set of six IIT miRNAs. (D) Enrichment of gene ontology annotations for the central cluster of 9 overtargeted genes (method set to ‘all’ annotations
and significance value cutoff Padj < 0.001). Categories with the lowest P values at the bottom of the plot. Annotation enrichment analysis was assessed using the GOClus-
ter_Report function of the systemPipeR package in the R environment.
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dysfunction in response to short-term IIT (the R group) and the group
without such reversibility (the NR group), provides insights into po-
tential underlying regulatory mechanisms determining the response to
short-term IIT. A hallmark of reversibility of beta-cell dysfunction in
early type 2 diabetes is the coupling of a high HbA1c with short
duration of diabetes [3,5,11]. This situation arises because of the effect
of glucotoxicity in amplifying the rise in glycemia that characterizes the
natural history of type 2 diabetes. Specifically, early in the course of the
disease, glycemia increases as beta-cell function worsens. When
glucose levels reach the glucotoxic threshold at which they further
compromise beta-cell function [i.e., first-phase insulin secretion is
abolished at blood glucose 6.4 mmol/l [54]] there will be an amplifi-
cation of beta-cell dysfunction and a more rapid rise in glycemia. While
the resultant effect is one of higher glycemia in early type 2 diabetes,
its emergence is indicative of reversible beta-cell dysfunction (e.g., due
to glucotoxicity). For this reason, it was expected that, compared to
nonresponders, the responders may have shorter duration of diabetes
coupled with higher HbA1c.

4.1. Predictive value of baseline circulating levels of miR-145-5p,
miR-29c-3p, and HbA1c
Using an implementation of the RF algorithm described by Breiman
[30], which reduces bias and is protected from overfitting, we
demonstrated that baseline levels of miR-145-5p, miR-29c-3p, and
HbA1c could accurately and sensitively predict the response to short-
term IIT. This was further evidenced by the significant correlations
between miR-145-5p baseline levels and the changes in measures of
beta-cell function (ISSI-2) and glycemic control (fasting glucose and
HbA1c). Although these associations do not demonstrate causality,
they suggest that the lower the baseline levels of miR-145-5p, the
larger the increase in ISSI-2 and the larger the reduction in fasting
glucose and HbA1c levels. Consistent with our findings, the parent trial
found that higher baseline HbA1c levels may predict response to short-
term IIT [11]. Importantly, no combination of clinical parameters
demonstrated better performance than that of the multimodal RF
classifier. This highlights the utility of profiling miRNA biomarkers
alongside clinical parameters to predict response and aid selection of
anti-diabetic therapies.
Based on validated functions of miR-145-5p (discussed below) and the
correlations observed in our study, we speculate that baseline levels of
this miRNA may reflect the “irreversible component” (e.g., dying beta-
cell mass) that affects the response to short-term IIT. Notably, expres-
sion of miR-145-5p (originally considered a cardiovascular-specific
miRNA) has been found to be upregulated in the liver, muscle, and
pancreas of db/db obese mice [55], to be regulated by glucose con-
centration and to be involved in glucose homeostasis through regulation
of ABCA1 and cholesterol efflux in liver and pancreas [56], and to be
upregulated by resistin (an adipocyte-derived cytokine associated with
insulin resistance) both in vivo and in vitro, consequently impairing in-
sulin signaling [57]. Other studies have found that miR-145-5p increases
lipolysis in human adipocytes through increased production and pro-
cessing of pro-inflammatory TNF-a [58]. Remarkably, miR-145-5p was
also recently reported to induce, depending on glucose availability, either
inhibitory or stimulatory effects on the apoptotic rate of hepatocellular
carcinoma [52]. In that work, Lupini and colleagues demonstrated that
miR-145-5p induced downregulation of [oncogenic] miR-483-3p under
low-glucose and up-regulation under high-glucose conditions, which
translated into induction or inhibition of miR-145-induced TP53-
dependent apoptosis, respectively [52]. The authors also reported the
existence of a regulatory loop between miR-145-5p and miR-483-3p in
normal cells, which is lost in tumor cells. On the other hand, Mohan and
MOLECULAR METABOLISM 20 (2019) 63e78 � 2018 The Authors. Published by Elsevier GmbH. This is an open ac
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colleagues reported that miR-483-5p (the mature miRNA from the for-
ward strand) respond to elevated glucose levels and is overexpressed in
pancreatic beta cells (as compared to alpha cells, both in vitro and
in vivo), and that overexpression of miR-483-5p induces insulin secre-
