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In this paper we make two contributions to the analysis of brain oscillations with CFC

techniques. First, we introduce a new bispectral CFC measure which is selective to

couplings between three or more brain sources. This measure can be derived from

ordinary cross-bispectra by performing a total-antisymmetrization operation on them.

Significant coupling values can then be attributed to at least three interacting signals. This

selectivity to the number of sources can be helpful to test hypotheses on the number of

brain sources involved in the generation of commonly observed brain oscillations, such

as the alpha rhythm. In a second step we present the correct empirical distribution for

the coupling measure, which is necessary to properly assess the significance of coupling

results. More importantly however, this corrected statistic is not limited to our particular

measure, but holds for all complex-valued coupling estimators. We illustrate how the

very common misassumption of empirical normality of such estimators can lead to a

systematic underestimation of p-values, the breakdown of multiple comparison control

procedures and in consequence a drastic inflation of the number of false positives.

Keywords: bicoherence, EEG, MEG, artifacts of volume conduction, cross-frequency coupling

1. INTRODUCTION

Neural oscillations continue to be widely studied for their role in cognition and as a correlate of
various neurophysiological states (Engel et al., 2013). Such neurophysiological processes exhibit
high temporal dynamics that can best be captured by techniques providing the required temporal
resolution. Even though EEG and MEG meet these requirements, volume conduction effects
complicate the interpretation of sensor-level results in terms of the underlying brain sources.

Many connectivity measures attempt to distinguish true from artifactual connectivity by
assuming a linear and approximately instantaneous mapping from sources to sensors (Nolte et al.,
2004; Pascual-Marqui, 2007; Stam et al., 2007; Pascual-Marqui et al., 2011; Vinck et al., 2011; Hipp
et al., 2012; Brookes et al., 2014; Chella et al., 2014).While most of the above references detect linear
coupling at one specific frequency, measures for cross-frequency coupling (CFC) exist in the form
of the cross-bispectrum or its normalized version (bicoherence), which are third-order statistical
moments in the frequency domain (Chella et al., 2014; Bartz et al., 2019). In its most general form,
the bispectrum reflects non-linear interactions between signals at three different frequencies.
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The apparent difficulty to interpret bicoherence has many
researchers prefer more intuitive estimates of phase-amplitude
coupling (PAC), like the one suggested by Canolty et al.
(2006), despite PAC being the exact type of coupling measured
by bicoherence, as well (Hyafil, 2015; Kovach et al., 2018).
Estimates of PAC have even been shown to represent a
special case of bicoherence, which is limited to interactions
between a maximum of two as opposed to three sources
(Shahbazi-Avarvand et al., 2018). While the bispectrum occurs
naturally as the Fourier-transformed third-order cumulant-
generating function, the mathematical formulation of the
PAC estimator in Canolty et al. (2006) was driven by the
need to quantify a particular type of coupling. The resulting
estimator relies on bandpass filtering of the signal and makes
two irreconcilable bandwidth demands: While the amplitude-
giving signal needs to be filtered widely enough to preserve
potential modulation side bands, the extraction of instantaneous
phases and amplitudes requires narrow filtering. In comparison,
bicoherence estimates do not rely on repeated bandwidth-
filtering, they avoid the bandwidth-tradeoff allowing them
to provide PAC estimates at a higher frequency-resolution
and lower computational cost (Kovach et al., 2018; Shahbazi-
Avarvand et al., 2018).

In addition, CFC measures based on higher-order spectra
can be tweaked to selectively react to true signal interactions,
while neglecting artifacts of volume conduction. A CFC
measure of this kind was proposed by Chella et al. (2014)
and was constructed by performing an antisymmetrization
operation on two of the electrode indices in Bijk. Here,
we extend this to a trivariate version, which not only
vanishes for entirely independent source signals, but for
interactions between less than three sources, as well. We thus
construct a CFC measure, which is selective to the number of
interacting signals.

In Schneidman et al. (2006) and Tkacik et al. (2014) it is
shown that simple pairwise interaction models, in the latter
case with an additional global constraint, can explain most of
the coupling between small groups of neurons in the retina.
If this was true for larger networks as well, the restriction to
pairwise interactions could avoid the “curse of dimensionality”
when using coupling models of ever-increasing statistical order.
Unfortunately, this does not seem to be the case (Ganmor
et al., 2011). Our approach is complementary to that and
focusses on isolating those parts of observed interactions,
which are strictly inconsistent with pairwise couplings. We
believe this to be a more practical approach to the study of
complex interactions.

