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Purpose. +is study aimed to estimate the diagnostic accuracy of machine learning- (ML-) based radiomics in differentiating high-
grade gliomas (HGG) from low-grade gliomas (LGG) and to identify potential covariates that could affect the diagnostic accuracy of
ML-based radiomic analysis in classifying gliomas. Method. A primary literature search of the PubMed database was conducted to
find all related literatures in English between January 1, 2009, and May 1, 2020, with combining synonyms for “machine learning,”
“glioma,” and “radiomics.” Five retrospective designed original articles including LGG and HGG subjects were chosen. Pooled
sensitivity, specificity, their 95% confidence interval, area under curve (AUC), and hierarchical summary receiver-operating
characteristic (HSROC) models were obtained. Result. +e pooled sensitivity when diagnosing HGG was higher (96% (95% CI: 0.93,
0.98)) than the specificity when diagnosing LGG (90% (95% CI 0.85, 0.93)). Heterogeneity was observed in both sensitivity and
specificity. Metaregression confirmed the heterogeneity in sample sizes (p � 0.05), imaging sequence types (p � 0.02), and data
sources (p � 0.01), but not for the inclusion of the testing set (p � 0.19), feature extraction number (p � 0.36), and selection of
feature number (p � 0.18). +e results of subgroup analysis indicate that sample sizes of more than 100 and feature selection
numbers less than the total sample size positively affected the diagnostic performance in differentiating HGG from LGG. Conclusion.
+is study demonstrates the excellent diagnostic performance of ML-based radiomics in differentiating HGG from LGG.

1. Introduction

Glioma is the most common primary malignant brain tumor
that accounts for 80% of malignancies [1], and 2% of all
cancers in US adults [2]. According to the World Health
Organization (WHO) classification [3], gliomas are sub-
divided into two groups based on their malignant status low-
grade glioma (LGG) for grades I to II with focal symptoms
and high-grade glioma (HGG) for III to IV with generalized
symptoms. Grade IV tumors called glioblastoma (GBM)
account for 54% of all gliomas [4], with a median survival rate
of 15 months [5]. Treatment of gliomas is essential since there
is an eventual progression from LGG to HGG due to gliomas’
distinctive molecular and clinical features [6]. For targeted
treatment that is individualized to specific changes in

individual tumors, different treatments including a near-total
resection, postsurgical radiation, or temozolomide combined
with radiation must be considered depending on the glioma’s
grade [2]. +erefore, the classification of tumor levels is
crucial for intraoperative decision-making.

Magnetic resonance imaging (MRI) has been utilized to
classify gliomas noninvasively for histopathological pur-
poses. Recent studies have demonstrated the feasibility of
conventional MRI sequences, especially gadolinium-based
contrast-enhanced T1-weighted imaging (T1-CE) [7] when
grading gliomas. With technological developments, ad-
vanced MRI sequences also contribute to physiological and
metabolic assessments when classifying gliomas, such as
perfusion-weighted imaging (PWI) [8] and diffusion-
weighted imaging (DWI) [9]. However, previous studies on
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grading gliomas were limited due to utilizing only a small
number of parameters extracted from a single MRI
sequence.

A capability of radiomics analysis, which maximizes the
number of quantitative image features from digital images,
has great potential for the assessment of tumor biology [10].
+e vast quantities of radiomics data enable information to be
extracted from the entire tumor. As a result, radiomics can
overcome intratumoral heterogeneities in both the molecular
and histopathological assessment of tumors using quantitative
values [11] that contribute to evidence-based decision-making
in oncology.+e assessment of both mutation status and gene
expression, such as O6-methylguanine-DNA-methyl-
transferase (MGMT) gene expression or isocitrate dehydro-
genase (IDH) mutation, is essential for predicting therapeutic
responses when treating gliomas. Radiomics has proven the
potential for the genotype classification of prognostic factors
to predict IDH status, 1/19q codeletion status, or MGMT
methylation status [12–14] in glioma-related studies. How-
ever, the treatment of gliomas cannot be processed by ge-
notype alone since IDH mutation or 1/19q codeletion status
tends to be used for classifying grades II and III and MGMT
promotermethylation for grade IV.+erefore, the histological
grade should also be incorporated into the genotype classi-
fication of gliomas. +e vast amount of quantitative image
features, including first-, second-, and higher-order statistical
features, can represent histological values that include in-
tensity differences and spatial interrelationships. As a result,
radiomic features can provide distinctive information about
tumor phenotypes and their microenvironments. Considering
the heterogeneous histopathology biomarkers of angiogenesis,
apoptosis, proliferation, and cellular invasion in gliomas [15],
extracting a large amount of hidden data using radiomics
could be a potential tool in classifying gliomas from single- or
multiparameter MRI sequences.

