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Abstract
In a social network, users hold and express positive and negative attitudes (e.g. support/

opposition) towards other users. Those attitudes exhibit some kind of binary relationships

among the users, which play an important role in social network analysis. However, some of

those binary relationships are likely to be latent as the scale of social network increases.

The essence of predicting latent binary relationships have recently began to draw research-

ers' attention. In this paper, we propose a machine learning algorithm for predicting positive

and negative relationships in social networks inspired by structural balance theory and

social status theory. More specifically, we show that when two users in the network have

fewer common neighbors, the prediction accuracy of the relationship between them deterio-

rates. Accordingly, in the training phase, we propose a segment-based training framework

to divide the training data into two subsets according to the number of common neighbors

between users, and build a prediction model for each subset based on support vector

machine (SVM). Moreover, to deal with large-scale social network data, we employ a sam-

pling strategy that selects small amount of training data while maintaining high accuracy of

prediction. We compare our algorithm with traditional algorithms and adaptive boosting of

them. Experimental results of typical data sets show that our algorithm can deal with large

social networks and consistently outperforms other methods.

Introduction
Social network sites (SNSs) have grown steadily over the course of technological innovation.
The social network perspective which focuses on relationships among people (or organizations
or other social entities) is increasingly attracting the attention of academic and industry
researchers [1]. In online social networks such as Epinions and Slashdot, users often give rat-
ings to items or users, and tag other users as "friends" or "foes" [2]. From graph theory perspec-
tive, a directed link between two nodes (i.e., users) is assigned a positive or a negative sign,
according to the initiator's positive (e.g., trust, support, or endorse) or negative (e.g., distrust,
opposition, or dispute) attitude toward the other user, respectively. Those positive or negative
attitudes exhibit the binary relationships among users, which can be used to capture the basic
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characteristics and the structure of the social network [2, 3], understand the propagation of
trust and distrust in the social network [4, 5], recommend new friends to users in the social net-
work [6–10], and etc.

Though relationship analysis plays an important role in the study of social networks, some
relationships are more likely to be latent in large-scale social networks [11, 12]. Link prediction
[9, 13] is the most fundamental method used to estimate the existence of links or attributes
of links between two nodes, relying on the available information in the observed network. Gen-
erally, there are three main strategies for link prediction. The first strategy is to investigate
node similarity in an unsupervised fashion [14–16]. The basic idea of this strategy is to assign a
similarity score to each pair of nodes, and a link is expected to have higher likelihood of con-
necting a pair of nodes with higher similarity score. The second strategy is to consider both the
structure of network and node attributes for machine learning, and treat link prediction as a
binary classification problem [8, 17–19]. The third strategy is to predict links based on the
underlying structures abstracted from observed networks using probabilistic models, such
as hierarchical structure models [20], latent space models [21], and stochastic relational
models [22].

Traditional link prediction often focuses on the likelihood of the existence of a link between
two nodes in an unweighted and undirected network. However, link prediction should also be
extended to take into account the directions and weights of links. Recently, predicting links
with binary (i.e., positive and negative) relationships have attracted a considerable amount of
attention [12, 22, 23]. There are two different theories commonly used for positive and negative
relationships prediction: structural balance theory [24, 25] and social status theory [22, 26].
Structural balance theory originated in social psychology in the mid-20th-century. The main
idea of this theory is to consider the possible patterns in which triadic relations of three individ-
uals can be constructed, and points out that balanced triads (e.g., two friends with a common
enemy or friend) are more plausible than unbalanced triads (e.g., two enemies with a common
friend or enemy) in real networks. Social status theory is based on the directed network. This
theory posits that each directed link with a positive/negative relationship denotes that the tar-
get node has a higher/lower status than the source node. By observing real social networks,
Guha et al [22] succeeded in predicting the unknown trust/distrust relationships based on
social status theory. Leskovec et al [23] proposed a model to predict the positive and negative
relationships based on the aforementioned theories. Although Leskovec’s model achieved
higher prediction accuracy than the former algorithm [22], it used logistic regression which
only considered simple dependencies among the variables, and its hypothesis space may be too
small to properly represent the data. Ye et al [12] focused on how to reliably and effectively
infer the relationships in a newly formed social network from a mature network. However, cal-
culating indicators (e.g., betweenness centrality) in a large-scale network structure will take too
much time and space.

