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Neuroplasticity may preserve neurologic function in insular glioma, thereby improving

prognosis following resection. However, the anatomic and molecular bases of this

phenomenon are not known. To address this gap in knowledge, the present study

investigated contralesional compensation in different molecular pathologic subtypes of

insular glioma by high-resolution three-dimensional T1-weighted structural magnetic

resonance imaging. A total of 52 patients with insular glioma were examined. We

compared the gray matter volume (GMV) of the contralesional insula according

to histological grade [low-grade glioma (LGG) and high-grade glioma (HGG)] and

molecular pathology status [isocitrate dehydrogenase (IDH) mutation, telomerase

reverse-transcriptase (TERT ) promoter mutation, and 1p19q codeletion] by voxel-based

morphometry (VBM). A cluster of 320 voxels in contralesional insula with higher

GMV was observed in glioma with IDH mutation as compared to IDH wild-type

tumors by region of interest-based VBM analysis (family-wise error-corrected at p <

0.05). The GMV of the entire contralesional insula was also larger in insular glioma

patients with IDH mutation than in patients with wild-type IDH. However, there was no

association between histological grade, TERT promoter mutation, or 1p19q codeletion

and GMV in the contralesional insula. Thus, IDH mutation is associated with greater

structural compensation in insular glioma. These findings may be useful for predicting

neurocognitive and functional outcomes in patients undergoing resection surgery.

Keywords: insular glioma, neuroplasticity, brain structural plasticity, molecular pathology, VBM

INTRODUCTION

Neuroplasticity occurs across the human life span. Developmental and adaptive plasticity underlie
experience-related changes resulting from modification of the environment, physical exercise, or
cognitive training (1). Additionally, reactive functional and structural plasticity is responsible
for restoring normal brain function following injury, a process known as cortical remodeling or
reorganization (2). Neuroimaging studies have revealed that this process occurs in both the lesioned
and intact hemispheres in stroke, brain trauma, and glioma (3–10).

The pattern of cortical remodeling in glioma has been reported to be hierarchical (6).
The compensation could be launched firstly within the lesioned area and then enlarged to
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the peritumor area. If it was still insufficient, the ipsilateral and
even the contralateral hemispheres could be recruited to the
remodeling process. And this hierarchical pattern is especially
suited for low-grade gliomas (LGGs), because they exhibited
a slow-growing, less-invasive feature, which left enough time
for this remodeling process. As it happens, the insular cortex
is a common location for LGGs (11, 12); it is also involved
in multiple brain functions, acting as a hub for neural circuits
involved in language processing, emotion, cognitive control, and
decision making (13). Most insular glioma patients are diagnosed
following seizure or headache or during routine physical
examination, and tumor resection typically has an acceptable
neurologic outcome (14, 15), implying that neuroplastic changes
occur during gliomagenesis. Along this perspective, Almairac
et al. (7) observed structural remodeling in unilateral low-grade
insular glioma patients, whereby gray matter volume (GMV) of
the contralesional insula was increased relative to healthy control
subjects. It was speculated that the slow rate of growth and low
invasiveness of low-grade insular glioma suited that hierarchical
remodeling pattern well.

It should be noted that the 2016 World Health Organization
(WHO) classification for glioma added the molecular subtype
[isocitrate dehydrogenase (IDH) or telomerase reverse-
transcriptase promoter (TERTp) mutation and 1p19q
codeletion], which is highly associated with tumor invasiveness
and prognosis (16, 17). There were even evidence that the
IDH wild-type LGGs should be treated as glioblastomas
(GBMs, Grade IV), as they shared similar clinical and genetic
characteristics (18). Therefore, except classical histological
grading, different molecular subtypes might also reflect different
biological behaviors and might lead to different neuroplastic
results. However, most studies investigating neuroplasticity in
glioma have compared patients and healthy control subjects,
without examining differences that exist according to the
histological grade or molecular pathologic subtype of glioma.

Therefore, we designed the present study to investigate
contralesional compensation in different histological grades,
especially molecular pathologic subtypes of insular glioma by
high-resolution three-dimensional (3D) T1-weighted (T1W)
structural magnetic resonance imaging (MRI) and voxel-based
morphometry (VBM) analysis.

MATERIALS AND METHODS

Participants and Grouping
A total of 52 patients diagnosed with unilateral insular glioma
at Beijing Tiantan Hospital were enrolled in this study.
Detailed information on molecular pathology including 6-
O-methylguanine (O6-MeG)-DNA methyltransferase (MGMT)
promoter methylation status, IDH mutation, TERTp mutation,
and 1p19q codeletion was available for all patients. MGMT
promoter methylation has been shown to inhibit apoptosis and
increase sensitivity to temozolomide (19, 20), but as it has little
clinical significance in gliomagenesis, it was not investigated in
this study.