As far as we know, no previous research has performed a
systematic evaluation of the accuracy of machine learning-
(ML-) based radiomics analysis in differentiating HGG from
LGG. +erefore, the purpose of the study was twofold: first,
to estimate the diagnostic accuracy of ML-based radiomics
analysis in classifying HGG and second, to identify the
potential covariates that could affect the diagnostic accuracy
of ML-based radiomics.

2. Method

Ameta-analysis was performed using Meta-DiSc version 1.4
(Unit of Clinical Biostatistics Team, Hospital Universitario
Ramón y Cajal, Madrid, Spain). However, the Meta-DiSc
version 1.4 uses outdated statistical methods since the
Moses–Littenberg method does not account for between-
study variances [16]. +erefore, RStudio (version 4.0.2)
using the MADA package was implemented to utilize hi-
erarchical summary receiver-operating characteristic
(HSROC) models and bivariate models.

2.1. Literature Search. +is meta-analysis was performed
following the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis guidelines [17]. A primary lit-
erature search of the PubMed database was conducted to
find all related literature in English between January 1, 2009,
and May 1, 2020, including Medical Subject Headings
(MeSH) and non-MeSH terms (see SupplementaryMaterials
for key terms (available (here))).

2.2. Inclusion and Exclusion Criteria. All studies were se-
lected by the following criteria: (a) original research articles;
(b) patients with histopathologically confirmed WHO grade
gliomas including both lower-grade glioma and high-grade
glioma; (c) ML-based with radiomics features that were
applied to classify gliomas using radiomics features; and (d)
information for reconstructing 2× 2 tables to estimate the
diagnostic sensitivity and specificity for grading gliomas was
included.

Studies were excluded if (a) they did not use ML to
classify the grade of gliomas; (b) did not focus on differ-
entiating between LGG and HGG; (c) no replies were re-
ceived from the authors after requesting the data related to
reconstructing the 2× 2 table or subgroup analysis; and (d)
they had a small sample size for performing the machine
learning classifier.

2.3. Quality Assessment. Two independent reviewers con-
ducted the quality assessment (S.C. and B.S.). Four main
domains including patient selection, index test, reference
standard, and flow and timing were evaluated based on the
Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) [18].

2.4. Statistical Analysis. A meta-analysis of the performance
of radiomics-based ML in differentiating HGG from LGG
was conducted. +erefore, the definition of true positive
(TP) was set for HGG and true negative (TN) for LGG. For
consistency, the TP definition in the study of Zhao et al. had
to be redefined by switching sensitivity and specificity in the
calculation. If the data for reconstructing the 2× 2 table and
analyzing subgroup analysis were insufficient, we contacted
the authors.

+e performance of the studies that implemented
multiple ML classifiers for grading gliomas was averaged.
For studies that reported the results of both the training and
testing sets, the best result was selected for the meta-analysis.
+e performance of ML using radiomics in differentiating
HGG from LGG was performed using the bivariate random
effects model.

+e followingmethods and criteria were used to estimate
heterogeneity: (a) considering the small number of studies
and lower statistical strength of Cochrane’s Q test, p value
<0.10 (not 0.05) indicated the presence of heterogeneity (14);
(b) Higgins inconsistency index (I2) test values of 25%, 50%,
and 75% defined the heterogeneity as low, moderate, or high;
(c) a forest plot for assessing the heterogeneity in sensitivity
and specificity and the visual assessment of the forest plots to
assess the presence of threshold effect (increasing sensitivity
with decreasing specificity and a positive correlation
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between sensitivity and the false-positive rate); (d) a large
difference between the 95% confidence region and 95%
prediction region in the HSROC curve; and (e) a Spearman
correlation coefficient value >0.6, that indicated a threshold
effect across all studies.

Metaregression and subgroup analysis were performed
to explain the possible factors that contribute to heteroge-
neity and the factors contributing to the diagnostic per-
formance of ML-based radiomics when grading gliomas
with the following covariates: (a) subject number, (b) se-
quence types, (c) selected feature numbers, and (d) inclusion
of the testing set.

3. Result

3.1. Literature Search. One hundred and ninety-four studies
of interest were found, and five studies were selected for this
meta-analysis after considering the inclusion and exclusion
criteria (Figure 1).