To deal with large-scale social network, in this paper we propose a machine learning algo-
rithm called ESS (Extracted Segment-based SVM) for predicting positive and negative relation-
ships. To ensure high prediction accuracy for links of low embeddedness [1] (the number of
common neighbors of two endpoints of an edge), in the algorithm we propose a segment-
based training framework to split the training set into two parts according to their embedded-
ness, and build two more precise classifiers on the two sub-training set, respectively. Consider-
ing the restricted memory space and running time for training, we employ an effective data
sampling method to reduce the size of training data set as well as maintaining high prediction
accuracy.

Predicting Binary Relationships in Large Social Networks
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Materials and Methods
We predicted positive and negative relationships on two large social networks from Epinions
[27] and Slashdot [28] (S1 Datasets). Epinions is a site for product reviews, where users can
decide whether to ''trust'' each other or not. Slashdot is a site that provides technology related
news; it allows users to tag each other as friends or foes. We scrutinized the two networks, and
also counted reciprocal links (two users hold the same attitude to each other). Data description
and basic statistical properties are listed in Table 1. These two data sets are suitable for our
experiments as links are explicitly labeled as positive or negative in those networks. Once the
training set is obtained, our model (ESS) which can continuously self-improve will be trained
on it. The objective of ESS is to learn a classification function from training set for predicting
the latent labels (i.e. positive or negative relationships) in the network. Fig 1 presents the over-
view of ESS.

Table 1. Statistics of datasets from Epinions and Slashdot.

Characteristics Epinions Slashdot

Edges 841,372 549,202

Nodes 131,828 82,144

Positive Edges 85.3% 77.4%

Negative Edges 14.7% 22.6%

Reciprocal Edges 30.9% 17.7%

doi:10.1371/journal.pone.0129530.t001

Fig 1. An overview of our algorithm.Our algorithm extracts features of edges from social network based on
structural balance theory and status theory, and constructs a compact training set from the raw data by
sampling strategies. While training two sub-SVMs on the split sub-training sets, our algorithm searches the
optimal split of training set through maximizing the 10-fold cross-validation accuracy by using Hill Climbing
method. After training sub-SVMs, predictions can be done by assigning the incoming data to the appropriate
sub-SVM based on EM. (drawn by GNW)

doi:10.1371/journal.pone.0129530.g001
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Preliminary
Members and their relationships in a social network can be formalized as a directed graph
G(V, E, R), where V is a set of nodes representing users in the social network, E�V × V is a set
of directed edges representing relationships between users, and R is a set of signs associated to
E. On each edge ei2E, we have a sign rab2R reflecting the attitude held by its start point a
towards its end point b. rab equals 1 when a holds positive attitude towards b, and -1 if other-
wise. Fig 2 illustrates some cases of relationships. If user a holds supportive attitude towards
user b, then rab in the graph will be labeled as +1. In this way, the problem of positive and nega-
tive relationships prediction is formalized into predicting the hidden signs on edges in the
directed graph.

Structural balance theory is concerning with balance and imbalance of sentiment relation in
triadic relations. According to structural balance theory, we can categorize those four examples
in Fig 2 into two kinds of structures. T1 and T2 are the balanced structures, namely, “my ene-
my's enemy is my friend", and "my friend's friend is my friend". T3 and T4 are unbalanced
structures, namely, "my friend's enemy is my friend", and "my enemy's enemy is my enemy".
Given a fixed unsigned edge (a, b), and the other two edges (b, c) and (a, c), it allows forming
16 types of triangles, which are illustrated in Fig 3. These types can also form complex struc-
tures. For instance, a combination of t10 and t14 stands for a triadic structure where a and
c holds positive attitudes towards each other (reciprocal edge) while b holds positive attitude
towards c.

