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SUMMARY
Cellular morphology has the capacity to serve as a surrogate for cellular state and functionality. However,
primary cardiomyocytes, the standard model in cardiovascular research, are highly heterogeneous cells
and therefore impose methodological challenges to analysis. Hence, we aimed to devise a robust method-
ology to deconvolute cardiomyocyte morphology on a single-cell level: C-MORE (cellular morphology recog-
nition) is aworkflow frombench to data analysis tailored for heterogeneous primary cells using our R package
cmoRe. We demonstrate its utility in proof-of-principle applications such as modulation of canonical hyper-
trophy pathways and linkage of genotype-phenotype in human induced pluripotent stem cell-derived cardi-
omyocytes (hiPSC-CMs). In our pilot study, exposure of cardiomyocytes to blood plasma prior to versus after
aortic valve replacement allows identification of a disease fingerprint and reflects partial reversibility
following therapeutic intervention. C-MORE is a valuable tool for cardiovascular research with possible fields
of application in basic research and personalized medicine.
INTRODUCTION

Heart failure remains the leading cause of mortality in western

countries and is the mutual final stage of a wide range of cardiac

pathologies. To prevent progression, early diagnosis and adapt-

ed treatment with regard to the specific underlying cause is

crucial.1 However, diagnosis and estimation of prognosis remain

challenging, and invasive diagnostics (e.g., biopsy) are often

indispensable.2 Novel methods with potential to elucidate the

modes of action of cardiac diseases as well as clinical deci-

sion-making are needed.

Image-based high-content morphology assessment and its

proficiency to serve as a surrogate for cell state and functionality

has become an integral readout in cell line-based screenings in

drug discovery:3,4 high-throughput fluorescence microscopes

allow automated acquisition of images from 96- or 384-well

plates in multiple fluorescence channels, and raw images can

then be analyzed to identify cells and compute single-cell

morphological multi-feature profiles (e.g., shape, intensity, and

texture, including Haralick features).5,6
Cell Repor
This is an open access article under the CC BY-N
However, in the cardiac context, heterogeneity and a higher

variability of model cell types under investigation—namely, pri-

mary neonatal rat ventricular cardiomyocytes (NRCMs) or hu-

man induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs)—have impeded implementation of robust

morphology assessment.7,8 Morphological readout in cardio-

vascular research is still limited to cell size and a few selected

features (e.g., perimeter, elongation, and form factor).9,10 Alter-

native methods focus on sarcomere organization, 3D volume/

shape, proliferation, or reporter readouts.11–14 However, these

established methods address only specific parts of morphology,

and integrated approaches are not established for use in cardio-

vascular research.

In the clinical setting, manual morphological assessment of

tissue and cellular biopsy material is a traditional method to clas-

sify disease state and estimate prognosis. In oncological

research, first advances toward integration of automated

morphological assays on tumor cells in clinical personalized

medicine have been taken. For example, cellular morphology

has enabled prediction of responsiveness to therapeutic
ts Medicine 2, 100436, November 16, 2021 ª 2021 The Authors. 1
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Figure 1. C-MORE experimental and data analysis workflow with NFAT-GFP reporter readout

(A) Overview of the C-MORE workflow. QC, quality control.

(B) Representative images of CMs without stimulation (ctrl) and with phenylephrine (PE) and insulin (INS) treatment. In the lower left corner of the GFP/FITC

channel, we show a representative cell magnified to demonstrate NFAT-GFP enrichment in the nucleus after PE treatment. For ctrl and INS treatment, NFAT-GFP

is localized predominantly in the cytoplasm, with low GFP-intense nuclei appearing as black holes within the GFP intense cytoplasm. Scale bar, 100 mm.

(C) The image features area, perimeter, and eccentricity and the NFAT score are shown for ctrl, INS, and PE. The boxplots show z-transformed feature values of 5

independent cell preparations, the box center shows the median value, and the box limits show the 25th and 75th percentiles. The p values were calculated with

linear mixed effects models; **p < 0.01, ***p < 0.001. NS, not significant. The NFAT score was calculated via our cmoRe thresholding function on the feature

Intensity_MedianIntensity_GFP of the nucleus.
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agents.15–18 In cardiovascular research, however, no high-con-

tent morphology assay for translational applications has been

established yet. Hence, we aimed to devise a robust in vitro

methodology to deconvolute CM morphology for use in basic

research and translational medicine.

We present C-MORE (cellular morphology recognition), a

ready-to-use workflow for single-cell morphology analysis in

CMs. The C-MORE workflow comprises a standardized experi-

mental protocol including high-throughput image acquisition

and morphological feature extraction with CellProfiler.5 With

our R package cmoRe, we present data preprocessing and cu-

ration tailored for CM-specific biology, followed by data analysis

for highly heterogeneous cell types such as NRCMs and hiPSC-

CMs. We validate C-MORE against manual assessment and
2 Cell Reports Medicine 2, 100436, November 16, 2021
benchmark C-MORE performance against alternative analysis

approaches. Last, we evaluate C-MORE for use in basic and

clinical cardiovascular research and demonstrate the applica-

bility of C-MORE with four examples.

RESULTS

Experimental workflow, imaging, and feature extraction
We present an overview of our complete workflow in Figure 1A.

NRCMs were isolated and seeded in 96-well imaging plates.

On the following day, NRCMs can optionally be transduced

with a reporter construct to add specific biological information

to the assay; e.g., the subcellular location of a protein of inter-

est. As a proof of principle, we chose a viral reporter for NFAT
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(nuclear factor of activated T cells), a transcription factor

known to translocate to the nuclear compartment upon activa-

tion of the pro-hypertrophic Calcineurin-NFAT pathway but

otherwise located in the cytoplasm.19 Cells were then treated

with test substances for 48 h; e.g., hypertrophic stimuli, inhib-

itors, or plasma. The cytoskeleton and the nuclei of cells were

stained fluorescently, and NFAT was detected by native green

fluorescence. After image acquisition with the IN Cell Analyzer

2200 microscopy system, segmentation and computing of sin-

gle-cell morphological features were performed using the freely

available software CellProfiler.5 We adapted a standard pipe-

line comprising nucleus segmentation with the Otsu algorithm

and cell segmentation using the propagation algorithm (Data

S1 and S2; Figures S1A–S1D). For initial development pur-

poses, we worked with the two canonical hypertrophic stimuli

phenylephrine (PE) and insulin (INS).20,21 In Figure 1B, we show

representative immunofluorescence images for control, PE,

and INS treatment together with representative feature values

in Figure 1C. PE is known to activate the Calcineurin-NFAT

pathway and, therefore, served as a positive control for the re-

porter readout (Figure 1B, GFP/fluorescein isothiocyanate

[FITC] images).