3.2. Risk of Bias Assessment. Overall, a high risk of bias was
estimated in the studies summarized in Table 1, with detailed
descriptions given in Table 2. +e high risk of bias could be
attributed to the nature of the retrospective study, in which
the patient’s outcomes are known. +erefore, a case-control
design for selecting patients already represents a high risk of
bias. Furthermore, using public data could also lead to a high
risk of bias in the QUADAS-2 assessment because not all
acquisition factors for LGG and HGG in public data can be
controlled. An assessor already knows the patients’ diagnosis
or reference standard results because WHO-classified pa-
tients were considered for research. ML-based radiomics
analysis studies tend to find a methodological justification
from a previous study method with an advanced ML clas-
sifier to improve the diagnostic accuracy. +erefore, prior
knowledge before implementing the index test may intro-
duce a high risk to the “index test” in the second domain.
However, the reference standard for the histological diag-
nosis of HGG and LGG has already taken into account the
accurate grading of gliomas that leads to reducing the risk of
bias in the “reference standard” domain. Finally, though it
was assumed that most were related to preoperative studies,
it was unclear whether there was an appropriate interval
between the index test and the reference standard or whether
patients received a specific therapy. +erefore, the fourth
domain of “flow and timing” in the reviewed studies had an
unclear general bias content. Significant heterogeneity was
present in data sources regarding image acquisition, feature
engineering, and ad hoc analysis. Consequently, the quality
assessment was limited regarding the applicability of ML-
based radiomics analysis for grading gliomas.

3.3. Data Extraction. A summary of the results is presented
in Table 3, while the method-related information is sum-
marized in Table 4.+ree of five studies utilized a single MRI
sequence acquired by either conventional or advanced
imaging [14, 19, 20], while the remaining studies imple-
mented both conventional and advanced ASL and DWI

sequences in [21, 22]. An imbalanced ratio was observed
between the HGG and LGG datasets in the studies that used
a large number of samples [19, 21], while the remaining three
studies had a ratio equal to the sample [14, 20, 22]. Two of the
five studies selected feature numbers equal to or greater than
the total sample size [14, 20], while the remaining three
studies selected fewer than the total sample size [19, 21, 22].
Only two studies included a testing set [20] without
reporting the sample size of the testing set [19].

3.4. Heterogeneity Assessment. A forest plot was drawn to
estimate the heterogeneity in sensitivity and specificity in
Figure 2. Heterogeneity was found in both sensitivity
(I2 � 69.70%, p � 0.01) and specificity (I2 � 80.20%,
p≤ 0.01).

A large difference between the confidence region and
95% prediction regions in the HSROC curve represents the
possibility of heterogeneity across the studies in Figure 3.

3.5. (reshold Effect Assessment. +e Spearman correlation
coefficient between the sensitivity and false-positive rate was
−0.4 (p � 0.51), indicating the absence of a threshold effect.
A threshold effect indicates a positive correlation between
sensitivities and the false-positive rate that leads to a
“shoulder arm” plot in the summary receiver-operating
characteristic curve space. However, the visual assessment of
the HSROC indicates the absence of a threshold effect as
shoulder is absent in the HSROC space.

3.6.DataAnalysis. Significant heterogeneity was observed in
both pooled sensitivity (I2 � 69.70%, p � 0.0104) and pooled
specificity (I2 � 80.20%, p≤ 0.01) as is shown in Figure 2.
+erefore, the HSROC model based on a random effect
model was applied to account for both intra- and interstudy
variances in analyzing the diagnostic accuracy of the ML
method with radiomics based on differentiating HGG from
LGG.+e area under the curve (AUC) value of 0.96 indicates
high diagnostic performance.

3.7. Metaregression. A bivariate metaregression with a p

value-based chi-squared statistic recommended by the
Cochrane diagnostic test accuracy (DTA) handbook [23] was
performed for the metaregression. As a result, the metare-
gression confirmed the heterogeneity in sample size
(p � 0.05), imaging sequence types (p � 0.02), and data
sources (p � 0.01), but not in the testing set (p � 0.19),
feature extraction number (p � 0.36), or selecting feature
number (p � 0.18). Bivariate metaregression based on the
random effect model was also performed to analyze the
regression coefficients between two groups related to four
covariates: (a) subject number sample size of fewer than 100
vs. sample size of more than 100; (b) implementing only
conventional or advanced MRI sequences vs. using both
advanced MRI sequences and conventional MRI sequences;
(c) selecting a feature number greater than or close to the
total sample size vs. smaller than the total sample size; and
(d) including testing set (validation set) or not.
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+e z-value for the regression coefficients for the sen-
sitivities was significant for the sample size (p≤ 0.01) and
feature number (p≤ 0.01). +erefore, the studies with
sample sizes of more than 100 and a feature number smaller
than the sample size exhibited better sensitivity, while the
point estimate for the false positive rate did not indicate any
effect. +e z-value for the regression coefficient for the false-
positive rate was significant (p≤ 0.01) in the single-image
sequences group, which offered a higher false-positive rate
than themultiparameter image group.+e point estimate for
sensitivity did not indicate any effect. +e z-values for the
regression coefficient for both the sensitivity and false-
positive rate were insignificant (p � 0.3) and (p � 0.4),

indicating no statistical difference whether the testing set
was included or not.