tion and inhibits glucagon secretion through activation of insulin
signaling [53]. These authors also reported that overexpression of miR-
483-5p protects against cytokine-mediated apoptosis in beta cells and is
consequently elevated in prediabetic mice islets in correspondence with
the increase in beta cell mass. Extrapolating to our study scenario, we
hypothesize that the lower glucose levels in subjects of the nonre-
sponder group (which are in “more advanced” stages of early type 2
diabetes, with longer duration of diabetes and with lower glycemia),
together with putative higher baseline miR-145-5p tissue levels, may
“reinforce” the activity of the regulatory loop by which miR-145-5p
represses miR-483 (both -5p and -3p) activities, therefore augmenting
the rate of miR-145-induced apoptosis and presumably the demise of
beta cells in the pancreas. On the other hand, the higher levels of blood
glucose in subjects in the responder group (in “earlier” stages of early
type 2 diabetes, with higher glycemia due to the stronger influence of
reversible glucotoxicity and lower miR-145-5p baseline levels), may
induce the upregulation of miR-483 activities, which consequently
counteract the pro-apoptotic functions of miR-145 and presumably
stimulates proliferation of beta cells in the pancreas. The consequent
improvement in beta cell function in the responder group would then
contribute to reversing glucotoxicity and lowering glycemic levels,
consequently inducing the observed rising trend in miR-145-5p and
correspondingly decreasing trend in miR-483-5p after short-term IIT. We
hypothesize that the balanced interplay among these miRNAs and
respective regulated genes, in a tissue-specific physiological/patho-
physiological context are important determinants of disease progression
and response to therapy in subjects with type 2 diabetes. These results
represent an indirect validation of the occurrence of the regulatory loop
between miR-145-5p and miR-483-3p/5p in tissues (likely the pancreas
and/or liver) from humans with type 2 diabetes and indicate that baseline
levels of miR-483-5p in circulation can also be predictive of the response
to short-term IIT. Furthermore, Cui and colleagues recently demon-
strated that downregulation of miR-145-5p in diabetes-bone marrow
stromal-cells (diabetes-BMSCs) increased cell proliferation and
decreased cell death in addition to improving vascular remodeling in the
ischemic rat brain [59]. We speculate that, in a somewhat similar
fashion, people with type 2 diabetes that have lower levels of miR-145-
5p (as in our R group) may experience reduced beta-cell death, improved
proliferation, and an improved vasculogenic microenvironment in the
pancreas that, therefore, may elicit a positive response to short-term IIT.
On the other hand, miR-29, one of the most abundant miRNA family
in human pancreatic b-cells and in the liver [60], has been reported
to be downregulated under hyperinsulinemic conditions (e.g., in the
heart, possibly as an adaptive mechanism to protect the organ in the
prediabetic stage [61]), but increased in response to loss of
hyperinsulinemia and elevated plasma glucose levels [62]. However,
an apparent inverse correlation between liver and circulating plasma
miR-29 levels in type 2 diabetes has also been suggested and
deemed intriguing [63]. Although miR-29 did not show significant
correlations with relevant clinical measurements in our subjects, we
note that responders tend to have higher baseline levels of circu-
lating miR-29. Therefore, considering the reported inverse correla-
tion between circulating and tissue levels for miR-29 in type 2
diabetes, we speculate that responders may have lower levels of
miR-29 in some insulin-sensitive tissues, which may provide for
additional protection in these subjects and a positive response to the
treatment.
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4.2. Differential miRNA signature responsive to short-term IIT
Five circulating miRNAs, miR-138-5p, miR-192-5p, miR-195-5p, miR-
320b, and let-7a-5p, showed significant differential expression
changes in response to four-week short-term IIT. Their changes in the
subjects’ circulation effectively separated the subjects that responded
to the therapy from those that did not, as assessed by PCA. This
suggests that short-term IIT induced major changes in the circulating
levels of pattern A miRNAs that are defined by the subjects’ capacity to
respond to the therapy. Those changes also associated with
concomitant changes in beta-cell function (as evidenced by significant
correlation with the change in ISSI-2), insulin resistance (as evidenced
by significant correlation with the change in HOMA IR), and fasting
insulin concentrations. This suggests that Pattern A miRNAs may
regulate a reversible state, potentially due to glucotoxicity, that is
responsive to short-term IIT in people with early type 2 diabetes.