Data preprocessing: In silico cell sorting and cell cycle
features
CellProfiler output consists of a large data matrix with primary

features for each measured cell (nucleus, cytoplasm, and

custom readouts). These can be analyzed with our custom R

package cmoRe. The main steps include (1) data loading and

quality control, (2) cell cycle analysis and secondary feature

calculation, (3) cell filtering, and (4) data analysis of aggregated

or non-aggregated single cells, as outlined in Figure 2A (detailed

outline in Figure S2).

cmoRe expects a specific folder structure for data loading

(data organization). With these data, an initial quality control

(QC) is performed: QC plots depict the number of cells per well

on the plate layout (Figure 2Ab). To assure absence of potentially

interfering edge effects or cytotoxicity, we checked whether at

least 500 cells per well were present (Figure 2Aa). Further QC

plots or criteria can be set generated on any feature or metric

of interest.

In the next step, specific features of interest are assessed for

filtering steps and deriving biologically relevant information;

e.g., the cell cycle state. For cell cycle analysis, we utilized

the well-established approach of quantifying DNA content via

DAPI intensity (integrated DAPI intensity within the nucleus),

as used commonly in flow cytometry.22,23 For filtering and cell

cycle analysis, distributions of the respective feature measure-

ments are evaluated per biological replicate, plate, and treat-

ment to identify reasonable cutoffs under a set of constraints

(prior knowledge; e.g., an expected range for a cutoff; Methods

S1). Regarding the cell cycle, the most abundant fraction of

cells are G1/G0 cells. Therefore, the highest peak of nuclear

DAPI signal in a histogram/estimated density will correspond

to G1/G0 cells. cmoRe identifies this peak as global maximum

in the corresponding density and a (local) minimum right (mR)

and minimum left (mL) from this value utilizing a resampling

method. These identified minima are used as thresholds to
separate dead cells (left from mL) and G2/M cells (right from

mR) (Figure 2Ac; Methods S1). Additional filters, using the

same methodology, are implemented to remove improperly

attached cells characterized by a high nuclear to cellular area

ratio and median DNA intensity of the nucleus to discriminate

CMs from non-CMs (see also Ali et al.24). These filters were

developed and validated on a manually rated dataset, as

described in Figure S3 (filter steps). Cell cycle fractions are a

prime example of secondary features and are calculated in

cmoRe by default. Defined by the user, any feature can be pro-

cessed analogously, yielding custom secondary features and,

thus, extending the number of features originally provided by

CellProfiler as, e.g., the NFAT score. The NFAT score was

calculated via the cmoRe thresholding function on the feature

Intensity_MedianIntensity_GFP of the nucleus to quantify

NFAT translocation to the nucleus. For single-cell analysis,

these cutoffs, as, e.g., the nuclear DNA intensity, can be used

to assign single cells to specific groups (e.g., CMs or non-

CMs) for cell-type-specific analysis/filtering (see below).

Finally, data of pure, vital, and properly attached CMs can be

analyzed on the single-cell level or after median aggregation of

features per well. Typically, aggregated data are z-transformed

per experiment.

Data analysis: Feature selection
To analyze well-aggregated data for differential treatment ef-

fects,weuseanumber of steps to ensure robustness of identified

features and implement redundancy reduction by generation of

meta-features. We utilize (1) cross-validation, (2) multiple test

correction, and (3) dimensionality reduction in cmoRe. (1) and

(2) are performed with linear mixed models with random effects

of biological replicate and plate to adjust for unwanted variability.

For meta-feature calculation, hierarchical cluster analysis with

adaptive selection of numbers of clusters was utilized.

Figure 2A demonstrates analysis steps, and Figures 2B–2E

show representative analysis results for identification of PE-

induced morphological feature alterations. After preprocessing

and secondary feature generation, the data matrix consisted

of 1,338 morphological features for PE and approximately

110,000 cells per plate. These were each evaluated with a linear

mixed model, assuming a linear equidistant dependency be-

tween the control (ctrl) and lowest concentration as well as be-

tween dose levels (Figure 2B; Methods S1). Cross-validation

ensured only retaining features with high reproducibility (Fig-

ure 2E; Cross-validated coefficient of determination (R2cv) >

0.7), and multiplicity adjustment was performed (Benjamini-

Hochberg). For PE, 112 features were retained (Figure 2E;

adjusted p value (p-adj) < 0.05).

To summarize highly correlated features and to ease interpret-

ability, dimensionality reduction was performed using hierarchi-

cal clustering (Figure 2C). Numbers of clusters were iteratively

incremented within a fixed range, and the intra-cluster variability

was calculated (Figures S4A–S4C). This knee plot gives a first

orientation for a suitable cutoff, but we used the change in

intra-cluster variability for cutoff selection (Figures S4A–S4C;

Methods S1). For PE, this approach identified 38 clusters/

meta-features (Figure 2E). The latter can be visualized with radar

plots (Figure 2D).
Cell Reports Medicine 2, 100436, November 16, 2021 3
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Figure 2. Preprocessing and data analysis with cmoRe

(A) Overview of cmoRe package functionality. (a) Preprocessing comprises data loading, QC, filtering steps, and addition of secondary features. Data analysis

can be done at the single-cell level or bulk population level. (b) An exemplary QC plot for a 96-well plate regarding the number of cells per well. (c) A representative

cell cycle plot as used for cell cycle-based filtering of apoptotic cells and to assign cell cycle status as a secondary feature to each cell. Vertical lines indicate

determined cutoffs; dashed lines limit high-certainty regions of cutoffs.

(B) This boxplot shows the z-transformed cell area for NRCMs incubated with three concentrations of PE in comparison with the control (ctrl). The red line depicts

a fitted linear mixed model assuming equidistance between ctrl/dose-levels, as applied in our analyses. The box center shows the median value, and the box

limits show the 25th and 75th percentiles.