3.8. Subgroup Analysis. +e sensitivity, specificity, positive
likelihood ratio (PLR), negative likelihood ratio (NLR), and
diagnostic odds ratio (DOR) were combined using a random
effects model because of the heterogeneity across the
reviewed studies in Table 5. In the subgroup analysis, the
overall sensitivity of diagnosing HGG was higher (96% (95%
CI, 0.93, 0.98)) than the specificity of diagnosing LGG (90%
(95% CI, 0.85, 0.93)).

Similar to the result of metaregression, significant sen-
sitivity, PLR, and NLR differences were found in the
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Figure 1: Search-strategy flowchart in accordance with the PRISMA guidelines used in the meta-analysis.

Table 1: Summary of QUADS-2 tool assessment of the literature used in the meta-analysis.

Authors and year
Risk of bias

Patient selection Index test Reference standard Flow and timing
Cho et al. 2018 + + − ?
Tian et al. 2018 + + − −

Hashido et al. 2018 + − − ?
Vamvakas et al. 2019 + + + ?
Zhao et al. 2020 + − − ?
Risk of bias: +� high, − � low, and ?� unclear risk.
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covariates of sample size and feature number; however,
specificity was not detected. +e studies using a sample size
of more than 100 had higher sensitivity, PLR, and lower NLR
than studies with a sample size of fewer than 100 (98 vs. 88),
PLR (12.10 vs. 7.89), and NLR (0.03 vs. 0.14), but no dif-
ference in the specificity (90% vs. 90%). Furthermore, this

result was aligned with the metaregression result, in which
the studies using sample sizes of more than 100 had a lower
false-positive rate.

In terms of feature engineering, the studies with selected
feature numbers smaller than the total sample size had better
sensitivity (97% vs. 85%), PLR (13.48 vs. 5.71), specificity

Table 2: Detailed QUADS-2 tool assessment after the two reviewers reached a consensus.

Authors and
year Patient selection Index test Reference standard Flow and timing

Cho et al.
2018

+e experiment was designed
to be a retrospective study and
did not include a random
sample. However, the study

avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted knowing the
results of the reference
standard. It was unclear
whether a prespecified

threshold was used (high risk)

It was unclear whether the
reference standard was

likely to classify the target
condition accurately. +e
reference standard results
were interpreted knowing
the results of the index test

(low risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard and
whether all patients were

included in the analysis. All
patients received a reference
standard, but it is unclear
whether it was the same

reference standard (unclear)

Tian et al.
2018

+e experiment was designed
to be a retrospective study and
did not include a random
sample. However, the study

avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted knowing the
results of the reference
standard. However, a pre

specified threshold was used
(high risk)

+e reference standard was
likely to classify the target
condition accurately. +e
reference standard results
were interpreted without
knowing the results of the

index test (low risk)

It was clear whether there
was an appropriate interval
between the index test and
reference standard. All

patients received a reference
standard, but it was unclear
whether it was the same
reference standard. Not all
patients were included in the

analysis (low risk)

Hashido
et al. 2018

+e experiment was designed
to be a retrospective study and
did not include a random
sample. However, the study

avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted without knowing
the results of the reference
standard. Furthermore, a pre
specified threshold was used

(low risk)

+e reference standard was
likely to classify the target
condition accurately. +e
reference standard results
were interpreted without
knowing the results of the

index test (low risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard. All

patients received a reference
standard, but it was unclear
whether it was the same
reference standard. Not all
patients were included in the

analysis (unclear)

Vamvakas
et al. 2019

+e experiment was designed
to be a retrospective study and
did not include a random
sample. In addition, it was
unclear whether the study
avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted knowing the
results of the reference
standard. It was unclear
whether a prespecified

threshold was used (high risk)

+e reference standard was
likely to classify the target
condition accurately. +e
reference standard results
were interpreted knowing
the results of the index test

(high risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard and

included all patients in the
analysis. All patients
received a reference

standard, but it was unclear
whether it was the same

reference standard (unclear)

Zhao et al.
2020

+e experiment was designed
to be a retrospective study and
did not include a random
sample. In addition, it was
unclear whether the study
avoided inappropriate
exclusion (high risk)

+e index test results were
interpreted without knowing
the results of the reference
standard. However, it was

unclear whether a prespecified
threshold was used (low risk)

It was unclear whether the
reference standard was

likely to classify the target
condition accurately. +e
reference standard results
were interpreted without
knowing the results of the

index test (low risk)