Much of this paper is devoted to the statistical properties
of this newly introduced coupling measure, which we derive
from the statistical properties of complex variables using
the central limit theorem. Our findings are of general
importance for the statistical analysis of complex valued coupling
measures. In a last step, we apply the coupling measure
to EEG resting state data for healthy controls and patients
with schizophrenia.

2. METHODS

2.1. Background: Cross-Bispectra and
Bicoherence
A cross-bispectrum is a tensor defined for three different signals,
which represents coupling between signal components at three
different frequencies. Let Xi(f ) be the Fourier coefficient of a
signal in channel i at frequency f in some segment of data.
Omitting the segment index, the cross-bispectrum is defined as

Bijk(f1, f2) = 〈Xi(f1)Xj(f2)X
∗
k (f1 + f2)〉, (1)

where 〈·〉 is the expectation which we approximate by an average
over segments. The cross-bispectrum is a third-order statistical
moment in the Fourier domain, analogous to the cross-spectrum,
which is a second-order statistical moment. The frequency of
the third signal in Equation (1) is constrained to be the sum
of the first two frequencies, since any other choice leads to
vanishing results in case of resting-state data, which, in contrast
to task-related data, does not have an intrinsic clock.

Bicoherence is a normalized version of cross-bispectra. We
here use a normalization based on three-norms rather than
conventional two-norms (Shahbazi-Avarvand et al., 2014). This
norm is defined as

Ni(f ) = 〈|Xi(f )|3〉1/3, (2)

so that bicoherence is defined as

bijk(f1, f2) =
Bijk(f1, f2)

Ni(f1)Nj(f2)Nk(f1 + f2)
. (3)

Using this norm, the absolute value of bicoherence is bounded
by one and the norm is constructed as a product of univariate
norms, while other commonly used norms violate either of these
two conditions.

2.2. Totally Antisymmetric
Cross-Bispectrum (TACB)
It was shown by Chella et al. (2014) that a specific antisymmetric
combination of the cross-bispectrum, namely

B̃ij(f1, f2) = Biij(f1, f2)− Biji(f1, f2), (4)

is robust to artifacts of volume conduction: if the signals in
channel space are superpositions of independent sources, this
quantity statistically vanishes. This is analogous to the case of the
imaginary part of complex coherency, which is, apart from the
imaginary unit, identical to its antisymmetric part (Nolte et al.,
2004). In contrast to the imaginary part of coherency, B̃ij is not
always purely imaginary but can have an arbitrary phase.

We take this idea one step further: Rather than including
antisymmetry only with respect to two indices, we construct a
totally antisymmetric part of the cross-bispectrum

Tijk = Bijk + Bkij + Bjki − Bjik − Bkji − Bikj, (5)
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where we omitted the frequency variable f . We refer to
this quantity as the ’Totally Antisymmetric Cross-Bispectrum’
(TACB). Tijk is antisymmetric with respect to switching any pair
of channel indices ijk. Its important property is that it vanishes
not only if all sources are independent, but also if interactions
are pairwise. This implies, that a non-vanishing result necessarily
reflects an interaction of at least three sources.

To show this, we first assume that there are only two sources
and the signals in sensor space can be written as

Xi(f ) =
2

∑

p=1

aipsp(f ), (6)

with mixing coefficients aip and source activity sp(f ). Then, the
cross-bispectrum reads

Bijk(f1, f2) =
∑

pqr

aipajqakrB
S
pqr(f1, f2), (7)

where

BSpqr(f1, f2) = 〈sp(f1)sq(f2)s∗r (f1 + f2)〉 (8)

denotes the cross-bispectrum of the sources. The crucial point is
that the source indices can only assume two different values for
two sources. Hence, for any term in the sum of Equation (7) two
of the source indices must be equal and the term cannot have
an antisymmetric part. For example if q = p, the corresponding
contribution reads aipajpakrB

S
ppr(f1, f2) which is symmetric with

respect to switching the indices i and j and its antisymmetric
part vanishes. Furthermore, the antisymmetric combination is
a linear operation, and if the antisymmetric part of all terms in
Equation (7) vanishes, then also the antisymmetric part of the
sum vanishes.