(C) Hierarchical cluster analysis of selected features (ward.D2) for meta-feature construction. Each cluster corresponds to a meta-feature (color coded).

(D) The PE phenotype. Radar plots showmeta-feature values for PE (colored) against meta-feature values of an unstimulated control (gray) ordered in a circle. For

PE, three concentrations are shown (red, low; yellow, intermediate; green, high; control, gray).

(E) Numbers of retained features after each selection step for the canonical hypertrophic stimuli: norepinephrine (NE), adrenaline (A), isoproterenol (ISO), en-

dothelin (ET), and angiotensin (AT); Data of 5 independent cell preparations are shown.
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An alternative to the aggregated bulk population analysis con-

stitutes single cell analysis, which might help with identification

of (functional) subpopulations of cells (see below).
Validation and benchmarking
We present an overview of established morphological tools with

regard to cardiology or integrated analysis in general in Table S1.

Because NRCMs are cells with high morphological heterogene-

ity, thus hindering established cell morphology analysis ap-
4 Cell Reports Medicine 2, 100436, November 16, 2021
proaches, we aimed to assure that cmoRe-analyzed data are

reliable and, therefore, manually evaluated key morphological

features (1). Further, we compare cmoRe with naive analysis ap-

proaches on Cell Profiler output data (2).

(1) Cell sizes used in cmoRe analyses were compared with

manually contoured cell size measurements, revealing a

high overlap (Figures S1E and S4E). The number of NFAT-

GFP-positive nuclei showed high concordance between

manual assignment and cmoRe-based labels (Figure S1F).
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Figure 3. Population-level and single-cell phenotyping of canonical hypertrophic stimuli

(A) Radar plots show meta-feature values for the canonical hypertrophic stimuli aggregated on a population level (three concentrations: red, low; yellow, in-

termediate; green, high; untreated control, gray).

(B) Comparative analysis of the features selected for the canonical hypertrophic stimuli. For each stimulus, the dose-dependent dynamic is color coded (red

indicates an increase and blue a decrease; clusters were calculated on an unstimulated control). See also Figure S4D.

(legend continued on next page)
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CellProfiler is a versatile tool for cell segmentation and extrac-

tion of morphological features from images and an integral

element in our C-MOREworkflow. However, we aimed to assess

the added value of combined use of CellProfiler and cmoRe.

(2) We evaluated pairwise comparison results of ctrl and INS/

PE with three dose levels against the full cmoRe workflow

(preprocessing and filtering of cells, linear mixed model

analyses to naive linear model analyses using filtered

and non-filtered Cell Profiler data with per-well aggre-

gated data) (Figure S5).

Cell size alterations induced by a strong stimulus such as PE

were detected with all analysis approaches (Figures S5A and

S5B). For weaker stimuli such as INS, only cmoRe was able to

identify significant differences between control and treated cells

for all tested dose levels. Assessment of all cellular and nuclear

morphological features in PE/INS-treated cells revealed a small

benefitofusingfilteredversusnon-filtereddatawithnaiveanalysis

approaches in detecting differences, but a major increase in de-

tected differential featureswas observed for cmoRe (Figure S5C).

As a proof of principle, after establishing C-MORE, we aimed

to test its usability for basic research questions.
Morphological patterns of canonical hypertrophic
stimuli
Apotentially reversiblepreliminary stepof heart failure ishypertro-

phic growth of the heart, the primary response to an increased

workload.25 Key signaling pathways involved in cardiac hypertro-

phy have been identified.26 We chose these well-described

canonical hypertrophy stimuli tomodel differingmodes of actions

and togenerateabroad rangeofphenotypes to trainC-MORE.9,26

Following the C-MOREworkflow, we incubated NRCMs with PE,

INS, norepinephrine (NE), epinephrine/adrenaline (A), isoproter-

enol (ISO), endothelin ET) 1, and angiotensin (AT) II in three

respective concentrations (Table S2; Methods S1). Figure 2E

shows differences in the numbers of selected features for each

selection step with cmoRe. Initially, hundreds of altered features

are identified. However, fewer of these features meet the cmoRe

criteria for robustness (R2cv > 0.7). Further dimensional reduction

is achieved bymultiplicity adjustment andmeta-feature aggrega-

tion. In Figure 3A, we show meta-features for all stimuli under

three concentrations (analogous to Figure 2D). We ordered the

stimuli by similarity in previously described adrenergic receptor

activation (alpha, beta, and none). Direct comparison of the

feature pattern between the tested stimuli revealed that each

stimulus pattern comprises a set of stimulus-specific features

and a set of shared features with other stimuli (Figure 3B; Fig-
(C) Single-cell phenotyping of the canonical hypertrophic stimuli: t-distributed

experiment (highest substance concentrations, substances are color coded). Mar

to the right and at the top of the t-SNE plot.

(D) Densities per stimulus on the t-SNE plots from (C). Visually, areas of notably h

ISO and for INS are indicated with a dotted line.

(E) Quantification of stimulus-induced differences, pairwise differences of binned

The most extreme differences are colored in red (upper 5%) and green (lowest 5

ISO and for INS are circled with a dotted line.

In (A) and (B), data are shown for 5 independent experiments. In (C)–(E), single-c

6 Cell Reports Medicine 2, 100436, November 16, 2021
ure S4D). Biologically related stimuli, (A and ISO, for example)

share a great amount of features (Figure 3B). Additionally, we

could validate that the NFAT reporter was functional because it

showed translocation to the nucleus for stimuli known to activate

the respective pathway (Figure S4F).

Single-cell phenotyping
High inherent variability of the primary cell types and the

observed non-uniform morphology following stimulation high-

light the importance of single-cell analysis for detection and

characterization of subpopulations or subtypes of cells. Espe-

cially less abundant cell populations might easily be missed

with per-well aggregated population analyses. Therefore, we as-

sessed low-dimensional t-distributed stochastic neighbor

embedding (t-SNE) (Figures 3C–3E) and uniform manifold

approximation and projection (UMAP) (Figures S6A and S6B)

representations of our high-dimensional morphology measure-

ments of NRCMs treated with canonical stimuli. Different areas

in these representation plots represent specific morphological

phenotypes, and pairwise comparisons allow fast identification

of enriched or reduced regions (corresponding to specific sub-

populations) following treatment (e.g., circles and dotted circles

in Figures 3D and 3E).