It was unclear whether there
was an appropriate interval
between the index test and
reference standard. All

patients received a reference
standard, but it was unclear
whether it was the same
reference standard. Not all
patients were included in the

analysis (unclear)
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(90% vs. 85%), and lower NLR (0.03 vs. 0.18) than the studies
that selected feature numbers close to or greater than the
total sample size. Furthermore, the lower false-positive rate
result from the metaregression when selecting a number of
features fewer than the total sample size was observed.
However, there was no significant statistical difference in
sensitivity between the studies that extracted only second-
order features or both first- and second-order features
(p � 0.3), even with the higher sensitivity in the group that
extracted both features (97% vs. 94%) in the subgroup
analysis, but with lower specificity (84% vs. 95%), high PLR
(11.19 vs. 7.23), and NLR (0.11 vs. 0.05).

No sensitivity difference was estimated in the group
using single sequence andmultiple sequences (96% vs. 96%),
but the specificity was higher in the group using multiple
sequences (97% vs. 81%) with a higher PLR (30.39 vs. 4.61)

and lower NLR (0.04 vs. 0.09). Applying only the training set
produced a higher sensitivity (94% vs. 97%), specificity (95%
vs. 81%), PLR (12.91 vs. 5.32), and lower NLR (0.09 vs. 0.05)
than the group that used both the training and testing sets.
However, the result of metaregression indicated no statis-
tical difference in either the sensitivity or false-positive rate.
+e overlap of the confidence interval in the sensitivity
between the two groups was aligned with the result of
metaregression. However, the higher specificity in the group
that used only the training set indicated a better differen-
tiation of LGG.

4. Discussion

Overall, the meta-analysis confirmed the source of hetero-
geneity from the covariates, including sensitivity, specificity,

Table 3: Summary of the results evaluated in the reviewed studies.

Study and
year Method Algorithm Dataset/

HGG-LGG MRI sequence
Best performance

Limitation
AUC DA

(%)
Sen
(%)

Spe
(%)

Cho et al.
2018

Classic
machine
learning

Multiple
algorithms

WHO II–IV
(n� 285)/210-

75

T1, T1-C, T2, T2-
FLAIR 0.94 92.92 97.86 79.11

No dataset separation
information for training and

testing cohort. Sample
imbalance size between LGG

and HGG.

Tian et al.
2018

Classic
machine
learning

SVM

WHO II–IV
gliomas

(n� 153)/111-
42

Multiparametric 0.99 96.80 96.40 97.30 Sample imbalance sample size
between LGG and HGG.

Hashido
et al. 2018

Classic
machine
learning

Logistic
regression

WHO II–IV
(n� 46)/31-15 ASL, PWI (DSC) 0.96 NA 89.30 92.90

Small sample size. Small
sample size used in the
training set. Large feature

number than the total sample
size.

Vamvakas
et al. 2019

Classic
machine
learning

SVM WHO I–IV
(n� 40) 20-20 Multiparametric 0.96 95.50 95 96 Small sample size.

Zhao et al.
2020

Classic
machine
learning

RF
WHO II-III
gliomas

(n� 36) 17-19
T1-C, T2- FLAIR 0.86 78.10 78.30 77.80

Small sample size. Large
feature number compared to

the total sample size.

Table 4: Summary of the methods used in the reviewed studies.

Study and year Data
source External validation Feature type Feature

extraction
Feature
selection Segmentation

Cho et al. 2018 Public Training + testing First-order and second-order
(GLCM, ISZ) 486 5 ROI

Tian et al. 2018 Private Training First-order, second-order (GLCM,
GLCGM) 510 30 VOI

Hashido et al. 2018 Private Training
(42) + testing (4)

First-order, second-order (GLCM,
GLDM, GLRLM, GLSZM, and

NGTDM)
91 75

Random forest-based
semiautomatic tumor

segmentation
Vamvakas et al.
2019 Private Training First-order and second-order

texture (GLCM, GLRLM) 581 21 VOI

Zhao et al. 2020 Private Training
First-order and second-order
(GLCM, GLRLM, GLSZM, and

GLDM)
1072 30 VOI
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sample size, imaging sequences, and data source. +e main
reason for greater heterogeneity could be attributed to the
nature of the multiple steps included in the radiomics
process of image acquisition, data source, segmentation,
feature engineering, and ad hoc analysis [24].