Next we consider the case with more than two sources, which
only interact in a pairwise manner. For this we need to assume
that all activities have zero mean. First, we emphasize that third-
order statistical moments are additive for independent activities
because terms involving two or more independent activities must
contain at least one of them linearly, e.g., for two independent
signals x(f ) and y(f ) one has

〈x(f1)x(f2)y∗(f1 + f2)〉 = 〈x(f1)x(f2)〉〈y∗(f1 + f2)〉 = 0, (9)

since 〈y∗(f1 + f2)〉 = 0 for signals with vanishing mean. Note,
that this additivity is lost beyond the third order, because two
independent signals can both occur non-linearly.

Putting things together, for only pairwise interactions the
cross-bispectrum is the sum of the cross-bispectra of each pair,
which all have a vanishing TACB, such the TACB of their sum
vanishes, as well. An important aspect is that for f1 = f2 the cross-
bispectrum is symmetric with respect to switching the first two
indices. Thus, to observe a totally antisymmetric part, we need to
study the interaction of signals at three different frequencies f1,
f2, and f1 + f2.

It is important to consider, that the normalization term to
calculate bicoherence from cross-bispectra is not symmetric with

respect to switching indices. Hence, the totally antisymmetric
part of bicoherence does not necessarily reflect an interaction
of at least three sources. To normalize TACB we use a statistical
normalization described below.

The basis of the above finding is the quasistatic
approximation. Within this approximation the mapping of
sources to sensors is frequency independent. Our essential
argument still holds for frequency dependent forward mapping
provided that corresponding frequency dependent factors do not
depend on space. If also this weaker condition is violated by a
non-negligible amount the claim is in general not valid. We leave
it here as a open question to what extent this is the case for EEG
or MEG.

2.3. Correct Statistics for TACB and Other
Phase-Based Coupling Measures
2.3.1. The Distribution of the Coupling Measure

Under the Null-Hypothesis
Estimators of coupling strength fluctuate around the true
coupling value (for unbiased estimators) and this also holds if
there is no coupling between the signals at all. We therefore need
to determine the distribution of coupling estimates for uncoupled
signals to know whether our observed coupling value is evidence
for coupling after all. A common approach is to estimate the null
distribution using the surrogate data, which by definition should
not be phase-coupled at all.

In general there are two approaches to the estimation of
any distribution: Either we make prior assumptions on the
type of distribution and only use the surrogates to estimate the
distributions parameters, or we avoid any prior assumptions if
we choose non-parametric tests. Non-parametric distribution
estimates require a lot more data, but are often the only choice if
prior distributional assumptions cannot be made. It is important
to get a precise estimate of the null distribution of the coupling
measure and it is even more important if reliable p-values are to
be reported.

In the case of estimators which are defined as averages over
complex quantities (e.g.), valid distributional assumptions can
in fact be made by means of the central limit theorem: typical
unnormalized coupling estimators, like the cross-bispectrum
discussed here but also like a standard cross-spectrum, are
defined as averages over complex values and are subject to the
complex central limit theorem, which states, that values taken by
the estimator will follow a complex normal distribution. If the
null hypothesis is true and if the phases themselves are uniformly
distributed, the complex estimator, say u, is distributed with
the density

pu(u) ∼ exp

(−|u|2
2σ 2

)

(10)

where σ is the only parameter and can be estimated empirically
with surrogate data for which the null hypothesis is true using

σ 2 = 1

2
〈|u|2〉 (11)
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It is well-known that in this case the absolute value of u is
Rayleigh distributed

p|u|(|u|) =
|u|
σ 2

exp

(−|u|2
2σ 2

)

(12)

If we observe a specific coupling u0 we can hence estimate a
p-value, i.e., the probability that this or a larger coupling was
observed by chance if the null-hypothesis is true,

p =
∫ ∞

x=|u0|
p|u|(x)dx = exp

(

−|u0|2
2σ 2

)

(13)

2.3.2. Surrogate Data
While our TACB estimator T is known to generate Rayleigh
distributed coupling estimates, we nonetheless generate some
surrogate times series X̃1(f ), . . . X̃N(f ), following the approach
of Canolty et al. (2006) to estimate the distribution’s shape
parameter σ : Given that TACB detects non-random phase
relations between the frequency components Xi(f1),Xj(f2) and
Xk(f3), we destroy a potential phase structure by circularly
shifting the Ne epochs of the third frequency component
(X3)1...Ne by a uniformly distributed offset within [1 . . .Ne − 1].
We used the TACB values t̃ijkm for them.th surrogate data set for
the channel triple i, j, k. We used M = 100 surrogate data sets to
compute an estimate of the squared Rayleigh parameter σ 2, for
which an unbiased maximum likelihood estimate is given as