Social status theory considers signed link formation based on an implicit ordering of the
nodes. If user a thinks b has higher status than her, a will connect to b with a positive attitude
(rab = 1), otherwise a will connect to b with a negative attitude (rab = -1). And social status is
transitive: rac = 1 can be derived from the premises rab = 1 and rbc = 1. The hidden signs on dot-
ted edges of t2, t4, t14, t16 can be inferred according to the transitivity of status. Leskovec et al
[23] defined an estimate of a node’s status. If node n has more incoming positive edges and
outgoing negative edges, the value of status of n will become higher, and vice versa. The rela-
tionship on the edge is positive if it is directed from low status node to high status node,

Fig 2. Examples of positive and negative relationships consisting of user a, b, c. 'Support' belongs to
the positive attitudes, while 'Oppose' belongs to the negative attitudes.

doi:10.1371/journal.pone.0129530.g002

Fig 3. 16 types of triangles determined by three nodes and a fixed unsigned edge (dotted).

doi:10.1371/journal.pone.0129530.g003
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negative if otherwise. As social status theory is concerning endpoints of an edge and, therefore,
not constricted to triadic structures, it is able to predict positive and negative relationships in
some transitive structures which structural balance theory cannot handle.

Feature extraction
An edge ei2E can be treated as a feature vector Xi in the input space, and the sign on ei can be
treated as a label yi. An edge in the network has a series of features. We select features based on
structural balance theory and social status theory. Suppose we have an edge ei which points
from node a to node b in G. Based on structural balance theory, ei will participate in 16 types of
triangles, as shown in Fig 3.Ti ¼ ðT1

i ; . . .;T
16
i Þ is a vector consisting of the numbers associated

with the 16 types of triangles that ei is involved in. Based on social status theory, the sign of
relationship on ei is determined by the status of its endpoints. More precisely, we use the num-
ber of outgoing positive/negative edges from node a, and the number of incoming positive/neg-
ative edges to node b.Di ¼ ðdþ

outðaÞ; d�
outðaÞ; dþ

inðbÞ; d�
inðbÞÞ is a vector consisting of the above

four variables associated with ei. A long line of research in sociology has argued that if two indi-
viduals are connected by an embedded edge (an edge with common neighbors of its two end-
points), then this makes it easier for them to trust one another, and to have confidence in the
integrity of the transactions (social, economic, or otherwise) that take place between them
[29–32]. Consequently, we consider embeddedness, i.e. number of common neighbors of node
a and node b, EMi for short, as another feature of edge ei. We combine the variables {Ti,Di,
EMi} into Xi to describe an edge ei, that is Xi = (Ti,Di, EMi).

Training set sampling
Sampling of some massive data becomes important when collecting all of it or analyzing all of
it is unreasonable. Suppose the training set containsm directed edges with explicit sign of rela-
tionships. For large network, ifm is very big, the computational consumption will be relatively
high, as standard SVM uses O(m3) time and O(m2) space for training. We need to reduce the
size of the training set tom'�m while maintaining valid training data. We proposed three
simple sampling strategies: (i) Random. We randomly pickedm' instances from the original
training data to constitute the compact training set. (ii) K-means cluster. We first partitioned
the original training data S into K cluster (used Euclidean Distance as the distance measure)
[33], and then for each cluster Ck, we randomly selected bm0jCkj=jSjc instances to constitute
the compact training set. (iii) Smallest out-degree. Users that seldom express their opinions
may be more cautious when showing their attitudes in the social network. Applying these
instances as training data will exclude noise (e.g. some users may provide wrong attitudes
intentionally or unintentionally). Therefore, we pickedm' outgoing edges from the lowest out-
degree user nodes.