The patients were grouped as IDH mutation (IDH-mu) and
IDH wild type (IDH-wt), TERTp-mu and TERTp-wt, and 1p19q

codeletion (1p19q-codel) and non-1p19q-codel. Additionally,
we also involved histological pathology, where patients were
grouped as LGG (WHO II) and high-grade glioma (WHO III and
IV, HGG). The study was approved by the Institutional Review
Board of the Beijing Tiantan Hospital. All the participants signed
a written informed consent form.

The number of patients was relatively small when they were
further grouped according to the side of the brain in which
the lesion was located (left vs. right). Therefore, in order to
enhance statistical power, all left-tumor MRIs were flipped
along the X axis in the FMRIB Software Library (FSL) before
preprocessing. Then the right and left insula could be consistently
referred to as the “lesioned insula” and “contralesional insula,”
respectively. Statistical analyses were performed with the flipped
images and focused on the contralesional insula. However, this
flipping operation could introduce bias because of the asymmetry
between certain brain regions in the left and right hemispheres
(21). In order to exclude this possibility, we compared the
contralesional insula between the right- and left-sided tumors;
as we did not observe any differences, we applied the flipping
operation to our dataset.

Aging can affect GMV; hence, studies comparing patients and
healthy participants typically consider age as an uninteresting
variable (3, 7, 22). It should be noted that HGG, IDH-wt, and
TERTp-mu in glioma were found to be closely related to older
age (16, 23), which was also the case in our study (Table 1).
Therefore, setting patient age as a covariate in our analyses could
eliminate the effects of different molecular pathologic subtypes
on GMV, which we should avoid in the present study. On
the other hand, recent studies have reported that the decline
in insular volume slows or even stops during aging (24, 25),
suggesting that age has little effect on GMV of the insular cortex.
Nonetheless, given that GMV starts to decrease at the age of 40
years (26, 27), which was also the median age in our cohort, we
compared GMV of the contralesional insula between patients
aged ≥40 years and those aged <40 years. As no difference
was found, we considered that age did not affect GMV of the
contralesional insula, and it was not included as a covariate in the
statistical analysis.

MRI
3D T1W structural images were acquired at our center with two
different scanners: the Ingenia 3.0T (Philips, Amsterdam, The
Netherlands) (P) and Prisma 3.0T (Siemens, Munich, Germany)
(S). The acquisition program was as follows: resolution = 1
× 1 × 1mm, field of view = 256 × 256mm, slice thickness
= 1mm, flip angle = 8◦, repetition time = 6.49/1.56 s, and
echo time = 3.042/1.56ms (for P/S). In addition, conventional
magnetic resonance (MR) sequences including T2-weighted
(T2W), fluid-attenuated inversion recovery (FLAIR) and T1W
images with intravenous injection of a gadolinium contrast agent
were routinely acquired.

Lesion Tracing
In order to visualize the lesion in the insula and calculate
tumor volume (TV), the tumor mask was delineated in
T2W or FLAIR images by a neurosurgeon with 8 years of
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experience using MRIcron (https://www.mccauslandcenter.sc.
edu/crnl/tools). Lesion masks and corresponding images for
tracing were normalized to standard Montreal Neurological
Institute (MNI) space using SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/). A reconfirmation procedure was
performed by the neurosurgeon after normalization for more
accurate matching to the original lesion range. The normalized
and rechecked lesion masks were used for lesion overlap with
MRIcroGL (https://www.mccauslandcenter.sc.edu/mricrogl).

Image Preprocessing
Structural image preprocessing was performed with SPM12 and
the CAT12 toolbox in MATLAB. The images were manually
reoriented to the anterior commissure, which was defined as
the origin (mm coordinates: 0, 0, 0). The “Segment Data”
module of CAT12 was used to segment the structural images
into the gray matter (GM), white matter, and cerebrospinal
fluid. In this process, the original structural images were
normalized to MNI-152 standard space with an isotropic voxel
resolution of 1.5 × 1.5 × 1.5mm, and we also modulated
the spatial normalized data in order to maintain its original
GMV. We checked the data quality to verify the segmentation
and normalization results. Total intracranial volume (TIV) was
determined using the “Estimate TIV” module. The modulated
GMmaps of each participant were smoothed with an 8-mm full-
width at half-maximum Gaussian kernel. VBM analyses were
performed on the smoothed images generated during the last
preprocessing step.