σ 2
ijk =

1

2M

M
∑

i=1

|t̃ijkm|2 (14)

and defined a squared scaled TACB as,

Qijk =
|tijk|2

2σ 2
ijk

(15)

2.3.3. Comparison With z-Scoring
A different statistical approach was proposed by Canolty et al.
(2006): The empirical absolute value of the coupling is z-scored
by subtracting mean and dividing by the standard deviation
of the corresponding surrogates. We suppose that the authors
calculated p-values, assuming, that under the null-hypothesis the
z-score follows a standard Gaussian distribution. The difference
between a Rayleigh and a Normal distribution might seemminor
at first. But the consequences of the resulting p-value estimation
errors can be very problematic for reasons:

1. It is not uncommon for researchers to state and compare
very precise and often tiny p-values. When p-values are
based on a Normal instead of a Rayleigh distribution
Figure 1A, the estimation error increases for decreasing p-
values (Figures 1B,C).

2. This underestimation of p-values might be considered
negligible if we conduct a single hypothesis test. For
multiple simultaneously tested hypotheses estimation errors
accumulate and render multiple testing correction procedures
ineffective. These procedures control the risk of false positives

by keeping the FWER or FDR below a predefined threshold.
For correctly estimated p-values the risk of false positives can
be reliably kept below this threshold. But even small individual
p-value estimation errors cause these control procedures to fail
for higher numbers of simultaneously tested hypotheses.

To demonstrate this effect, we used the MATLAB built-in
random number generator to draw sets of independent Rayleigh
samples, where each of these sets represented a family of coupling
estimates under the null hypothesis (absence of coupling). For
each family of estimates we calculated the correct Rayleigh-
based p-values, but also estimated p-values resulting from the
mistaken assumption of normally distributed coupling estimates.
To compute these normal-based p-values for a set of Rayleigh
samples, we calculated a z-score zx for each sample x and
used the complementary error function erfc to estimate p =
0.5 erfc(zx/

√
2). Both sets of p-values were then corrected for

multiple comparisons by either controlling FWER (Bonferroni)
or FDR (Benjamini-Hochberg step-up) at a level α = 0.05
(green lines in Figure 1D). FDR and FWER are equivalent
under the global null hypothesis and in both cases—presuming
correctly estimated p-values—we can expect to observe any false
positives in only 5% of the tested families. For an estimate of
this percentage for our two sets of p-values, we performed 500
independent repetitions of the above procedure for 7 different
hypothesis family sizes log-spaced between 100 and 106. Using
normal-based p-values, the probability of false positives quickly
increases for higher numbers of multiple comparisons (red
lines in Figure 1D). For a family size of 106 hypotheses, the
probability of getting one or more false positives after correcting
for multiple comparisons still is higher than 0.99. Thus, despite
the absence of any true effect, we almost certainly get one
or more significant results due to the minor but systematic
underestimation of p-values.

2.4. TACB Analysis of EEG Alpha
Oscillations
2.4.1. Experimental Setup and Data
To demonstrate a use case of TACB, we analyze the same
data as in Andreou et al. (2015a,b) and Shahbazi-Avarvand
et al. (2018). The EEG recordings were provided by the
Department of Psychiatry of the University Medical Center
Hamburg-Eppendorf. The data comprises continuous resting-
state recordings (5–10 min, sampled at 1 kHz, eyes closed)
of 22 patients with first-episode schizophrenia and 24 healthy
controls. Patients were recruited through the Center for Psychotic
Disorders of the Department of Psychiatry, while controls
were taken from the general public according to predefined
inclusion/exclusion criteria regarding their medical history
(Leicht et al., 2015). The data was recorded using 64 Ag/AgCl
electrodes positioned according to the 10–20 system with
additional electrode positions AF7,AF3, AF4, AF8, F5, F1, F2, F6,
F10, FT9, FT7, FC3, FC4, FT8, FT10, C5, C1,C2, C6, TP7, CPz,
TP8, P5, P1, P2, P6, PO3, POz, and PO4 mounted on an EEG cap
(ActiCaps, Brain Products, Munich, Germany), Impedance was
kept below 5 k� throughout the experiments and EEG data was
recorded using the Brain Vision Recorder software version 1.10
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FIGURE 1 | (A) Rayleigh and Normal distribution densities over Rayleigh quantiles. (B) Comparison between correct p-values from Rayleigh distribution (green) and

the p-values assuming a Gaussian distribution. (C) Probability of at least one false detection after correction for multiple comparison as function of the number of

comparisons. (D) Error accumulation of p-value estimation errors in the case of multiple comparisons for Bonferroni FWER control (big markers) and