Screening in primary CMs
Automated image analysis opens the possibility of high-

throughput screening. As a second exemplary application, we

set up a screening setting for which we treated PE-stimulated

NRCMs with a selection of inhibitors of canonical hypertrophy

pathways27 (Methods S1; Table S2). The resulting phenotypes

are shown in Figure 4A, and with increasing inhibitor concentra-

tion, a phenotypic shift from the PE phenotype back to the

control phenotype was observed. For screening purposes, we

evaluated differences between meta-features in positive control

(PE) versuspositive control and inhibitor-treated cells (Figure 4B).

Plotting a volcano plot with effect size and p value further

simplifies evaluation, and the user is able to set the p value cutoff

depending on the screening purpose (Figure 4B). C-MORE pro-

vides tools for hit detection in large-scaled screening ap-

proaches as commonly used for drug development.

Liquid biopsy: Aortic valve stenosis phenotype
In a third example, we aim to demonstrate the potential clinical

applicability of C-MORE using blood-treated NRCMs. Aortic

valve stenosis (AS) is a cardiac disease with high prevalence in

elderly patients and commonly treated with transcatheter aortic

valve replacement (TAVR)28. We incubated NRCMs with blood

plasma from individuals with AS before and within 1 week
stochastic neighbor embedding (t-SNE) of all single cells measured in one

ginal densities for each stimulus over the t-SNE plot are shown by colored lines

igher density represent subpopulations of potential interest and are circled for

and normalized data (503 50 grid, rate differences were calculated: x� y axis).

%). Quantitatively identified substance-specific subpopulations are circled for

ell analysis of 1 experiment is shown.
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Figure 4. Inhibition of PE-induced hypertrophic growth by canonical pathway inhibitors

(A) Radar plots depict phenotypical changes upon concomitant application of PE and inhibitors of main cardiac hypertrophy pathways in three concentrations

(low, red; intermediate, yellow; high, pink). A positive PE-stimulated control (PE stimulation without any inhibitor) is shown in turquoise, and an untreated control

condition is shown in gray. Stars indicate whether significant differences between PE-stimulated and inhibitor-treated cells with PE stimulation can be observed

(*p < 0.05, **p < 0.01, ***p < 0.001, linearmixed effectsmodel; evaluation of absolute differences in meta-features between PE stimulated ± inhibitor-treated cells).

(B) Volcano plot of effect size and p value (linear mixed effects model) of concomitantly inhibitor- and PE-treated phenotype versus PE-treated phenotype. Data

are shown for 4 independent experiments.
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following TAVR; blood plasma from healthy individuals served as

controls (ctrl). Applied selection steps with C-MORE and

numbers of selected features are presented in Figure 5A. The

prominent aortic valve stenosis phenotype and the attenuated

post-TAVR phenotype are shown in Figures 5C and 5D. For indi-

viduals with aortic valve stenosis in comparison with controls,

224 features were altered significantly; after TAVR treatment,

88 of these 224 features (39%) did not differ significantly from

the control. In the next step, as a tool for systematic investigation

of disease mechanisms, cmoRe allows cross-experimental

comparison. As shown in Figure 5B, we quantified shared fea-

tures of the canonical hypertrophic stimulus experiment and

the aortic valve stenosis phenotype as well as TAVR-reversible

features. To evaluate soundness of the selected features, we

conducted reclassification using a random forest classifier that

showed excellent performance in separating and predicting the

conditions AS, post-TAVR, and ctrl (Figures S6C and S6D). In

the setting of a liquid biopsy, C-MORE allowed us to detect

morphological correlates of a cardiac disease and therapeutic

effects with predictive properties.

Phenotypic characterization of hiPSC-CMs
Generation of organ-specific tissue in vitro from specific induced

progenitor stem cells from affected individuals opens up a multi-

tude of applications.29 However, hiPSC-CMs are highly hetero-
geneous in their appearance and, like NRCMs, challenge

morphological analysis. HiPSC-CM differentiation is a delicate

process and not a specialty of our group; therefore, we re-

analyzed plates from an already published research article for

this fourth example. Seeger et al.30 published an article about

the mutation p.R943x in myosin binding protein C3 (MYBPC3)

in individuals with hypertrophic cardiomyopathy regarding cal-

cium handling and contractility. In this study, hiPSC-CMs

derived from individuals with the heterozygous (het) mutation ge-

notype were compared with healthy wild-type (WT) genotype

controls. Additionally, in this study, hiPSC-CMs were genetically

modified to generate an induced het genotype (het-ind) and an

artificial homozygous genotype (hom) from WT hiPSC-CMs.

Comparison of cell size showed no difference in this study; how-

ever, no high-contentmorphology analyseswere conducted.We

were kindly provided with the very exact same plates and cells

used for this publication and re-evaluated cell size with cmoRe

(Figures 6A and 6C). We could confirm no significant change in

cell size; however, applying full cmoRe analysis, we observed

a prominent phenotype for hom and an attenuated form for het

in comparison with the WT (Figures 6B, 6D, and 6E). cmoRe

was applied successfully in a setting, where traditional morpho-

logical readouts such as cell size show no change; however, we

were able to identify a prominent genotype-related phenotype

using cmoRe.
Cell Reports Medicine 2, 100436, November 16, 2021 7
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Figure 5. Morphological pattern of aortic valve stenosis (aortic stenosis/AS) and reversibility upon TAVR

(A) Preprocessing and data analysis steps and retained number of features in each step (*, reversible after TAVR).

(B) Venn-like diagram of substance-specific and AS-specific features. AS-specific TAVR-reversible features are counted separately and highlighted in lime.

Overlaps within substance-specific features are not shown.

(C) Heatmap of model-predicted batch-corrected differential morphological features (hierarchical clustering, ward.D2).