Statistical Analysis
VBM analysis was applied to imaging data. Based on the general
linear model, the two-sample t-test was used for three types
of comparisons: (1) left-sided vs. right-sided tumor patients to
exclude the effect of brain structural asymmetry; (2) patients
aged ≥40 vs. <40 years to exclude the effect of aging; and (3)
LGG vs. HGG, IDH-mu vs. IDH-wt, TERTp-mu vs. TERTp-
wt, and 1p19q-codel vs. non-1p19q-codel to evaluate the effect
of molecular pathology on contralesional compensation in
insular glioma.

As we focused only on alterations in the contralesional (left)
insular cortex, we generated a left insular mask as the region
of interest (ROI) using the WFU_PickAtlas toolbox (https://
www.nitrc.org/projects/wfu_pickatlas/) based on the automated
anatomical labeling template. We used this mask in the
three abovementioned comparisons. The ROI-based analysis
highlights the changing patterns of certain brain areas and
provides enhanced statistical control (7). Patient sex, TIV,
TV, and MR scanner type were covariates in all of the
comparisons. An absolute masking threshold of 0.2 was also
set in all comparisons (28). A voxel-level family-wise error
(FWE) correction at P < 0.05 with a spatial extent threshold
of 50 voxels was regarded as significant. For comparisons that
passed the FWE correction in VBM, we further compared
the GMV of significant clusters and the entire insula. Non-
imaging data for continuous and categorical variables were
analyzed with the two-sample t-test and chi-squared test,
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FIGURE 1 | Lesion overlap for original side (A) and all left tumor flipped via X axis (B).

TABLE 2 | Demographic characteristic of different tumor sides and age.

Variables Left tumor Right tumor P Age ≥40 years Age <40 years P

Total No. 26 26 NA 28 24 NA

Gender, M/F, n 15/11 16/10 0.778 18/10 13/11 0.459

Age (Mean ± SD), years 44.42 ± 13.76 41.19 ± 11.02 0.354 51.89 ± 8.84 32.21 ± 5.85 <0.001

TV (Mean ± SD), ml 65.21 ± 37.12 44.93 ± 37.74 0.056 53.88 ± 30.75 56.46 ± 46.52 0.812

Scanner type, P/S, n 8/18 0/26 NA 4/24 4/20 NA

SD, Standard deviation; TV, Tumor volume; P, Philips Ingenia 3.0T scanner; S, Siemens Prisma 3.0T scanner; NA, Not applicable.

respectively. A P < 0.05 in a two-tailed test was considered
statistically significant.

RESULTS

Clinical and Demographic Characteristic
of Study Population
In 52 patients with insular glioma (Grade II, n = 26; Grade
III, n = 16; Grade IV, n = 10; male, n = 31; female, n =

21; median age, 40 years old), 26 tumors were located in the
left insula, and 26 were located in the right insula. The lesion

overlap is shown in Figure 1A. We flipped the image of left-
sided tumors so that in all 52 patients, the tumor was in the
right insula, and the left side was contralesional (Figure 1B).
Detailed information on the molecular pathology of the tumors
is shown in Table 1, and detailed demographic data are shown
in Table 2.

ROI-Based VBM Analysis
We examined whether the GMV of the contralesional insula
differed between patients with left and right insular gliomas.
The results of this comparison showed that no voxels survived
the FWE correction. We next compared patients aged ≥40
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FIGURE 2 | T statistical parametrical map of IDH-mu > IDH-wt in ROI (left insula) based VBM analysis. The box plot showed the GMV of significant clusters between

IDH-wt and IDH-mu insular glioma. **P < 0.01.

TABLE 3 | VBM analysis for IDH-mu > IDH-wt.

Cluster

size

(voxels)

P-value Peak MNI coordinates t score

peak level

Anatomy

location

x y z

320 0.003 −44 2 0 4.39 Anterior

insular

cortex

−39 −9 15 3.58 Posterior

insular

cortex

and <40 years to determine whether aging affected the GMV
of the contralesional insula. This comparison also did not
reveal significant voxels. Thus, tumor side and patient age were
unrelated to the GMV of contralesional insula in our cohort.

Next, we first compared the GMV between LGG and HGG,
and the results showed that no voxel survived the FWE
correction. And the GMV in the entire contralesional insular
cortex was also indifferent (Figure 3 and Table 4).

Then, we investigated whether molecular pathology in
glioma is associated with the observed contralesional structural
reorganization. A cluster of 320 voxels located in both
anterior and posterior insular cortexes showed a significantly

increased GMV in IDH-mu relative to IDH-wt (Figure 2 and
Table 3). We extracted the GMV value of the significant
cluster and the entire insula and found that they were both
significantly higher in IDH-mu than in IDH-wt (Figure 3
and Table 4).

However, no voxel survived in the comparison of TERTp-mu
vs. TERTp-wt and 1p19q-codel vs. non-1p19q-codel. Moreover,
we did not observe any GMV differences in the entire
contralesional cortex in the comparisons (Figure 3 and Table 4).