Sub-training sets construction
Since the triangle featuresTi ¼ ðT1

i ; . . .;T
16
i Þ of edge i are relevant only when endpoints a and

b have neighbors in common, it is natural to expect that those features will be more effective
with edges of greater EM. As Table 2 shows, Leskovec’s model will achieve higher prediction
accuracy when classifying instances of higher EM. Figure A in S1 File shows that instances with
high EM will contain more information about relationship which may lead to more accurate
prediction. In other words, a single classifier may achieve low prediction accuracy when classi-
fying instances of low EM. It is more appropriate to train sub-classifiers with instances of low
EM and high EM, respectively. In order to achieve higher prediction accuracy, we designed a
segment-based training framework, which trains sub-classifiers with instances of low EM and
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high EM, respectively. In fact, we can further construct sub-sub-classifiers by dividing the cur-
rent sub-classifiers iteratively. The segment-based training framework uses Hill Climbing algo-
rithm to pick a segmentation point d of training set D, which splits training set D into subsets
D1 (0�EM<d) and D2 (d�EM). Figure B in S1 File shows the pseudo-code describing Hill
Climbing process in our model. The goal of Hill Climbing is to ensure the overall cross-
validation accuracy of the classifier C1 trained on D1 and the classifier C2 trained on D2 is the
highest. To avoid overfitting of the sub-classifiers, we used 10-fold cross-validation [34] to
"test" the sub-classifiers in the training phase. In 10-fold cross-validation, we randomly parti-
tioned each sub-training set into 10 equal size subsamples. Of the 10 subsamples, a single sub-
sample is retained as the validation data for testing the model, and the remaining 9 subsamples
are used as real training data. The cross-validation process is then repeated 10 times (folds),
with each of the 10 subsamples used exactly once as the validation data. The 10 results from
the folds can then be averaged to produce a single estimation. The advantage of this method
over repeated random sub-sampling is that all observations are used for both training and vali-
dation, and each observation is used for validation exactly once. The overall cross-validation
accuracy over training set D is defined as follows:

p ¼ jD1j
jDj � pC1 þ

jD2j
jDj � pC2 ð1Þ

where pCi denotes the cross-validation accuracy of sub-classifier trained on sub-training set Di.

Hill Climbing here tries to maximize p in Eq (1) by iteratively comparing solutions (i.e. differ-
ent splits of D): it adopts the current best solution and continues to choose new solutions clos-
est to the current best solution for comparison (i.e. move further up the hill). This iteration
terminates when there are no better solutions on either side of the current solution (i.e. it has
reached the peak). Figure C in S1 File shows prediction accuracy achieved by sub-classifiers
with different segmentation points d. It is obvious that sub-classifiers will achieve higher pre-
diction accuracy than that of a single one (the red point). Also, there is a peak in the curve,
which can be quickly found by Hill Climbing. The use of segment-based training framework
will make our model more robust than using a single classifier whose predictive power is likely
to vary a great deal among instances of different EMs.

Sub-SVMs training
SVMs can efficiently perform a non-linear classification using what is called the kernel trick,
mapping their inputs into high-dimensional spaces. For a detailed introduction to the subject,
please refer to support-vector networks [35]. SVM seeks to separate the data set into two classes
using the optimal separating hyperplane (OSH) in the higher-dimensional space.

Given the training set {(Xi, Yi), i = 1,. . .,m}, Xi is the ith input features, and yi2{-1, 1} is a
known binary target. In our case, Xi consists of the 21 features of an edge which were men-
tioned before. yi indicates the positive/negative relationship on an edge. yi is +1 for positive
relationship on the edge and -1 for negative relationship. Points on either side of a separating

Table 2. Distribution of EM and prediction accuracy with different EMs.

0�EM<5 5�EM<10 10�EM<25 EM�25

Percentage of edges in Epinions 43.78% 13.04% 17.69% 25.49%

Prediction accuracy in Epinions 90.53% 96.48% 96.51% 96.94%

Percentage of edges in Slashdot 80.90% 6.49% 6.48% 6.13%

Prediction accuracy in Slashdot 87.22% 88.75% 89.44% 95.36%

doi:10.1371/journal.pone.0129530.t002
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hyperplaneW·X+b = 0 have distances to that hyperplane. The smallest distance is called the
margin of separation. The hyperplane is OSH when the margin is maximized. We can find
OSH by solving the optimization problem:

min
w;b;x

1

2
wTwþ C

Xm
i

xi

subject to yiðwTxi þ bÞ � 1� xi;

xi � 0; i ¼ 1; . . .;m:

ð2Þ

8>>>>><
>>>>>:

where ξi�0 is a slack variable introduced to generalize the problem to the non-separable case.
C is a positive constant parameter used to control the trade-off between the training error and
the margin. If we denote them non-negative Lagrange multipliers as α1,. . ., αm associated with
m constraints of Eq (2), we can solve the optimization problem by SMO algorithm [36, 37].
Once the OSH is found from the training data, we can use it to predict the class a new instance
belongs to, by simply checking on which side of the hyperplane it falls.