(D) Radar plots show differentially regulated meta-features for AS and TAVR. Data are shown for 3 independent experiments.
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DISCUSSION

Cellular morphology and its proficiency to serve as a surrogate

for cell state and functionality is a powerful tool typically used

for drug screening and increasingly for personalized medicine

in oncology.4,15 In cardiology research, primary NRCMs are the

most frequently used cell model for preclinical studies. NRCMs

and hiPSC-CMs, however, exhibit a high degree of intercellular

morphological variability, making identification of specific

morphological phenotypes challenging.7 We therefore devel-

oped C-MORE, an experimental pipeline and analysis platform,

to enable researchers to make use of the full potential of CM

morphology assessment. Main advantages comprise the high

number of morphological features being made available

(including customizable secondary features) and the high power

of the approach to detect small but nevertheless robust effects in

highly variable data.

For the experimental part, we aimed to establish a lean work-

flow and therefore chose cytoskeletal and nucleic staining suit-

able for shape and texture analysis. This marker panel can be

adapted to the specific purpose of C-MORE application; e.g.,
8 Cell Reports Medicine 2, 100436, November 16, 2021
staining of specific intracellular proteins of interest. NRCM isola-

tion optimally yields a highly pure population of more than 90%

CMs. However, the presence of a minor fraction of non-CMs

needs to be considered for accurate analysis. In CM-specific

morphology readouts, this has been taken into account, as re-

ported, e.g., by Jentzschet al.31However, theseapproaches typi-

cally require additional fibroblast-specific staining and were

limited to a few morphological features.32 In contrast, cmoRe

identifiesCMsandnon-CMsbasedonDAPI intensity, as reported

previously by Ali et al.,24 and further curates data from dead and

non-attached cells; the automated and adaptive thresholding

function isable toaccommodatechangingcell densitiesandhigh-

ly heterogeneous cell sizes following specific treatments. By

applying the cmoRe threshold function on the integrated intensity

of DAPI as a surrogate for DNA content, we integrate a classical

cell cycle analysis approach into our automated analysis, circum-

venting the need for manual gating as in flow cytometry.22,23

Recently, the importance of cross-talk between different cell

types in the heart has been investigated.7 With the ability to

robustly differentiate CMs from non-CMs, cmoRe opens possi-

bilities to analyze cross-talk between the different cell types in
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Figure 6. Morphological pattern of wild-type (WT), heterozygous (het), and homozygous (hom) MYBPC3 pR943x genotype hiPSC-CMs

(A) Preprocessing and data analysis steps with retained number of features in each step.

(B) Representative images ofWT, het, induced/engineered het (het-ind), and hom genotype hiPSC-CMs regarding theMYBPC3 pR943xmutation. In the lower left

corner of the Troponin T (TnT) images, the indicated image section is shown magnified. Scale bar, 30 mm.

(C) Cell area in MYBPC3 pR943xWT, het, and hom cells (n = 4 patients, linear mixed effects model, z-transformed data).The boxplots show z-transformed values

of cell area, the box center shows the median value, and the box limits show the 25th and 75th percentiles.

(D) Radar plots showing meta-feature values for the pR943x phenotype (het, het-ind, and hom genotypes, colored) against the WT (gray). p values: linear mixed

effects model.

(E) Heatmap of model-predicted differential morphological features for the genotypes WT, het, and hom (hierarchical clustering, ward.D2). n = 4 hiPSC-CM cell

lines derived from affected individuals, n = 2 from pR943x het mutated individuals, n = 2 from pR943x WT and phenotypically healthy persons.
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the heart; e.g., using co-culture experiments or evenwhole-heart

cell suspensions.

Our data preprocessing tools ensure identification of cells of

interest and appropriate handling of features with skewed or var-

iable distributions and can acquire additional biologically valu-

able information.

For data analysis, we used linear mixed models to account for

variability between biological replicates. Canonical hypertrophy

stimulus and inhibitor experiments were performed with a num-

ber of increasing dose levels for which we assumed a linear dose
dependency over ascending treatment dosages. Although this

serves as a robust base analysis, alternative dependencies (fore-

most sigmoidal) should be tested in further work. We imple-

mented a cross-validation step, multiplicity adjustment and

dimensional aggregation to meta-features, to provide a highly

sensitive and robust analysis tool. Benchmarking showed supe-

rior performance of our proposed C-MORE workflow compared

with naive analysis approaches using CellProfiler output data but

lacking essential characteristics of C-MORE. Application of C-

MOREwas especially beneficial in settings where morphological
Cell Reports Medicine 2, 100436, November 16, 2021 9
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changes were very subtle (a weaker stimulus such as INS or

lower concentrations of stimuli). cmoRe allows automated data

curation (filtered cells) and is characterized by powerful detec-

tion of subtle changes in settings of low signal to noise. Wemight

be able to apply C-MORE to other types of heterogeneous pri-

mary cells in the future.

Cardiac hypertrophic growth is a heterogeneous process and

can involve mechanistically different pathways. However, more

work is needed to better understand hypertrophic growth as a

potential target for therapy.33 Because our understanding of car-

diac remodeling deepens on the molecular level, measuring a

few morphological parameters without application of appro-

priate preprocessing steps risks missing relevant morphological

effects.34 We applied C-MORE to four exemplary applications

for basic research and translational medicine to evaluate its per-

formance but without focusing on biological interpretation.

To evaluate C-MORE as a diagnostic tool, NRCMs were

incubated with blood plasma from individuals with aortic valve

stenosis before and after TAVR and from healthy persons. In

this pilot study, we observed excellent classification accuracy

in a representative random forest analysis. This implicates

that the morphology of cells incubated with material from

affected individuals might reflect a complex disease state bet-

ter than conventional blood tests and could be utilized to sup-

port non-invasive diagnostics and clinical decision-making

in the future. Linking results cross-experimentally, as demon-

strated for aortic valve stenosis and the canonical hypertrophy

stimuli, can be a valuable tool for investigating mechanisms of

actions in cardiological disease.

hiPSCs from affected individuals are an important tool for

disease modeling and can facilitate implementation of preci-

sion medicine. However, differentiation of hiPSCs into CMs

to study cardiovascular disease is a lengthy and highly variable

process.34,35 Seeger et al.30 demonstrated that hiPSC-CMs

derived from MYBPC3 mutant individuals showed no signifi-

cant difference in cell size compared with healthy controls.

