SCIENTIFIC DATA:

OPEN: Data Descriptor: The natural
- variance of the Arabidopsis floral
secondary metabolites

Takayuki Tohge'?, Monica Borghi® & Alisdair R. Fernie®

Received: 12 October 2017 Application of mass spectrometry-based metabolomics enables the detection of genotype-related natural

variance in metabolism. Differences in secondary metabolite composition of flowers of 64 Arabidopsis
Published: 3 April 2018 : thaliana (Arabidopsis) natural accessions, representing a considerable portion of the natural variation in this
- species are presented. The raw metabolomic data of the accessions and reference extracts derived from
flavonoid knockout mutants have been deposited in the MetabolLights database. Additionally, summary
tables of floral secondary metabolite data are presented in this article to enable efficient re-use of the
dataset either in metabolomics cross-study comparisons or correlation-based integrative analysis of other
metabolomic and phenotypic features such as transcripts, proteins and growth and flowering related

Accepted: 7 February 2018

phenotypes.

Design Type(s) parallel group design e individual genetic characteristics comparison design
Measurement Type(s) metabolite profiling e transcription profiling by array assay

Technology Type(s) mass spectrometry assay ¢ microarray

Factor Type(s) geographic location e selectively maintained organism

Arabidopsis thaliana e flower ¢ Austria e Belgium e Czech republic o
Estonia e Finland ¢ French Republic ¢ Germany e India ¢ Kingdom of
Denmark e Kingdom of Norway e Kingdom of Spain ¢ Kingdom of the
Sample Characteristic(s) Netherlands e Libya e Lithuania ¢ Morocco ¢ Poland e Portuguese
Republic « Republic of Ireland ¢ Russia ¢ Senegal ¢ Sweden o
Switzerland e Tajikistan e Ukraine e United Kingdom e United States of
America

*Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany. *Graduate School of Biological
Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan. Correspondence and requests for
materials should be addressed to T.T. (email: tohge@bs.naist.jp) or A.R.F. (email: fernie@mpimp-golm.mpg.de).

SCIENTIFIC DATA | 5:180051 | DOI: 10.1038/sdata.2018.51


mailto:tohge@bs.naist.jp
mailto:fernie@mpimp-golm.mpg.de

www.nature.com/sdata/

Background and Summary

Plant secondary metabolites (so-called specialized metabolites) that have high natural diversity in their
chemical structures and abundances can be identified through metabolic screening of populations even in
the comparisons between ecotypes and cultivars belonging to the same species' . This may represent
relatively recent adaptations or more phylogenetical restrictions in the evolution of such metabolisms®~.
With metabolomic screening of such populations, metabolic polymorphism in aliphatic glucosinolates®,
flavonol-glycosides’ and phenylacylated-flavonols® have been discovered in Arabidopsis. Additionally, a
key gene of production of phenylacylated-flavonols for the conferral of protection towards UV
irradiation’, was characterized by an integrative functional genomic approach. Since several physiological
studies using Arabidopsis accessions have been reported with phenotypic analysis under stress conditions
such as UV-B irradiation®, drought and salinity stress”'® and biotic stressors'', understanding of plant
secondary metabolites for the conferral of protection towards stress condition is highly important. To
capture the variance of secondary metabolites across populations, liquid chromatography-mass
spectrometry (LC-MS) has often been preferred to other analytical methods as it presents the technical
advantage of capturing the most extensive variety of plant metabolites.

Here, data of floral secondary metabolite abundance measured in a population of 64 Arabidopsis
thaliana (Arabidopsis) natural accessions are presented (Data Citation 1)(Data Citation 2). Sixty-eight
secondary metabolites were measured via LC-MS, ions acquired in positive and negative ion detection
mode, and compounds annotated through a combination of chemical confirmation with analytical
standards and comparative analysis with flavonoids knockout and over-expresser Arabidopsis lines'*">.
The list of the Arabidopsis accessions used in this study, and raw and normalized metabolomics data are
provided (Data Citation 1)(Data Citation 2), respectively. This dataset can be used for cross-study
comparisons of plant metabolites, investigations on the reproducibility of metabolomics data, and in-
depth analysis of plant metabolism. Importantly, transcriptomics data obtained from 10 samples in this
experimental set is available in the Gene Expression Omnibus (GEO) database (Data Citation 3).
Correlation studies with data of metabolomics, transcriptomics, proteomics and phenomic data of floral
related traits are also anticipated. In addition, the presence in this dataset of standard reference files and
complex biological data files, which were acquired on the same LC-MS system, makes it useful for
practical exercises on data analysis and interpretation. Finally, as several secondary compounds initially
identified in model plants bring nutritional and health benefits to humans'*'>, these data will be helpful
in the design of future plant metabolic engineering used for translational genomics applications from
model species to crops.