Notably, binding of miR-138-5p to the TATA-box region in the promoter
of the insulin gene enhances the promoter activity and consequently the
expression of the insulin gene [64]. Therefore, the elevated plasma
abundance detected for miR-138-5p in our R group suggests that short-
term IIT may increase the expression of the insulin gene in pancreatic
beta-cells. On the other hand, miR-192-5p is one of the most abundant
miRNAs in pancreatic beta-cells, liver, and kidney [65,66], and is
significantly increased in the circulation in early disease stages, as in
people with prediabetes [67]. In addition, roles in insulin resistance,
cardiometabolic phenotypes, diabetic nephropathy, and non-alcoholic
fatty liver disease (NAFLD) have recently been suggested [68e70].
Notably, we recently identified miR-192-5p as a key vitamin D-
responsive miRNA in subjects with prediabetes [50]. Supporting our
findings in this study, miR-192-5p was also reduced by the vitamin D
treatment and correlated with the change in fasting plasma glucose [50].
Another subset of Pattern A miRNAs, namely let-7a-5p, miR-195-5p,
and miR-320b appeared to be coregulated, as suggested by the sig-
nificant correlations among them. Consistent with this notion, these
three miRNAs have been similarly implicated in diabetes [23,71e77],
cardiovascular disease [74,77e79], and cancer [80e83], and their
effects appear to be associated with the miRNA presence in exosomes
[73e76,80]. Consistent with our findings, let-7a-5p (a highly abundant
miRNA in human b-cells [84]) was found to be significantly down-
regulated in plasma exosomes from people with type 2 diabetes,
significantly correlated with plasma glucose and HbA1c levels, and
responsive to antidiabetic treatment [75]. On the other hand, miR-195-
5p was found upregulated in the liver of diabetic rats and its expression
showed a linear relationship with the glycemic phenotype of three
distinct strains, which suggested a role in the pathophysiology of type
2 diabetes [72]. Remarkably, we have recently detected circulating
exosomal miR-195-5p changing in diabetic people in response to
treatment with pioglitazone [85]. Regarding miR-320b, its upregulation
in cultured adipocytes contributed to the development of insulin
resistance [71] while in diabetic mice contributed to the development
of hyperglycemic/metabolic memory in the heart despite normogly-
cemia restoration [77]. In addition, family member miR-320a was
found to regulate skeletal muscle mitochondrial metabolism [86].
These findings suggest potential clinical utility for the design of new
strategies to interfere with the development of hyperglycemic memory
in specific tissues. We hypothesize that the implementation of short-
term IIT early in the development of type 2 diabetes could contribute
to reducing the levels of miR-320b and consequently, interfere with the
development of hyperglycemic memory later in the course of the
disease, potentially contributing to reduced risk of disease progression
and reduced risk of cardiovascular complications, as evidenced in the
United Kingdom Prospective Diabetes Study [87].
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Collectively, the predictive and responsive miRNAs (IIT miRNAs) define
a network of validated miRNAemRNA interactions that additionally
suggests the coordinated regulation of genes that regulate cell pro-
liferation, apoptosis, and cell/tissue morphogenesis. A central cluster
of nine overtargeted genes including BCL2, CDK6, SPTBN1, DICER1,
RPS6KB1 SERPINE1, SENP1, CDC25A, and SIRT1 (identified from
among 91 genes targeted by more than one of the select IIT miRNAs)
emerge as potentially key players driving a positive response to the
insulin therapy in early diabetic patients. Reduced demise of chal-
lenged/dying beta-cells and concomitant enhanced beta-cell prolifer-
ation and pancreatic tissue remodeling (morphogenesis) in the diabetic
pancreas is a plausible mechanism that could explain, at least in part,
the beneficial and long-term effects of short-term IIT in humans with
early type 2 diabetes. Interestingly, a recent trans-omic network
analysis of selective responses to low (basal) and high (induced) insulin
administration (in vitro using rat hepatoma cells and in vivo using
insulin-clamped rat livers) found that basal and induced insulin effects
are decoded by the cells via mostly mutually exclusive pathways [88].