However, the ability of cmoRe to detect a prominent pheno-

type for the hom genotype and an attenuated phenotype

(het) emphasizes the benefits of our approach. Applying

C-MORE to patient-derived hiPSC-CMs may help deepen our

understanding of individual pathology and enable individual-

ized drug screening in the frame of personalized medicine.

Furthermore, culture and maturation of hiPSC-CMs is a very

delicate process under intense investigation. In general, fine-

tuning of the attachment as lamellipodium formation,

spreading or establishing focal adhesion are biological mean-

ingful process of cell biology, reflecting the functional status

of a cell in a detectable morphological readout. C-MORE might

help to further our understanding of the underlying biology and

standardize these processes.

We present C-MORE as an open-source tool to identify

morphological patterns in basic research and cardiovascular

disease in translational approaches. C-MORE is compatible

with both primary cell types used most frequently in cardiac

research and comprises preprocessing steps and data analysis

suited for extracting relevant information out of data with a low

signal-to-noise ratio. The demonstrated versatility of C-MORE

makes it ideal for quick and easy application in drug screening
10 Cell Reports Medicine 2, 100436, November 16, 2021
and in-depth characterization of single cells for investigating

CM biology. Future applications of C-MORE may include inves-

tigation of disease mechanisms and drug screening in CMs, and

might also be applicable to other primary cell types beyond the

niche of CMs. In translational medicine, C-MORE shows applica-

bility for material from affected individuals with potential to

support clinical decision-making in the frame of personalized

medicine.

Limitations of the study
With our experimental setup, we present a lean C-MORE exper-

imental workflow, but it is possible to integrate additional custom

settings, such as staining for other target proteins of interest or

other reporter readouts. As a proof of principle, we integrated

the NFAT reporter only. Furthermore, staining of the cell mem-

brane might improve exact quantification of cell area or cell

volume compared with staining of structural proteins such as

Desmin or Troponin as used here. The appliedmicroscope setup

only allows acquisition of three fluorescence channels. Using

more markers or even applying a multiplexing approach would

be possible and would only be limited by the specifics of the mi-

croscope in use and computational power available.

Our density-based algorithm used for the preprocessing steps

offers adaptive thresholding and can accommodate variation

and skewed populations. However, in its current implementa-

tion, it is limited to detection of a maximum of three subpopula-

tions (Methods S1). Also, in our study, the mixed linear effects

models assume linear dose dependency over different treatment

dosages. Although this shows superior performance over ana-

lyses lacking cmoRe characteristics, other dose-effect depen-

dencies (e.g., sigmoidal) are currently not modeled explicitly.

The four representative use cases of C-MORE were designed

as pilot studies to demonstrate C-MORE’s versatile fields of

application and require further intense experimentation.

For the liquid biopsy approach, we currently use samples of

healthy control individuals as a reference, but we expect to

enable computing a virtual control sample in the future based

on the growing database.
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7. Litvi�nuková, M., Talavera-López, C., Maatz, H., Reichart, D., Worth, C.L.,

Lindberg, E.L., Kanda, M., Polanski, K., Heinig, M., Lee, M., et al. (2020).

Cells of the adult human heart. Nature 588, 466–472.

8. Biendarra-Tiegs, S.M., Secreto, F.J., and Nelson, T.J. (2020). Addressing

Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived

Cardiomyocytes. Adv. Exp. Med. Biol. 1212, 1–29.

9. Ryall, K.A., Bezzerides, V.J., Rosenzweig, A., and Saucerman, J.J. (2014).

Phenotypic screen quantifying differential regulation of cardiac myocyte

hypertrophy identifies CITED4 regulation of myocyte elongation. J. Mol.

Cell. Cardiol. 72, 74–84.

10. Hein, S., Furkel, J., Knoll, M., Aus dem Siepen, F., Schönland, S., Hegen-

bart, U., Katus, H.A., Kristen, A.V., and Konstandin, M.H. (2021). Impaired

in vitro growth response of plasma-treated cardiomyocytes predicts poor

outcome in patients with transthyretin amyloidosis. Clin. Res. Cardiol. 110,

579–590.

11. Toepfer, C.N., Sharma, A., Cicconet, M., Garfinkel, A.C., M€ucke, M.,

Neyazi, M., Willcox, J.A.L., Agarwal, R., Schmid, M., Rao, J., et al.

(2019). SarcTrack. Circ. Res. 124, 1172–1183.

12. Rupert, C.E., Chang, H.H., and Coulombe, K.L. (2017). Hypertrophy

changes 3D shape of hiPSC-cardiomyocytes: Implications for cellular

maturation in regenerative medicine. Cell. Mol. Bioeng. 10, 54–62.

13. Woo, L.A., Tkachenko, S., Ding, M., Plowright, A.T., Engkvist, O., Ander-

sson, H., Drowley, L., Barrett, I., Firth, M., Akerblad, P., et al. (2019).

High-content phenotypic assay for proliferation of human iPSC-derived

cardiomyocytes identifies L-type calcium channels as targets. J. Mol.

Cell. Cardiol. 127, 204–214.

14. van Rooij, E., Doevendans, P.A., de Theije, C.C., Babiker, F.A., Molkentin,

J.D., and de Windt, L.J. (2002). Requirement of nuclear factor of activated

T-cells in calcineurin-mediated cardiomyocyte hypertrophy. J. Biol.

Chem. 277, 48617–48626.

15. Snijder, B., Vladimer, G.I., Krall, N., Miura, K., Schmolke, A.S., Kornauth,

C., Lopez de la Fuente, O., Choi, H.S., van der Kouwe, E., G€ultekin, S.,

et al. (2017). Image-based ex-vivo drug screening for patients with aggres-

sive haematological malignancies: interim results from a single-arm, open-

label, pilot study. Lancet Haematol. 4, e595–e606.

16. Gorshkov, K., Chen, C.Z., Marshall, R.E., Mihatov, N., Choi, Y., Nguyen,

D.-T., Southall, N., Chen, K.G., Park, J.K., and Zheng, W. (2019).

Advancing precision medicine with personalized drug screening. Drug

Discov. Today 24, 272–278.

17. Breinig, M., Klein, F.A., Huber, W., and Boutros, M. (2015). A chemical-ge-

netic interaction map of small molecules using high-throughput imaging in

cancer cells. Mol. Syst. Biol. 11, 846.