Methods

Plant material and sample preparation

Seeds of Arabidopsis natural accessions (Table 1 (available online only)) were germinated on 1/2 MS salts
solidified with 1% of agar in a growth chamber (16 h light, 140-160 pmol m ~*s ™", 20 °C; 8 h dark, 16 °C)
after vernalization (two days in the dark at 8-10 °C). Fourteen days after planting, the seedlings were
transferred onto soil (GS-90 Einheitserde; Gebrueder Patzer) and grown in a greenhouse (16 h light, an
average irradiance of 120 pmol m ™ s ™', 20 °C; 8 h dark, 16 °C) until flowering. Positioning of the plants
was randomized during plant growth. Fully open mature flowers (first flowers) were harvested at around
noon (after approximately 5h of light) and immediately frozen in liquid nitrogen for further analysis.
Flowers from three plants were individually harvested to prepare one biological replicate. Sample
preparation and extraction were performed as previously described’.

LC-MS analysis and flavonoid mutant-based peak annotation

Profiling of secondary metabolites was performed as previously described™'®. Briefly, flower tissues were
ground with liquid nitrogen and homogenized in a mixer mill for 3 min at 25 Hz with a zirconia bead and
20 pL of extraction buffer (80% methanol, prepared with 5ugmL ™" isovitexin as an internal standard)
per mg of ground tissue (e.g., 204.0 pl extraction buffer for 10.2 mg fresh weight sample). Thereafter, the
supernatant was separated from the cellular debris via centrifugation at 12,000 x G and 3 pL of the
clarified supernatant directly injected in an HPLC system Surveyor (Thermo Finnigan, USA) coupled to
LTQ-XP system (Thermo Finnigan, USA) for metabolite profiling described as below. All samples
including flower extracts obtained from Arabidopsis mutants described in ‘Data processing and
metabolite data analysis’ were analyzed together. Sample run order was determined by replicates
consecutively.

Chromatography

Chromatography was performed as previously described'®. Samples were run on a Surveyor HPLC
system (Thermo, USA), 150 x 2 mm, 2.0 pm particles (Reverse Phase Luna C18,), Phenomenex, USA),
HPLC column at 28 °C oven temperature. The solvents used for the assay consisted of water containing
0.1% v/v formic acid (Solvent A) and an acetonitrile solution containing 0.1% v/v formic acid (Solvent B).
Gradient [time (min)/%B] starting: 2.0/0, 4.0/15, 14.0/32, 19.0/50, 19.01/100, 21.0/100, 21.01/0, 23.0/0 at
flow rate 0.20 mLmin ~". Injection volume was 2 pL.
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Mass spectrometry

The compounds were detected using a Thermo LTQ-XL Linear-Ion-Trap mass spectrometer (expected
resolution is 0.3 u FWHM) with electrospray ionization (ESI) mode in negative (collision energy: 0 and
30meV) and positive ion detections with a scan range from 100-2000 m/z. Main MS parameters
(capillary temperature: 275 °C; source voltage: 4.00 kV(negative) and 4.50 kV (positive); capillary voltage:
—50 V(negative) and 50 V(positive) were optimized for the detection of plant secondary metabolism.
Other MS parameters are described in Tohge et al., 2010'°. The LTQ-XP used the Xcalibur software
(Thermo Finnigan, USA) version 2.1.0 for data acquisition.

Data processing and metabolite data analysis

Data were processed using Xcalibur 2.1.0 software, and peak identification and annotation implemented
through a combination of the following approaches: standard chemical confirmation'’, MS fragmentation
and retention time profiling, mutant analysis™>'®, literature/database survey'®'®. The following
Arabidopsis mutants known for having altered flavonoid profiling were used as control lines for the
determination of flavonoid derivatives: UDP-glucosyl transferase 78D2 (ugt78d2), decreased production of
flavonoid-3-O-glucoside®®; transparent testa 7 (tt7), no production of quercetin and isorhamnetin
derivatives®'; ugt78d1, no production of flavonol-3-O-rhamnosides>*; ugt784d3, no production of flavonol-3-
O-arabinosides™; O-methyltransferase 1 (omtl), no production of isorhamnetin-derivatives'?; ugt89cI, no
production of flavonol-7-O-rhamnosides®; tt4, no production of all flavonoids®>*% production of
anthocyanin pigment 1-Dominant (pap1-D), increased accumulation of anthocyanins®>*”. Peak picking was
performed by Xcalibur Quan Browser (Window (sec), 30; highest peak; minimum peak height (S/N), 3.0;
Baseline window, 80-150; area noise factor, 2; peak noise factor, 10; peak height (%), 5.0, tailing factor, 1.5).