However, FoxO1, a key transcription factor inhibited by Akt phos-
phorylation and activated by Sirt1 deacetylation among other stimuli
[89], was able to regulate both basal and induced insulin-responsive
transcripts [88]. As SIRT1, which has also been found to be a crit-
ical factor for Pdx1 transcription and b cell formation [90], is one of the
most significantly overtargeted genes in our analysis and FOXA1 (also
activated by Sirt1 and an interdependent binding partner and enhancer
of FoxO1 binding to the promoter of insulin-sensitive genes [91]) is also
significantly overtargeted by IIT miRNAs (refer to Figure 5 networks and
Supplementary Table ST3), these results suggest that IIT miRNAs may
be functionally involved in the regulation of both the basal and induced
cellular responses to insulin. Consequently, deregulation and/or indi-
vidual variation in IIT miRNA levels may impact the natural history of
type 2 diabetes and/or the heterogeneity in response to treatment.
Also notably, DICER1, one of the top overtargeted genes in our network
analysis (targeted by 4 of the 7 IIT miRNAs), was recently shown by the
Kahn group to play a fundamental role in adipose tissue, which contrib-
utes a majority of exosomal miRNAs into the circulation [92]. Additionally,
DICER-dependent miRNA biogenesis was shown to be critical to sustain
survival and activity of POMC neurons and to mediate hypothalamic
regulation of energy balance by relaying peripheral nutrient excess and/or
obesity [93,94]. Of note, the IIT miRNAs also significantly overtarget the
PPARG transcript (Figure 5A), which is a master transcriptional regulator
of metabolism and, in particular, critical for fat-cell formation/differenti-
ation of adipose tissue [95e97]. Importantly, a recent work by Taylor and
collaborators demonstrated that substantial (15%) weight loss through a
low-calorie diet in subjects with type 2 diabetes can lead to restoration of
b cell function in about 2/3 of the intervened population [98]. These
authors found that the major difference between their responder and
nonresponder groups was the respective ability to recover first-phase
insulin response (response to the intervention was then dependent
upon the capacity of b cell recovery) and, as in our cohort, that response
was predicted by shorter duration of diabetes. Those results, in the
context of our work and the work of others discussed here, support the
hypothesis that short-term IIT and significant weight loss interventions
may similarly improve b cell function, possibly via alterations in adipocyte
miRNA release, and contribute to remission of type 2 diabetes.
Pattern B miRNAs, which show a significant Time effect generally due
to similar directional changes in both R and NR groups, appear to
represent miRNAs modulated by the insulin therapy or glycemia but not
causally related to the improvements in insulin secretion and sensitivity
evidenced by the change in the ISSI-2 index. These miRNAs may be
responsible, at least in part, for the significant reduction of HbA1c
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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levels in both groups. Supporting this reasoning, we and others have
previously found several of the Pattern B miRNAs changing in the
circulation of people with obesity and/or diabetes (e.g., miR-34a, miR-
144, let-7b [18,19,22,24,51,99]), and playing mechanistic roles in
obesity and glucose metabolism (e.g., miR-15b, miR-802 [100,101]).
Although we consider these results exciting and promising, there are
several limitations in our study. First, the limited cohort size makes
validation in independent cohorts important. Second, our study
involved people with type 2 diabetes in an early stage in the natural
history of the disease, therefore limiting the generalizability to other
disease stages. In addition, direct experimental validation of target
gene changes and mRNA knockdown/overexpression in human dia-
betic tissue samples is lacking, which could strengthen our findings by
clarifying potential mechanisms. It is not clear, for example, whether
the between group differences in the change in miRNA abundance are
causally related to changes in blood glucose, insulin secretion, insulin
resistance, or changes in some other unmeasured factors. Lastly,
beta-cell function and insulin resistance were assessed with OGTT-
based surrogate indices instead of with “gold standard” clamp mea-
surements. However, ISSI-2 and HOMA-IR indexes are well-validated
measurements used in previous studies [11].

5. CONCLUSIONS

In this study, we have generated an accurate multimodal RF classifier
with potential clinical utility for predicting responses to short-term IIT
among patients with recently diagnosed type 2 diabetes. An important
current limitation of short-term IIT is the inability to identify potential
responders at baseline. Therefore, we emphasize the potential clinical
relevance of our study, as it represents a first step in that context and
provides key insight into the pathophysiologic determinants of
reversibility of beta-cell dysfunction. Such reversibility cannot be
identified by any other conventional measure in use today. This insight
may inform targeted therapeutic interventions aimed at ameliorating
reversible beta-cell dysfunction and thereby changing the natural
history of type 2 diabetes. Whether the specific miRNAs and RF
classifier will also be useful to predict responses to antidiabetic
therapies is an intriguing question warranting further study.
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