+e results of the meta-analysis indicated that a greater
than 100 sample size positively affected the diagnostic
performance of sensitivity (HGG), but not specificity (LGG).
+is result could be attributed to two causes. First, having a

large sample size is essential to improve training [25] and to
avoid the overfitting that occurs in ML-based research.
+erefore, both statistical analysis and ML training may
favor the result of the group with a greater than 100 sample
size. +e total sample size difference between the two groups
(507 vs. 122) also contributed to the results. Second, the
result could be attributed mainly to the imbalance in the
HGG and LGG sample ratio. +is is the main challenge in
the medical dataset, where the ML-based classification

Sensitivity (95% CI)

0.96
0.95
0.98
0.90
0.76

(0.91–0.99)
(0.75–1.00)
(0.95–0.99)
(0.74–0.98)
(0.50–0.93)

Tian et al. , 2018
Vamvakas et al. , 2019
Cho et al. , 2017
Hashido et al. , 2018
Zhao et al. , 2020

Pooled sensitivity = 0.96 (0.93 to 0.98)
Chi-square = 13.19; df = 4 (p = 0.0104)
Inconsistency (I-square) = 69.7%

0.2 0.4 0.6 0.8 10
Sensitivity

(a)

Specificity (95% CI)

0.97
0.95
0.79
0.93
0.79

(0.92–0.99)
(0.75–1.00)
(0.68–0.87)
(0.68–1.00)
(0.54–0.94)

Tian et al. , 2018
Vamvakas et al. , 2019
Cho et al. , 2017
Hashido et al. , 2018
Zhao et al. , 2020

Pooled specificity = 0.90 (0.85 to 0.93)
Chi-square = 20.21; df = 4 (p = 0.0005)
Inconsistency (I-square) = 80.2%

0.2 0.4 0.6 0.8 10
Specificity

(b)

Figure 2: Pooled estimation of sensitivity and specificity for the diagnostic accuracy of radiomics using machine learning in differentiating
HGG from LGG. Circles and horizontal lines represent the point estimate and 95% confidence intervals.
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Figure 3: +e HSROC curve displaying the diagnostic performance of ML-based radiomics in differentiating HGG from LGG. A large
difference between the 95% confidence and prediction regions indicates a high possibility of heterogeneity across the reviewed studies.
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method prefers a larger to a smaller sample during training
[26, 27]. +erefore, the imbalanced ratio between LGG and
HGG (total sample 240 vs. 389) may increase the sensitivity
due to the large sample size of HGG without considering the
distribution of data ratio between LGG and HGG, while
reducing the specificity performance [19, 21]. In contrast, the
overall equal sample ratio was found in the group with a
sample size of less than 100, as summarized in Table 3
[14, 20, 22]. As a result, the specificity may increase in
the small sample size group that did not consider the LGG
sample as a minor group during the classifier training.
+erefore, there was no difference in the specificity even with
the higher sample size of LGG in the large sample size group
than in the small sample size group (117 vs. 54). Both limited
and imbalanced numbers of samples between LGG and
HGG across the studies also affected the separation of the
validation and testing datasets. +e majority of studies did
not include the testing set because of the small sample size.
Furthermore, poor-quality reporting that did not include the
subject number used in training and testing [19] and in-
cluded only four subjects in the testing set [20] was observed.
+erefore, subgroup analysis that includes the testing set
may not be an appropriate criterion for this meta-analysis,
even though it is necessary for the external validation of the
model. However, a higher specificity was observed in the
group that included only the training set [14, 21, 22]. +is
could be attributed to the balanced ratio between LGG and
HGG in the group described in Table 3, not to the inclusion
of the testing set. In contrast, imbalanced ratios of large
HGG samples over LGG samples were observed in the group
that included both the training and testing sets [19, 20]. In

short, it is reasonable to assume that the labeled data balance
plays a key role in grading gliomas.

Interestingly, there was a significant difference in the
specificity but not in the sensitivity between the groups
using a single MRI sequence [14, 19, 20] and multi-
parametric images [21, 22]. +e nonsignificant sensitivity
difference between the two groups can be attributed to two
reasons. First, quantifying the heterogeneous spatial gray
distribution including intratumoral spatial variation and
intensity of the entire tumor in the second-order features
allowed for the classification of the heterogeneous HGG
over the first-order statistical TA [21, 28]. +erefore, the
second-order features that were extracted in all reviewed
studies could contribute to a statistically insignificant
sensitivity difference between the two groups. Second, the
performance of combining different MRI techniques in
differentiating HGG from LGG is questionable because
the combination of conventional and advanced MRI se-
quences, including PWI, DWI, and magnetic resonance
spectroscopy, did not significantly increase the glioma
grading performance [29, 30]. Furthermore, conventional
MRI variables including enhancement and necrosis have
been reported as the major predictors in differentiating
HGG from LGG above the combination of conventional
MRI with PWI, DWI, and MRS [31]. +erefore, the se-
quence differences between the two groups may be in-
significant because of the contributory role played by the
conventional MRI sequences that were included in each
group. As a result, no significant difference in the sen-
sitivity between the single MRI sequence and the multi-
parametric image was observed in this study.