Transcriptomic data

Transcriptomic analysis was performed using ATH1 microarrays as described previously’ with ten
accessions (Col-0, C24, Cvi, Da, Rsch, Ler-0, Ws, Sap, Stw and RLD). Duplicate hybridizations were
carried out for Col-0 and C24, and a single hybridization was performed for all the other accessions
except Col-0 and C24. Data is deposited in the Gene Expression Omnibus database (Data Citation 3).

Data Records

Raw data obtained from the analysis of natural Arabidopsis accessions and mutant reference lines have
been deposited in the Metabolights (Data Citation 1). Raw data contains two negative (collision energy: 0
and 30 meV) and one positive ion detections. Cdf files contain negative and positive ion detections
without data of in-source fragmentation using collision energy. This dataset contains a total of 216 raw
files resulting from 72 lines (64 accessions and 8 Arabidopsis mutant lines) with three biological replicates
each. A dataset of floral secondary metabolite (68 compounds; 16 glucosinolates, 3 hydroxycinnamate
derivatives, 42 flavonol derivatives and 7 putative polyamines) and general statistics relative to the natural
accessions used in the study is provided (Data Citation 2). Metabolite data was obtained from a dataset
previously published” and reformatted for correlation-based analysis by average-scaling and log-
transformation ([log,(mean(replicates)/mean(mean of all accessions)]) (Data Citation 2). The geographic
coordinates of the Arabidopsis accessions provided in Table 1 (available online only) are updated
accordingly with the Arabidopsis 1001 genome database (http://1001genomes.org/)*®.

Technical Validation
To qualitatively and quantitatively validate metabolite data obtained from three biological samples the
standard deviation was estimated (Data Citation 2).

Usage notes

Data of floral secondary metabolites are presented in Excel files (Data Citation 2). For each compound,
the method used for peak identification/annotation, which includes retention time, ion detection mode
and relative peak area, is specified. The value of the relative peak area was obtained from the average of
three measurements (n=3) normalized by the standard deviation (SD)(Data Citation 2). Compound’s
family name and reference literature are also provided. The abundance of floral metabolites, normalized
by average-scaling (mean/average) and log-transformation (log,) is reported (Data Citation 2). The
dataset here presented can be used for cross correlation studies to integrate metabolomics with
transcriptomics, proteomics, and floral phenotypic data. Figure 1 shows an example of metabolite-
metabolite correlation network analysis (r*>0.6, Pearson correlation estimated R statistical package
(https://www.r-project.org/)) performed with the data reported (Data Citation 2). Visualization of
network connection based on coefficient value was performed with Cytoscape (http://www.cytoscape.org/
) using an organic layout style (Data Citation 2). As previously discussed’ accession-specific floral
phenylacyl-flavonol glycosides (saiginols, indicated with the number 1 in Fig. 1) show a strong correlation
within the saiginol clade. The following ten additional clades of compounds were also identified and these
are indicated in Fig. 1 with the following numbering: 2) common flavonol mono- or di-glycosides, 3)
pollen specific flavonols and pollen specific polyamines, 4) putative pollen specific polyphenolic
polyamines, 5) flavonol-3-0-(2"'-O-rhamnosyl)glucoside-7-O-rhamnosides, 6) flower specific flavonol-
glycosides, 7) accession-specific glucosinolate, 8) short-chain aliphatic glucosinolates, 9), long-chain
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Figure 1. Correlation network of Arabidopsis floral secondary metabolites. Network analysis and
visualization were performed with Cytoscape using an organic layout. The Pearson correlation threshold of 0.6
was chosen to determine the connections between edges and nodes. Nodes represent metabolites and the edges
the interaction between metabolites. The size of nodes and edges maps to clustering coefficient and correlation
coefficient, respectively, with small nodes and thin edges representing small values. Different classes of
metabolites are represented with different colors: saiginols, red; flavonols, yellow; polyamine, pink; purple,
aliphatic glucosinolates; green, putative hydroxycinnamate; light blue, indole glucosinolate.

aliphatic sulfinyl-glucosinolates, 10) long-chain aliphatic thio-glucosinolates, and 11) other glucosinolates
as for example indolic glucosinolates. No subclades of hydroxycinnamates were found. Network analysis
suggests that metabolites that belong to the same clade are produced in Arabidopsis natural accessions
that share the common genetic polymorphism, transcriptionally co-regulated, or are the resulted of a
similar metabolic pattern maintained by the combination of different metabolic flux changes. The data
presented in this article are useful in biodiversity studies, e.g., to investigate relationships between natural
metabolic diversity and accession distribution, physiological diversity and the genomic polymorphism.
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