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Abstract
We examined and compared both the methylomes and the modification-related gene con-

tent of four sequenced strains of Bibersteinia trehalosi isolated from the nasopharyngeal

tracts of Nebraska cattle with symptoms of bovine respiratory disease complex. The methyl-

ation patterns and the encoded DNAmethyltransferase (MTase) gene sets were different

between each strain, with the only common pattern being that of Dam (GATC). Among the

observed patterns were three novel motifs attributable to Type I restriction-modification sys-

tems. In some cases the differences in methylation patterns corresponded to the gain or

loss of MTase genes, or to recombination at target recognition domains that resulted in

changes of enzyme specificity. However, in other cases the differences could be attributed

to differential expression of the same MTase gene across strains. The most obvious regula-

tory mechanism responsible for these differences was slipped strand mispairing within

short sequence repeat regions. The combined action of these evolutionary forces allows for

alteration of different parts of the methylome at different time scales. We hypothesize that

pleiotropic transcriptional modulation resulting from the observed methylomic changes may

be involved with the switch between the commensal and pathogenic states of this common

member of ruminant microflora.

Introduction
Bovine respiratory disease complex (BRDC) is a multifactorial disease caused by an array of
viral and bacterial agents with contributions from environmental factors and animal stress. In
North America alone, BRDC is the most common disease in feed yard cattle and is the pre-
dominant driver of antibiotic metaphylaxis to maintain cattle health [1–4]. The most severe
manifestations of the disease appear to involve immune suppression by viral infection or stress,
followed by bacterial lung infection. These bacteria include the opportunistic pathogens Biber-
steinia trehalosi andMannheimia haemolytica, which are found inhabiting the upper
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respiratory tract of apparently healthy cattle as commensals. In the lungs these bacteria secrete
leukotoxins, which lyse leukocytes causing fibronecrotic lung lesions, manifesting as pneumo-
nia with variable morbidity and mortality. These bacterial species are also associated with
respiratory disease in wild bighorn sheep. Some strains of B. trehalosi andM. haemolytica are
more aggressive and communicable than others, and these aggressive strains are responsible
for increased disease severity and economic losses and a reduction in animal well-being. In
order to improve animal well-being, reduce antibiotic use, and reduce financial losses, develop-
ing improved BRDCmitigation strategies is critical.

Arresting the development of virulent populations of B. trehalosi,M. haemolytica, and simi-
lar bovine respiratory pathogens would likely be an effective means to control BRDC. However,
it is not understood how populations of these opportunistic pathogenic bacteria convert into
virulent populations in the lungs. Therefore, we embarked on a combined genomic and epige-
nomic study of these bacteria to shed light on these conversion mechanisms.

Slipped-strand mispairing (SSM) is a mechanism that generates genetically heterogeneous
populations of bacteria by DNA polymerase slippage at hypermutable sites called simple
sequence repeats (SSRs) [5]. This diversity may enable the population to adapt to changing
host environments. SSM has been observed in the human pathogens Haemophilus influenzae
and Neisseria gonorrhoeae [6], and its role in virulence demonstrated in Bordetella pertussis
[7], Campylobacter jejuni [8] and Streptococcus pneumoniae [9].

In the case of restriction-modification (R-M) systems, SSRs have been observed at or near
the 5’ end of methyltransferase (MTase) genes, with the number of repeats governing whether
the coding sequence is in or out of frame with the start codon; examples include the Type III
MTase M.MmyCI [10] and the Type I MTase M.PhaAI [11]. This phasing acts as a MTase on/
off switch, which in turn alters the overall genomic methylation pattern, referred to as the
methylome. Alteration of methylation patterns has been associated with virulence in Salmo-
nella enterica [12], Neisseria gonorrhoeae [13], Edwardsiella tarda [14], and other bacteria [15].

Besides SSM, R-M systems evolve relatively rapidly by other methods including homolo-
gous recombination [16], gene conversion, and site-specific inversion [17], often coupled with
horizontal gene transfer [18]. Furthermore, target recognition domains (TRDs) of Type I, Type
III, and some Type IIG R-M systems have been shown to move between and within loci,
thereby generating allelic diversity and altering the recognition sequences of MTases and
REases [17, 19, 20]. In the case of Type I specificity proteins, which typically contain two
TRDs, this can occur not only by replacement of one or both TRDs, but also by loss of one
[21].

Single-Molecule Real-Time (SMRT) sequencing, developed by Pacific Biosciences, has
greatly facilitated the study of bacterial DNAmethylation in situ, and the methylome (the
methylation pattern that results from the combined action of the DNAMTases active in a cell)
has become an increasingly studied topic [12, 20, 22–24]. In the present study, we have charac-
terized the methylomes and the related gene content of four strains of B. trehalosi previously
sequenced using the SMRT platform [25, 26]. These strains have some methylation patterns in
common as well as others restricted to one or a subset of the strains. In some cases, the genome
sequences provide clues as to how these differences have arisen, including evidence for SSM
and TRD exchange.