Table 5: Result of multiple subgroup analysis of machine learning-based radiomics for grading gliomas.

Subgroup Study
number

Patient
number Sensitivity Specificity PLR NLR Diagnostic odds

ratio

All combined 5 629 0.96
(0.93–0.98)

0.90
(0.85–0.93) 9.53 (3.55–25.57) 0.07

(0.02–0.20)
153.85

(32.36–731.44)
Populations

>100 2 507 0.98
(0.95–0.99)

0.90
(0.85–0.94)

12.099
(1.37–107.12)

0.03
(0.02–0.06)

393.81
(80.89–1917.3)_

<100 3 122 0.88
(0.78–0.95)

0.90
(0.77–0.96) 7.89 (2.21–28.15) 0.14

(0.05–0.39) 65.13 (7.84–540.95)

Sequence
Single (CS or
advanced) 2 262 0.96

(0.93–0.98)
0.81

(0.72–0.88) 4.61 (3.14–6.77) 0.09
(0.02–0.44) 66.75 (10.33–431.19)

Multiple (CS and
advanced) 3 367 0.96

(0.91–0.99)
0.97

(0.92–0.99)
30.391

(11.585–79.726)
0.04

(0.017–0.09)
774.25

(202.54–2959.77)
Feature number

≥Sample size 2 82 0.85
(0.72–0.94)

0.85
(0.69–0.95) 5.71 (1.39–23.46) 0.18

(0.07–0.52) 33.76 (3.36–339.14)

<Sample size 3 547 0.97
(0.95–0.99)

0.90
(0.85–0.94) 13.48 (2.56–71.12) 0.03

(0.02–0.06)
369.98

(19.68–6956.0)
Training and testing set

Training set 3 331 0.94
(0.88–0.97)

0.95
(0.89–0.98) 12.91 (2.02–82.22) 0.09

(0.02–0.47)
154.56

(7.30–3276.9)

Training + testing set 2 298 0.97
(0.94–0.99)

0.81
(0.72–0.89) 5.32 (2.55–11.09) 0.05

(0.1–0.22)
176.99

(63.76–491.30)
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+e higher specificity in the multiparametric group can
be attributed to the apparent diffusion coefficient (ADC)
values extracted from DWI [21] and cerebral blood flow
extracted by perfusion imaging [22]. Even though the ADC
values in differentiating LGG from HGG varied from study
to study [29], T1-CE, ADC slow, T2 WI, and CBF have been
widely used to classify LGG. Among various biomarkers, the
ADC value has demonstrated the feasibility of classifying
LGG by the higher ADC values in LGG than HGG [32, 33],
and the entropy of ADC values among various texture
analysis software showed promising results [7, 9]. +erefore,
it is reasonable to assume that advanced MRI sequences for
estimating angiogenesis and blood perfusion play a role in
classifying LGG. In short, the higher false-positive rate in the
single-image sequence group and the higher specificity of
differentiating LGG in the multiple sequences resulted from
the use of multiple imaging sequences for grading gliomas.

All results including sensitivity, specificity, PLR, and
NLR were higher in the group with fewer feature numbers
[14, 19, 21] than those that were greater than or equal to the
total sample size [20, 22]. +is can be attributed to two
causes. First, the sample size difference between the two
groups may affect the performance of the group that selected
fewer feature numbers than the total sample size (547 vs. 82),
as described in the following section of this paper. Second,
selecting a method to reduce the dimensionality of feature
space in radiomics is an essential component of feature
selection. In fact, reducing redundant features is important
to avoid overfitting and improving data, even though there is
no gold standard for the appropriate number of features.
+erefore, a small number of features are recommended,
either one-tenth of the total sample data [34] or the square
root of the total sample data [35]. Furthermore, a high
contribution of the gray-level gradient cooccurrence matrix
(GLGCM) features when grading gliomas suggested the
importance of the second-order feature numbers in the
study [21]. In short, the group that selected a smaller number
of quantitative features than the total sample size exhibited
better performance in grading gliomas.

4.1. Limitation. Several limitations were observed in our
study. Only five studies were included in the meta-analysis,
while the recommended number of studies for meta-anal-
ysis, according to the Cochrane DTA handbook, is at least 30
for sufficient power [23].

+erefore, the assessment of a publication bias using the
Deek funnel plot asymmetry test was excluded because the
small number of meta-analyses could skew the result due to
the number difference between the small and large studies
[36, 37] and the heterogeneous sources in the meta-analysis
[38].