Benjamini-Hochberg FDR control (small markers).

(Brain Products, Munich, Germany). Post-processing involved
ICA decomposition, artifact-removal by visual inspection and
application of a 0.1–70 Hz bandpass filter. Furthermore, the data
was down-sampled to 256 Hz and re-referenced to the common
average reference.

2.4.2. Subject-Specific Alpha Frequencies
The fundamental frequency of alpha rhythms in humans is
subject-specific and typically ranges from 9 to 13 Hz. To
determine an individual alpha frequency for each of the 24
subjects, we devised an automated selection procedure, which
makes use of the distinct visibility of alpha rhythm harmonics
in univariate channel bicoherence patterns (Figure 2). These
are auto-bicoherences—computed from a single channel signal
and evaluated over several frequency pairs (f1, f2). While one
could simply pick the channel and alpha frequency with the
highest bicoherence peak value, this approach is hampered by
the presence of heart artifacts, which themselves show large
bicoherence values over several pairs of frequencies (Figure 2).
The distinguishing feature between bicoherence patterns of alpha
rhythms and those of heart artifacts is the occurrence of clearly
localized peaks of the former. To quantify the peakiness of a

point in the bicoherence plain—such a single point corresponds
to the bicoherence calculated for a particular frequency pair at a
single channel—it needs to be compared to neighboring points
in that plain. The Laplace operator provides just that and is
even used for edge detection purposes in image processing tasks.
We therefore applied a discrete Laplace filter to the univariate
channel bicoherences bui and selected the optimal channel i and
alpha frequency fα to maximize the new quantity 1bui , thus

(imax, fmax) = argmax
i,f∈F

1bui (f , 2f ), (16)

where F denotes the alpha-band band 9 and 13 Hz and where
we approximated the discrete Laplace operator 1 for an offset of
h = 2Hz approximated by finite differences as

1bui (f1, f2) = 1

h2
(bui (f1 − h, f2)+ bui (f1 + h, f2)

+bui (f1, f2 − h)+ bui (f1, f2 + h)− 4bui (f1, f2)). (17)

Finally, to estimate TACB on real EEG data we proceeded
according in the following steps: We estimated TACB values
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FIGURE 2 | Algorithmic frequency and channel selection for alpha rhythm analysis in a subject with strong heart artifacts. (A) The presence of heart artifacts with high

broadband bicoherence values (I) corrupts the channel and alpha frequency selection based on the maximization of bicoherence values. Despite the clear differences

between the signals (I/II), the peak bicoherence value is achieved by the heart signal. (B) Application of a Laplace filter—also commonly used for edge detection in

images—attenuates those changes in bicoherence values that gradually evolve over several neighboring frequency pairs (A/B.I). Relative to that it also enhances

sudden peak-like changes in bicoherence values like they typically occur in patterns of alpha oscillations (A/B.II).

Tijk for all antisymmetric triples with electrode indices ijk,
which amounted to Ne = 35990 unique triples without
repeating electrode indices. For the original pre-processing the
data were divided into epochs of 2 s duration and epochs
containing strong outliers were removed. Correspondingly, for
a specific electrode triple we divided the channel recordings
into epochs of 512 samples (i.e., 2 s duration), each of
which we further divided into five overlapping segments
of 256 samples with 75% overlap. The reason for the
division of the data into both epochs and segments was
to avoid using segments which overlap across different
epochs when intermediate epochs were taken out in the pre-
processing. To each segment

(

x(t)
)

seg
we applied a Hann

window and computed its Fourier transforms
(

X(f )
)

seg
. The

cross-bispectrum at a frequency triple (f1, f2, f3) was then
approximated by an average over all segments across all epochs.
The totally antisymmetric part was calculated as defined in
Equation (5).