DISCUSSION

The results of this study demonstrated for the first time
that IDH mutation in insular glioma leads to morphologic
compensation in the contralesional insula. TERTp mutation and
1p19q codeletion did not have this effect. The reorganization in
the contralesional hemisphere could be the result of disinhibition
(29), which has been observed in stroke patients on a functional
level (30–32). However, glioma is a progressive disease that
causes increasing damage over time. Structural reorganization
with tumor growth has been observed not only in the region
adjacent to the lesion but also in the contralateral hemisphere (6).
Contralesional plasticity was shown to be positively correlated
with the degree of impairment (29). Under these circumstances,
functional plasticity of existing synapses—which depends on
synaptic efficacy (33)—may not be sufficient to restore neuronal
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FIGURE 3 | The entire contralesional insula GMV comparisons between different histological grade and molecular pathology status. **P < 0.01 ns, for not significant.

TABLE 4 | t-test for GMV in different groups.

Variables GMV (mean ± SD)

LGG HGG P IDH-mu IDH-wt P TERT-mu TERT-wt P 1p19q-codel Non-1p19q-codel P

Active region – – – 0.511 ±

0.075

0.427 ± 0.086 0.0011 – – – – – –

Entire

contralesional

insular cortex

0.449 ±

0.074

0.415 ±

0.071

0.096 0.448 ±

0.064

0.390 ± 0.082 0.0096 0.421 ± 0.067 0.440 ± 0.078 0.377 0.431 ± 0.062 0.433 ± 0.078 0.909

activity when structural plasticity involving synaptogenesis
and axonal remodeling are required (34–36). Thus, structural
remodeling of the contralesional hemisphere in insular glioma
patients may depend on the duration between the onset of
the lesion and detection and the extent of damage within
this duration.

Along with this perspective, we could infer that insular
glioma patients with IDH mutation had a longer disease
course than those with wild-type IDH and accumulate damage
to the insula slowly. In fact, IDH mutation has also been
reported to be an early event in gliomagenesis that precedes
the occurrence of TERTp mutation and 1p19q codeletion (37),
which might be the reason for the absence of contralesional
reorganization in the latter two genetic alterations. IDH catalyzes
the conversion of isocitrate into α-ketoglutarate (α-KG), whereas

the enzyme produced by the mutated IDH gene further
converts α-KG into 2-hydroxyglutarate (α-HG). Excess α-HG
inhibits α-KG-dependent enzymes and causes alterations in
cellular metabolism, epigenetic regulation, redox state, and DNA
repair, all of which contribute to carcinogenesis including acute
myeloid leukemia (AML), chondrosarcoma, and glioma (38,
39). However, IDH mutation in AML and chondrosarcoma
has been linked to worse prognosis, while the opposite is true
for glioma (38). This phenomenon implied the complex role
in gliomagenesis. On one hand, IDH mutation may inhibit
complement activation and help the tumor evade immune
surveillance, leading to gliomagenesis (40, 41). On the other
hand, IDH mutation reduced cytoprotection and apoptosis
resistance in tumor cells and increased the number of antitumor
immune cells (M1 tumor-associated macrophages), resulting
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in tumor suppression (42, 43). And the better prognosis of
IDH-mu glioma patients implied that the tumor suppression role
overwhelmed its promotion role, which led to a longer disease
course and allowed contralesional reorganization to proceed as
observed in the present study.

Moreover, opposite to the IDH subtype, we did not observe
a compensation in the contralesional insular cortex in different
histological grades. These results implied that the effect on
contralesional compensation on the IDH subtype was more
significant than histological classification, also provided evidence
for different structural remodeling patterns in different IDH
subtypes, and also supported the distinctive biological behavior
between them (44). As for GBM, the most malignant type
in histological classification could be divided into primary
GBM (always IDH-wt) and secondary GBM (always IDH-mu).
Our result implied the insular secondary GBM patients had a
relatively long disease course, which is consistent with its feature
of increasing the malignancy grade of a lower grade glioma over
time (45).

There were some limitations to this study. Firstly, the sample
in this study was relatively small. Secondly, we did not evaluate
neurocognitive performance in our patients, and therefore, it
is unclear whether the observed reorganization of the brain
structure had functional significance. And functional MRI could
provide additional information on this point. Additionally, we
did not determine whether an association between molecular
pathologic subtype in glioma and contralesional structural
reorganization exists in tumors located outside the insula,
although this warrants further study. Nonetheless, our results
provide evidence for contralesional plasticity in the brain of
patients with insular glioma and a possible molecular basis for
this observation. These findings may have clinical significance

in that insular glioma patients with IDH mutation may be
candidates for more complete resection when an intraoperative
pathologic diagnosis is available.
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