Our algorithm ESS trains two sub-SVMs on two sub-training sets, respectively. Incoming
instances will be classified by the following piecewise classification function is:

yðxÞ ¼
sgn

X
i

aiyiKðxi;xÞ þ b1

 !
if value of EM < d

sgn
X

i

a0
iyiKðxi;xÞ þ b2

 !
if value of EM � d

ð3Þ

8>>>>><
>>>>>:

where K(Xi, X) is the kernel function which mapped the input vector X to a higher-dimensional
feature space where classes are linearly separable, and d is the segmentation point found by
Hill Climbing. In this paper, we use a common kernel function i.e. RBF kernel Kðxi;xÞ ¼
expð�kxi � xk22=ð2s2ÞÞ. There are two free parameters for a SVMmodel with RBF kernel: C
(in Eq (2)) and g (i.e. 1/σ2). The best parameter (C or g) is often unknown beforehand for a
given problem [34], therefore we used grid-search algorithm [38] to identify good (C, g), so that
the trained SVM can accurately predict unknown instances. In order to avoid overfitting and to
improve generalization performance of the trained SVM, we used 10-fold cross-validation [34]
to "test" SVM in the training phase. Given an edge in the social network, we input its feature
vector into the piecewise classification function, and will get the label for the relationship on it.

Results and Discussion
We compared ESS with state-of-the-art algorithms [23], including heuristic algorithms and a
supervised learning algorithm (LR) designed by Leskovec et al based on logistic regression. The
heuristic algorithms include structural balance heuristic (Balance), social status heuristic (Sta-
tus), out-degree heuristic (OutDegree) and in-degree heuristic (InDegree). LR uses a logistic
regression classifier to combine a range of structural features into an edge sign prediction. Its
structural features are extracted based on structural balance theory and social status theory.
Balance chooses the sign for edge (u, v) that causes it to participate in a greater number of tri-
ads that are consistent with structural balance theory. Status defines an estimate of a node x’s
status to be sðxÞ ¼ dþ

inðxÞ þ d�
outðxÞ � dþ

outðxÞ � d�
inðxÞ. This gives x’s status benefits for each

positive link it receives and each negative link it generates, and x’s status detriments for each
negative link it receives and each positive link it generates. Status predicts a positive sign for
(u, v) if σ(u)� σ(v), and a negative sign otherwise. OutDegree predicts the majority sign based
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on the signs given by the edge initiator u. That is, It predicts positive sign if dþ
outðuÞ � d�

outðuÞ.
InDegree predicts the majority sign based on the signs received by the edge target v. That is, it
predicts positive sign if dþ

inðvÞ � d�
inðvÞ. In addition, we used AdaBoost algorithm [39] to inte-

grate those five algorithms into a relatively strong classifier. AdaBoost creates the strong classi-
fier by iteratively adding a weak learner in a “greedy fashion” i.e., it always chooses the weak
learner with the lowest prediction error. During each round of training, a weak learner is added
to the ensemble and weights of instances are adjusted to focus on the misclassified instances in
previous rounds. We test the above algorithms on Slashdot and Epinions datasets, and use a
90/10 split for training and testing. Fig 4 shows the comparison of the prediction accuracy of
the existing algorithms with ESS. On the average, ESS achieves prediction accuracy of 95.02%
on Epinions and prediction accuracy of 88.19% on Slashdot. We also compared the area under
the ROC curve (AUC) of our method with Leskovec’s model and Adaboost. The results shown
in Table 3 indicate that our algorithm (ESS) outperforms other algorithms, even compared
with the strong classifier constructed by AdaBoost.