3. RESULTS

3.1. Simulations
To illustrate the difference between the full cross-bispectra
and TACB we simulated EEG for 64 electrodes for three
signals using the same EEG system as analyzed. The first
signal, x1(t) was constructed as white noise filtered around
10 Hz with a filter width of 1 Hz. The second and third
signal were constructed as x2(t) = x21(t) and x3(t) = x31(t).
All three signals were normalized to 1 using the L2-norm.
These signals were assigned to source activities in different
ways as explained below. The sources were placed 4 cm
below electrodes C3, C4, and Cz, pointing into radial
direction, where the radial direction was defined to be the
direction of the surface normal at the corresponding electrode
location. The forward calculation was done for a three shell
realistic head shape. The code is available in the “MEG and
EEG Toolbox of Hamburg” which can be downloaded at
https://www.uke.de/english/departments-institutes/institutes/
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FIGURE 3 | Results for simulated data. Top row: topographies for three sources. Middle row: absolute value of cross-bispectra (CB) maximized over two of the three

channel indices. Left panel: all activities are assigned to one source. Middle panel: all activities are assigned to two sources. Right panel: the activities are assigned to

three sources. Bottom row: same as middle row for TACB. For the left and middle panel the signal in sensor space vanishes up to Matlab rounding errors.

FIGURE 4 | Topographic plot of the matrix Q̃ijk defined in Equation (21) for

fixed last index. Each small circle contains one row of that matrix. The full red

circle indicates the fixed channel.

neurophysiology-and-pathophysiology/research/research-
groups/index.html.

The three signals xi(t) were assigned to source activities si(t)
depending on the choice for the number of active sources. For
one active source we chose

s1(t) = x1(t)+ x2(t)+ x3(t)

s2(t) = 0

s3(t) = 0 (18)

For two active sources the choice was

s1(t) = x1(t)+ x2(t)

s2(t) = x3(t)

s3(t) = 0 (19)

and for three active sources the choice was

s1(t) = x1(t)

s2(t) = x2(t)

s3(t) = x3(t) (20)

After mapping the source activities to sensor space we calculated
cross-spectra and TACB at frequencies f1 = 10 Hz and f2 = 10
Hz. Results are shown in Figure 3. In the top row we show the
three topographies. For the cross-bispectra and TACB we always
maximize the absolute values across two out of the three sensor
indices. In contrast to the cross-spectra we observe that TACB is
only non-vanishing if three sources are active.

3.2. Empirical Results for the Totally
Antisymmetric Part of Cross-Bispectra
After determining alpha-rhythm frequencies for each subject, we
calculated p-values for the existence of a totally antisymmetric
part of the cross-bispectrum. The selection of frequencies was
based on univariate bicoherence, and all univariate quantities
vanish identically for the totally antisymmetric part. Thus, by the
chosen selection scheme we did not bias the results toward large
antisymmetric parts. To correct for multiple comparison we used
the false discovery rate at an alpha-value of 0.05, such that 95%
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FIGURE 5 | TACB averaged over subjects and for each channel over all other channels.

FIGURE 6 | Absolute value of univariate bicoherence at selected frequency combinations averaged over subjects.
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of all detections can be expected to be true detections, calculated
a corresponding threshold, and considered all p-values above
that threshold as insignificant. In 10 out of 24 subjects we made
significant detections after FDR correction, and the total number
of significant detections was 30,438. Of course, these numbers
slightly vary when reanalyzing the data, because the statistical
test is based on random permutations. We also pooled all p-
values and applied FDR correction to the pooled set. We found
that 7,620 out of 5,447,544 channel triples survived correction for
multiple comparisons. To visualize and average the results across
subjects channels we use the scaled values as defined in Equation
(15). Let Qi,j,k,m be that value for channel triple i, j, k and subject
m. Then we calculate a subject average forM subjects as

Q̃i,j,k =
1

M

∑

m

Qi,j,k,m (21)

This tensor is difficult to display graphically. To illustrate the
result we fixed the k.th channel to k0 chosen as the one which
maximizes Q̃ across all channel triples. For fixed channel kwe can
display the remaining matrix similar to coherence (Nolte et al.,
2004). The result is shown in Figure 4 where the chosen channel
k0 corresponds to the red circle which reflects the property of
TACB that Q̃i,k,k = 0, i.e., it must vanish if two indices are equal.
The maximizing channel was found to be over the right motor
area and the interacting channels are in the vicinity of that.