+e poor quality of the report that excluded crucial result
information contributed to the scarcity of literature for
performing a meta-analysis of the accuracy of this diagnostic
test in radiomics studies. Overall, the poor quality of the
reporting has limited the study of radiomics in neuro-
oncology [39] because guidelines for reporting quantitative
imaging results have not yet been established. Regardless of

the scarcity of literature, the total sample size of 629 subjects
may be sufficient to represent the predictive value of ML-
based radiomics analysis in differentiating HGG from LGG.

4.2. Future. Several factors should be improved for future
studies related to ML-based radiomics for grading glioma.
First, all reviewed studies did not include the updated WHO
2016 glioma classification standard for combining molecular
profiling with histopathological profiling. Second, the
dataset size still plays a key role in grading gliomas.
+erefore, enlarging the dataset should also be considered to
overcome the imbalance caused by oversampling a small
sample to improve classifier performance [21].

Furthermore, the enlarged dataset would lead to separate
training and testing sets that allow for the external validation of
ML classifier performance. +ird, incorporating patient de-
mographics or clinical history should be considered to improve
the classification of ML models. Finally, the variation process
included in the radiomics analysis that is based on the nu-
merical extraction approach to image analysis could affect the
result due to bias and variance, not underlying biologic effects.
+erefore, standardization in image acquisition, segmentation,
feature engineering, statistical analysis, and the reporting
format should be established for reproducibility and the
generalization of ML-based radiomics studies. Essential steps
for standardization include optimizing the standard imaging
acquisition process, fully automating the process for seg-
mentation and feature engineering, reducing the redundancy
of feature numbers, enhancing the reproducibility of radiomics
features, and transparently reporting results. +erefore, the
following guidelines suggested by the relevant professional
societies, such as the Society of Nuclear Medicine and Mo-
lecular Imaging, the Quantitative Imaging Network, Radiology
Society of North America, and the European Society of Ra-
diology that lead the field in imaging methods, including
radiomics, should be considered. Furthermore, it has been
reported that the magnet strength, flip angles, number of
excitations, and different scanner platforms could affect both
first-order and second-order features [40]. For example, the
gray-level gradient cooccurrence matrix (GLCM) could be
invariant to magnetic strength but susceptible to flip angles.
However, the first-order features of entropy that are considered
the most stable features have high reproducibility [41].
+erefore, the reproducibility of information related to
radiomics features should be considered depending on the
image acquisition method. Apart from the radiomics feature
type, a segmentation method should be considered for the
reproducibility of radiomics features. A registration distortion
between MRI sequences could cause the incorrect localization
of the region of interest and could affect the feature extraction
process in radiomics analysis [42]. To reduce individual var-
iability, deep learning-based automated segmentation and
feature engineering gained attention [43]. +erefore, a deep
learning-based approach should also be considered in radio-
mics analysis. +e SVM-based classifier with recursive feature
elimination (RFE) was found to be superior to other 25 ML-
based classifiers and 8 independent attribute selection methods
in grading gliomas using the multiparameter approach [44].
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+erefore, an SVM-based classifier with RFE could be the best
method to reduce feature redundancy and improve the ML
classifier performance of glioma grading [28].

5. Conclusion

ML with radiomics demonstrated excellent diagnostic per-
formance in differentiating HGG from LGG.+e results of the
meta-analysis provide the following recommendations to
perform grading gliomas with ML-based radiomics: (a) use a
large sample with oversampling of a minor class to balance the
sample ratio and include the external validation set; (b) employ
amultiparameter approach to extract the second-order features
from the T1-CE sequence and ADC entropy from DWI; (c)
select features with a number smaller than the total sample size
by combining clinical information; and (d) implement the
SVM classifier with SVM-REF attribute selection.

We submit that a methodological standard to ensure the
reproducibility of ML-based radiomics is warranted for
clinical application.
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Additional Points

Key Findings. (i) Machine learning with radiomics dem-
onstrated excellent diagnostic performance in differentiating
high-grade glioma from low-grade glioma. (ii) +e lower

false-positive rate and higher specificity for classifying
lower-grade glioma favored the use of multiparametric
imaging, even though a nonstatistically significant sensitivity
difference between the single-image sequence and multi-
parameter imaging group was observed. (iii) Based on the
results of themeta-analysis, several factors positively affected
the performance of machine learning-based radiomics when
grading gliomas: (a) a large sample size with oversampling of
a minor class to balance the sample ratio; (b) use of the
multiparametric approach to extract the second-order fea-
tures from the gadolinium-based contrast-enhanced se-
quence and an apparent diffusion coefficient entropy from
diffusion-weighted image; (c) selection of features with
fewer numbers than the total sample size combined with
clinical information; and (d) implementation of a support
vector machine classifier with support vector machine-re-
cursive feature elimination attribute selection. (iv) A
methodological standard to ensure the reproducibility of
ML-based radiomics is warranted for clinical application.
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