From Fig 4, we can see that prediction models like LR, Adaboost and ESS outperform the
heuristic algorithms. It indicates that models concerning both structural balance theory and
social status theory will work better. Also we can see “Balance” works better here than “Status”,

Fig 4. Prediction accuracy of 7 algorithms on Slashdot and Epinions. ESS is trained on a compact training set (3000 instances, i.e. the ratio of the size
of the sampling size to the test set is around 0.01:1) extracted by sampling strategy (K-means cluster, K = 400) from the raw training set. Experiments are
conducted on a PC with Intel Core i3-3220 CPU@ 3.30 GHz, 8 GB of RAM and 1.5 TB of hard disk.

doi:10.1371/journal.pone.0129530.g004

Table 3. AUC for 3 algorithms on Slashdot and Epinions.

Epinions Slashdot

ESS 0.9759 0.9153

Adaboost 0.9648 0.9067

LR 0.9554 0.8998

doi:10.1371/journal.pone.0129530.t003

Predicting Binary Relationships in Large Social Networks
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however, it does not mean that the variables related to social status theory are not important.
As discussed in the Preliminary section, social status theory can predict positive and negative
relationships on the edges not embedded in any triadic structures (i.e. EM = 0), while structural
balance theory can only handle predictions with triadic relationships. As the edges not embed-
ded in any triadic relationships in Epinions and Slashdot, respectively, occupy 19.8% and
47.9% of all edges, those two theories complement each other here. Comparing with other algo-
rithms, ESS considers both theories and establishes a more precise prediction model using
segment-based training framework for SVM based on a much smaller and more representative
training set. Furthermore, we employed the proposed strategies (K-means sampling and
segment-based training framework) on Leskovec’s model. We can see from Fig 5 that both K-
means sampling and segment-based training framework proposed in our paper can bring
about higher prediction accuracy.

Sensitivity analysis
We compared the aforementioned three sampling strategies with other efficient and simple
strategies [40] such as random node, snowball and random walk. Experiments were conducted
on a PC with Intel Core i3-3220 CPU @ 3.30 GHz, 8 GB of RAM and 1.5 TB of hard disk. We
limited the sampling size to 100, a relatively small number compared to the sizes of our data-
sets. As Fig 6 shows, SVMs trained on the datasets formed by K-means cluster strategy and
smallest out-degree can achieve the highest prediction accuracy for Epinions and Slashdot sep-
arately. As for the other commonly used strategies which are simply based on the topology of
the network, the prediction accuracy is relatively low. It indicates that, K-means sampling strat-
egy is able to divide raw trainings set into several diverging clusters and pick representative
instances from different clusters.

We also compared the sampling strategies when the sampling size is 3000. Fig 7 shows that
using K-means cluster can achieve higher prediction accuracy than using others. As K-means
can gather edges with similar topological structures and status of end points in each same clus-
ter, it might be helpful for sampling representative edges from each cluster. Suppose the raw

Fig 5. Prediction accuracy vs. strategies applied to Leskovec’s algorithm (LR). Prediction accuracy of
Leskovec’s algorithm (LR) with K-means sampling (Sampling) and segment-based training framework (HC)
are shown from left to right: applying K-means sampling (K = 400, sampling size = 3000) and HC to LR,
applying HC to LR, applying K-means sampling (K = 400, sampling size = 3000) to LR, original LR.
Experiments are conducted on a PC with Intel Core i3-3220 CPU@ 3.30 GHz, 8 GB of RAM and 1.5 TB of
hard disk.

doi:10.1371/journal.pone.0129530.g005
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original training set containsm instances, the time complexity of K-means cluster is O(Km),
which is much smaller than O(m3) for training SVM. Thus, employing K-means cluster as our
sampling strategy is effective and worthwhile.