3.3. Healthy Controls vs. Schizophrenic
Patients
We studied TACB both for the 24 healthy subjects and 22 patients
with schizophrenia. We found that in 13 out of 22 patients
detections of coupling after FDR corrections. To illustrate results
we not only average over subjects but also across two of the three
channel indices.

Q̂i =
1

MN2

∑

m,j,k

Qi,j,k,m (22)

for N channels and M subjects. Results for this topographical
map for healthy controls, patients with schizophrenia and the
difference are shown in Figure 5. For healthy controls we observe
the strongest signals over left and right motor areas. For patients
this effect is attenuated such that signals coming from occipital
areas are more apparent. This result is analogous to results for
univariate bicoherence presented by Shahbazi-Avarvand et al.
(2018), where, in contrast to the present analysis, univariate
bicoherence was calculated at f1 = f2 set in the alpha range.
We recall that such a frequency choice is meaningless for TACB
analysis as it vanishes if two of three frequencies are equal. We
tested whether the means are significantly using a permutation
test using M = 10, 000 permutations, and corrected the p-
values for all sensors using the false discovery rate. While results
are qualitatively similar, we did not find that the difference is
significant, even though the data set was identical, which could
be due to the fact that couplings between three frequencies is less
robust than plain alpha-beta coupling.

We also calculated univariate bicoherence at the selected
frequencies for all channels and averaged them over subjects.
In contrast to TACB, the bicoherence is normalized already and
it is not necessary to use a statistical normalization. Results
are shown in Figure 6 which is qualitatively similar to TACB.
However, these univariate quantities do not necessarily reflect
interactions between different sources. Also, for the univariate
coupling estimates we did not find the difference to be significant.

4. CONCLUSION

We derived a newmeasure of brain connectivity consisting of the
totally antisymmetric part of cross-bispectra, the general third
order statistical moments in the frequency domain. It has the
property that it vanishes apart from statistical fluctuations for
any mixture of independent and pairwise interactions. It is hence
a measure of interaction between at least three sources. This
property distinguishes it from all other known measures of brain
connectivity robust to artifacts of volume conduction which are
bivariate measures and in general do not vanish for pairwise
interactions. This may give a window to study more complex
phenomena of brain interactions without risking that estimated
multivariate properties of brain interaction are again an artifact
of volume conduction.

This is mainly a conceptual paper presenting the method
itself and showing that we can observe significant non-vanishing
coupling on channel level. To be applicable it requires very special
features of the data, namely the existence of coupling between
three different frequencies as observable within EEG data for the
alpha rhythm with two higher harmonics. To our knowledge for
resting state data, the alpha rhythm is the only candidate for
that, and also there the second higher harmonic is typically much
weaker than the first higher harmonic.

For the statistical analysis we developed a, to our knowledge,
new approach, exploiting the fact that cross-bispectra are
averages across a large number of segments and hence
approximately Gaussian distributed in the complex domain.
As a consequence its absolute value is approximately Rayleigh
distributed under the null-hypothesis and it has only one free
parameter which can be estimated from surrogate data. This
substantially deviates from alternative approaches where the
absolute-value is z-scored. We showed in simulations that the
latter approach can heavily underestimate p-values and can lead
to too many false positives. We emphasize that this approach
is applicable to all cases of a complex coupling measures which
are calculated as an average over a large number of trials. In
particular, it is applicable also to the cross-spectrum but not to
coherence since the latter is constructed from averages (cross-
spectra and power) but is not an average itself. While this seems
to limit the applicability of this approach we note that, e.g.,
coherence is different from zero if and only if the cross-spectrum,
the numerator of coherence, is different from zero. It is hence
sufficient to study the numerator only having a simple Gaussian
distribution in the complex domain.

We applied the methods to EEG data of healthy controls
and patients with schizophrenia and found significant coupling
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mostly for healthy subjects for left and right motor areas, but
we could not find significant differences, which we believe is
due to the fact that this kind of coupling is rather weak. While
we cannot claim that this coupling is useful as a biomarker it
is conceivable that it improves diagnostics when combined with
other biomarkers. An open question, which will be addressed in
the future, is the estimation of coupling in the source space. It is
necessary to develop special techniques for this beyond the scope
of this paper, as a straight forward approach to estimate coupling
between all triples of voxels is computationally far too costly.
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