18. Simm, J., Klambauer, G., Arany, A., Steijaert, M., Wegner, J.K., Gustin, E.,

Chupakhin, V., Chong, Y.T., Vialard, J., Buijnsters, P., et al. (2018). Repur-

posing High-Throughput Image Assays Enables Biological Activity Predic-

tion for Drug Discovery. Cell Chem. Biol. 25, 611–618.e3.

19. Wilkins, B.J., and Molkentin, J.D. (2004). Calcium-calcineurin signaling in

the regulation of cardiac hypertrophy. Biochem. Biophys. Res. Commun.

322, 1178–1191.

20. Shimizu, I., and Minamino, T. (2016). Physiological and pathological car-

diac hypertrophy. J. Mol. Cell. Cardiol. 97, 245–262.

21. Nakamura, M., and Sadoshima, J. (2018). Mechanisms of physiological

and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407.

22. Darzynkiewicz, Z., and Juan, G. (2001). DNA content measurement for

DNA ploidy and cell cycle analysis. Curr Protoc Cytom.Chapter 7, Unit 7.5.

23. Ferro, A., Mestre, T., Carneiro, P., Sahumbaiev, I., Seruca, R., and

Sanches, J.M. (2017). Blue intensity matters for cell cycle profiling in fluo-

rescence DAPI-stained images. Lab. Invest. 97, 615–625.
Cell Reports Medicine 2, 100436, November 16, 2021 11

https://doi.org/10.1016/j.xcrm.2021.100436
https://doi.org/10.1016/j.xcrm.2021.100436
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref1
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref1
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref2
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref2
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref2
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref3
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref3
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref3
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref4
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref4
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref5
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref5
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref5
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref5
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref6
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref6
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref6
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref7
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref7
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref7
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref7
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref8
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref8
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref8
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref9
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref9
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref9
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref9
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref10
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref10
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref10
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref10
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref10
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref11
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref11
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref11
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref11
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref12
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref12
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref12
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref13
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref13
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref13
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref13
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref13
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref14
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref14
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref14
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref14
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref15
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref15
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref15
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref15
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref15
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref15
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref16
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref16
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref16
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref16
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref17
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref17
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref17
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref18
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref18
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref18
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref18
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref19
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref19
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref19
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref20
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref20
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref21
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref21
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref22
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref22
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref23
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref23
http://refhub.elsevier.com/S2666-3791(21)00298-6/sref23


Article
ll

OPEN ACCESS
24. Ali, S.R., Nguyen, D., Wang, B., Jiang, S., and Sadek, H.A. (2020). Deep

Learning Identifies Cardiomyocyte Nuclei With High Precision. Circ. Res.

127, 696–698.

25. Hein, S., Arnon, E., Kostin, S., Schönburg, M., Elsässer, A., Polyakova, V.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Monoclonal Anti-Desmin antibody, rabbit abcam Cat# ab15200, RRID: AB_301744

Goat anti-Rabbit IgG (H+L)

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 594

Life Technologies, Thermo Fisher Cat# A-11012, RRID: AB_2534079

Monoclonal Anti-troponin T antibody, rabbit abcam ab209813

Bacterial and virus strains

AdNFATc3-GFP adenovirus Sanna et al.;36 N/A

MacDonnell et al.37

Biological samples

Aortic stenosis patient blood plasma Department of Cardiology,

University Hospital Heidelberg

Protocol S-587/2019

Chemicals, peptides, and recombinant proteins

Cesium chloride Carl Roth 7878.2

Suprarenin/Epinephrin, 1mg/ml Sanofi 6053210

(R)-(-)-Phenylephrine hydrochloride Sigma A9525

Endothelin 1 97% (HPLC), powder sigma E7764

Insulin Insuman rapid 40 ie Sanofi 1843315

(-) Isoproterenol hydrochloride Sigma I6504

Arterenol 1mg/ml Sanofi 3870227

Tricibine Akt V Inhibitor Sigma 124038

ERK/MEK Inhibitor Promega U0126

PF 573228 FAK inhibitor Tocris 3239

BIO GSK3b inhibitor Tocris 3194

Ly294002, PI3K Inhibitor Millipore 440202

Laminin Sigma L2020-1MG

Paraformalaldehyd, 20% solution Electron Microscopy 15713-S

HEPES Carl Roth 9105.2

Medium 199 Sigma M7528-500ML

FBS Life Technologies 10500064

DAPI Life Technologies D1306

DNase II Type V from Bovine spleen Sigma D8764-300KU

Experimental models: Cell lines

Neonatal rat cardiomyocytes from rattus

norvegicus

Janvier Rattus norvegicus, wistar

Software and algorithms

INCellAnalyzer 2200

Acquisition Software

GE N/A

CellProfiler The Broad Institute N/A

R 4.0 R Core Team https://www.r-project.org

cmoRe This paper https://github.com/mknoll/cmoRe

Other
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TC-Treated Imaging Plate with Lid

corning 353219
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jennifer

Furkel (Jennifer.furkel@med.uni-heidelberg.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at github and is publicly available as of the date of publication (https://github.com/mknoll/

cmoRe). CellProfiler pipelines are available as online supplemental files (Data S1 and S2).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

NRCM isolation and treatment
NRCMswere obtained from hearts of 1-2 days old neonatal rats using a trypsin based enzymatic digestion standard protocol as pre-

viously described.38 To enrich cardiomyocytes, a percoll gradient centrifugation was performed after digestion. Cells were then

counted and plated onto imaging compatible 96-well plates (corning, 353219), which were coated with Laminin (sigma, L2020,

diluted to 1mg/l PBS) for 2h beforehand. 20 000 cells per well were seeded in 200ml high serum medium (10% FBS in M199) for

the first 24h.