As Figs 6 and 7 present, the sampling size brings influence to prediction accuracy. There-
fore, we moved further by studying how the sampling size effects prediction accuracy. Espe-
cially, we conducted our investigations based on two competitive strategies: K-means cluster
and smallest out-degree. Fig 8 shows that the bigger sampling size becomes, the higher predic-
tion accuracy K-means cluster achieves. However, prediction accuracy achieved by smallest
out-degree remains monotonous with sampling size. For Epinions, using K-means cluster
achieves higher prediction accuracy than using smallest out-degree. For Slashdot, prediction
accuracy of using K-means cluster is lower than that of using smallest out-degree when the

Fig 6. Prediction accuracy w.r.t. sampling strategies. Prediction accuracy based on different sampling
strategies (k indicates the number of clusters). The size of compact training set is 100.

doi:10.1371/journal.pone.0129530.g006

Fig 7. Prediction accuracy w.r.t. sampling strategies. Prediction accuracy based on different sampling
strategies. The size of compact training set is 3000.

doi:10.1371/journal.pone.0129530.g007
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sampling size is below 400, but it grows rapidly from 100 to 1000. It indicates that the training
set will contain more representative instances as its size grows. To achieve high prediction
accuracy with low computational consumption, we decided to limit the sampling size to 3000
according to our experiment results.

We further investigated the influence of K (the number of clusters) of K-means sampling on
the prediction accuracy. However, the influence from K is smaller than that from sampling
size. That is, despite different K, K-means sampling strategy can always pick representative
instances from different clusters. The stationary values of prediction accuracy obtained by
using K-means cluster for different K are reported in Figure E in S1 File. For the Epinions data-
set, the optimal K is 200; while for the Slashdot dataset, the optimal K is 400.

Additionally, ESS would still obtain the highest prediction accuracy when the training data
were more limited (Figure F in S1 File). The representative training data sampled by K-means
strategy may contribute to keep prediction accuracy of ESS steady. However, prediction accu-
racy of Adaboost remains more stable than LR when the training set is more limited, indicating
that the strong classifier based on weak heuristic learners is not sensitive to the change of train/
test ratio.

Conclusions
Such positive and negative relationships like support and opposition, trust and suspicion are
pervasive in social networks. Research on those can help us understand the propagation of rela-
tionships and comprehend the structures of networks. In reality, however, we cannot obtain
the complete relationships of large scale networks. With the increasing scale of the social net-
work, it is essential to design a highly efficient and accurate algorithm to predict those latent
signs of relationships. We propose a novel prediction algorithm called ESS based on the theo-
ries of trust relationship in social networks. In order to reduce the computational resource con-
sumption, we introduce efficient and effective strategies to select training instances from
massive data, especially for K-means driven data sampling, which allows maintaining the rep-
resentative link structure and information of the relationships in large-scale network, and
thereby the prediction performance is promised. In the training phase, we use SVM and cross-
validation strategy to ensure good generalization performance. We found that the classifier
becomes more effective when EM increases because more information about relationships
becomes available. In order to ensure high predictive accuracy for edges of low EM, we con-
struct a segment-based training framework. In particular, we have tested our algorithm on two

Fig 8. Prediction accuracy w.r.t. sampling size. The sampling size is from 20 to 4000. We set K = 100 for
K-means cluster.

doi:10.1371/journal.pone.0129530.g008
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large-scale data sets: one from a consumer review site and the other from a technology-related
news website.

In our experiments, we used AdaBoost to integrate existing algorithms into a highly accu-
rate prediction rule, and compared it with our algorithm. The results show that our algorithm
achieves the highest prediction accuracy based on sampled, compact training sets. The algo-
rithms based on both complementary theories (i.e. structural balance theory and social status
theory) will work better than algorithms concerning one single theory. A detailed analysis of
the performance sensitivity of sampling size among different sampling strategies suggests that
K-means cluster strategy outperforms others as the sampling size grows marginally, enabling
us to construct a compact training set of a limited size. ESS works well and it is insensitive to
different splits for training and testing, and different K of K-means cluster. Owning to the rela-
tively low computational cost and high prediction accuracy, ESS is better suited for computing
in large-scale networks.

Supporting Information
S1 Datasets. The signed networks investigated in this study. In this file, every directed edge
is related to a separate row which contains the IDs of the two end nodes of the edge and an
additional value which is provided as the sign of relationship.
(ZIP)

S1 File. Supporting text and figures. 1. Entropy and structural balance theory (Figure A). 2.
Hill climbing (Figure B). 3. Necessity of Hill Climbing (Figure C, Table A). 4. Necessity of sam-
pling (Figure D). 5. Sensitivity analysis (Figures E and F).
(DOC)
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