24h after isolation, NRCMs were washed with PBS and incubated in 80ml of low serum medium (0.5% FCS in M199) with NFAT-

GFP adenovirus for 12h. The following 48h cells were incubated with hypertrophy inducing stimuli (phenylephrine (PE), adrenaline (A),

noradrenaline (NA), isoproterenol (ISO), insulin (INS), endothelin (ET), angiotensin II (AT), all reagents were diluted in water and PBS)

and an unstimulated PBS control (CTRL). For the liquid biopsy/ aortic stenosis experiments NRCMs were treated for 48h with blood

plasma of healthy controls or patients showing a high-grade stenosis of the aortic valve undergoing transcatheter aortic valve implan-

tation (before TAVR, within one week after TAVR). For the inhibitor screening experiment cells were for 48h concomitantly incubated

with PE and an inhibitor of major pathways involved in cardiac hypertrophy (inhibitors of protein kinase B (AKT), extracellular signal-

regulated kinase (ERK), focal adhesion kinase (FAK), glykogensynthase kinase (GSK) or phosphoinositid-3-kinase (PI3K)). All

inhibitors were diluted in Dimethylsulfoxid (DMSO), adequate DMSO solvent controls were performed. Detailed information of the

reagents used and concentrations can be found in Table S2.

hiPSC-CMs
hiPSC generation and differentiation into hiPSC-CMs was performed by and as previously described by Seeger et al.30 The identical

plates utilized in the study by Seeger et al. were kindly provided to us, permeabilized and stained with anti-Troponin T.

METHOD DETAILS

AdNFATc3-GFP adenovirus amplification and purification
The adNFATc3-GFP adenovirus was kindly provided by Dr. Mark Sussmann. The AdNFATc3-GFP adenovirus, as described previ-

ously was propagated on HEK293 cells.36,37,39 In brief, cells were harvested and the pellet was washed with PBS (10 minutes, 300 g,

4�C).We performed four freeze-thaw cycles to lyse the cells (thawing at room temperature, freezing on dry ice), incubated the solution

with DNase I (10mg/mL, 30min, 37�C). Debris was pelleted at 750 g for 10minutes at 4�C. The supernatant was layered onto a Cesium

Chloride (CsCl) gradient (CsCl cushions of 1.4 g/ml and 1.2 g/ml). We performed one centrifugation for 3h, and two subsequent cen-

trifugations of 18h (BeckmanCoulter SW41 rotor, 22500 rpm, 4�C temperature). The purified viruswas dialyzed against dialysis buffer

(3% sucrose, 10mMTris (pH 7.8 at room temperature), 150mMNaCl, 10mMMgCl2), as described previously.40 Storage temperature

of the purified virus was �80�C.

Immunocytochemistry
In all NRCM experiments cells were fixed with 4% paraformaldehyde (PFA), permeabilized with 0.2% Triton X-100, then incubated in

blocking solution (10% FBS in PBS) for one hour at room temperature. In all NRCM experiments cytoskeletal staining using a desmin

antibody (1:800) was applied on the plates overnight at 4�C. After washing with PBS the secondary antibody (1:600) was applied for

1h. The hiPSC-CMswere stained with troponin T antibody and secondary antibody (1:400 and 1:600). Nuclear DNAwas stained in all

experiments using 40,6-Diamidin-2-phenylindol (DAPI).
e2 Cell Reports Medicine 2, 100436, November 16, 2021
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Image acquisition (IN Cell Analyzer 2200)
Imageswere acquired in an automated fashion using the INCell Analyzer 2200. For all NRCMexperiments a centered square arrange-

mentof a 4x4gridof imaging fieldsperwellwaschosenand threechannelswere imaged (DNA -DAPI, desmin –TexasRed,NFAT-GFP

native fluorescence /FITC), as outlined in Figures 1A and1B. For hiPSC-CMs, a circular arrangement of 96 imaging fields formaximum

coverage of the well was chosen and two fluorescent channels for each field were imaged (DNA - DAPI, troponin T – TexasRed).

Images had a resolution of 2048x2048 pixel.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image processing, cell segmentation and feature extraction
Image features were computed from raw images using CellProfiler v 3.1.8.5 Upon loading images into the software, images of the

three fluorescent channels blue (DAPI), TexasRed (Desmin/TroponinT), GFP/FITC (NFAT) are matched by file name and image meta-

data such as well number and image number are extracted from file names. Then nuclei are segmented based on an intensity-based

algorithm on the DAPI image (single steps: Figure S1A). Using these nuclei as seeding points, cells are segmented by the propagation

algorithm, which identifies cell borders based on intensity changes (Figures S1B and S1D). The occurrence of double nucleated cells

is taken into account by assigning nuclei located within 10 pixels from each other to one cell (Figure S1C). This cutoff was validated by

comparing unstimulated and PE treated cells to be optimal for discrimination of binucleated cells from single nucleated cells in close

proximity. Cells touching the image borders are excluded from further analysis. Nuclei and cell segmentations are used to measure

multiple primary morphological features such as shape, intensity, and texture in all acquired images. Single cell measurements are

stored in .txt files (one row per cell). CellProfiler pipelines are provided as Data S1 and S2.

Preprocessing
Cell and feature processing was performed as described in the main text using functions of the custom written R package cmoRe,

publicly available on github (https://github.com/mknoll/cmoRe). Its general functionality is outlined in Figure 2, a detailed outline with

function names is provided in Figure S2, a full handbook of all package functions and an example are provided in theMethods S1 and

with the package vignette. The NFAT score was calculated by automated thresholding on the median GFP intensity of the nucleus

(Figure S4F). It reflects translocation of NFAT-GFP from the cytoplasm compartment into the nuclear compartment upon activation of

the Calcineurin-NFAT pathway. For cell cycle analysis we used the integrated DAPI intensity of the nucleus, for identification of non-

attached cells we used the cellular/nuclear area ratio and for identification of non-cardiomyocytes we used themedian DAPI intensity

of the nucleus (Figure S3).

Single cell phenotyping
Filtered, non-aggregated data of highest concentrations of tested substances were analyzed with t-SNE using the FI-tSNE imple-

mentation41 and UMAP,42 similarity between substance induced phenotypes were assessed by binning the two-dimensional

t-SNE data (n = 50 bins), normalizing data (rates) and calculating pairwise differences. 5% and 95% quantiles of combined unique

pairwise combination differences were used to indicate significance (Figure 3E).

Population-level phenotyping
All analyses were performed in R, version 3.4.1. Mixed effect models were computed using lme443 or nlme.44 Significance level was

set to alpha = 0.05 (two-sided).
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