Materials and Methods

Growth and genomic DNA isolation of B. trehalosi strains
Cultures were grown in 10 mL BHI broth at 37°C for 20 hours without agitation, and cells were
collected by centrifugation. DNA was extracted using Genomic-tip 100/G columns and buffers
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(Qiagen; Valencia, CA) as directed by the manufacturer with some modifications. Specifically,
cells were resuspended in 5 mL Qiagen buffer B1 with 50 μg/mL RNase A and 250 μL 0.5 M
EDTA by vortexing. The cells were incubated at 70°C for 10 minutes and vortexed again. The
solution was equilibrated at 37°C, and 100 μL fresh 100 mg/mL lysozyme (Sigma-Aldrich;
St. Louis, MO) was added and mixed by brief vortexing. The mixture was incubated for 10 min-
utes, then 150 μL proteinase K (20 mg/mL) was added and the solution incubated at 37°C until
clearing of the supernatant occurred (30 minutes to 2 hours). Once the lysate cleared, 1.7 mL
of Qiagen buffer B2 was added and mixed by vortexing, followed by 30 minute incubation at
50°C, and then diluted by addition of 6.7 mL Qiagen buffer QBT and additional brief vortexing.
This mixture was added to the equilibrated 100/G column, avoiding any foam that accrued,
until the entire mixture passed through the column. The column was washed 2x with 10 mL
Qiagen buffer QC, and DNA was eluted with 7 mL of Qiagen buffer QF at 50°C and precipi-
tated by addition of 4.9 mL 100% isopropanol and gentle inversion. The DNA precipitate was
removed from the solution with a glass hook, and dipped consecutively into 2 mL 70% ethanol
and 2 mL 95% ethanol. The washed pellet was dried briefly and dislodged from the hook into
250 μL TE (0.1 mM EDTA, 10 mM Tris pH 7.9) and allowed to dissolve at room temperature
overnight.

Cloning of genes and host genomic DNA isolation
To unambiguously assign methylation recognition sequences to MTase and specificity genes,
candidate genes were subcloned into the high copy vector pRRS [27], and the methylation of
the heterologous E. coli host DNA was observed. Genes were amplified from B. trehalosi gDNA
templates by PCR using Phusion or Q5 DNA polymerase (New England Biolabs; Ipswich,
MA). Primers used for amplification, and the genes amplified, are shown in S1 Table. Genes
were subcloned using one of three methods: (1) digestion of pRRS vector and PCR products
with PstI-HF or SbfI-HF on one end and BamHI-HF on the other, followed by treatment with
Proteinase K, purification using the QIAQuick PCR Purification Kit (Qiagen; Valencia, CA),
and ligation with T4 DNA ligase; (2) Gibson assembly of PCR-amplified genes with pRRS vec-
tor digested with NdeI and BamHI; or (3) Gibson assembly of PCR-amplified genes with
pRRS100 vector digested with HpaI and BamHI-HF. Construction steps were performed in E.
coli ER2683, and completed constructs were then passaged through the methylation-deficient
strain E. coli ER2796 [28] before sequencing.

Plasmid DNA was purified using the GenElute HP Plasmid Miniprep Kit (Sigma-Aldrich;
St. Louis, MO). Total DNA was purified from 50 mL of overnight bacterial culture as follows,
with all mixing steps performed by gentle inversion. The pellet from 50 mL of culture was
resuspended in 5 mL [25% sucrose, 50 mM Tris pH 8.0, 1 mM EDTA]. To this was added 4 mL
[250 mM Tris pH 8.0, 250 mM EDTA, 10 mg/mL chicken egg-white lysozyme (Sigma-
Aldrich)], and the solution was incubated for 2 hrs at 37°C. To this was added 6 mL [50 mM
Tris pH 8.0, 62.5 mM EDTA, 1% Triton X-100]. The resulting mixture was extracted 1x with
phenol and 1x with methylene chloride. DNA was precipitated with 0.1 volumes 5 M NaCl and
0.7 volumes isopropanol. The DNA pellet was washed twice with 70% ethanol, air dried, and
resuspended in 400 μL [10 mM Tris pH 8.0, 1 mM EDTA].

Genome assembly and closure
B. trehalosi 188, 189, 190, and 192 SMRT sequencing reads were compared with 454 reads
using the PBcR pipeline to ensure accuracy and assembled with the Celera Assembler as previ-
ously described [25, 26, 29]. Circularization was confirmed by overlapping the 5’- and 3’- ends
of the chromosome evident in a dotplot. The overlapping 3’-end was trimmed, the origin of
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replication approximated using GenSkew and the chromosome base numbering re-indexed at
this position to base number 1. The chromosome was re-sequenced through the RS_Resequen-
cing pipeline to generate a final consensus. In all cases the agreement between the PacBio reads
and final consensus sequence was greater the 99.9% with no difference in read coverage
through the initial joined region compared to the rest of the genome. Base modifications were
derived from interpulse duration (IPD) ratios using the RS_Modification_and_Motif_Analy-
sis.1 pipeline (Pacific Biosciences; Menlo Park, CA) with the default threshold of QV = 30. The
Do-It-Yourself-Annotation pipeline [30] was used to annotate the final consensus for submis-
sion to GenBank.

Gene Ontology term annotation with BLAST2GO
Blast2GO 3.1.2 was used to compare translated coding sequences with a database of microbial
proteins from the GenBank Genome archive (ftp.ncbi.nlm.nih.gov/genbank/genomes/
Bacteria). A concatenated FASTA file of the hits was fed into USEARCH [31] to create another
FASTA file of sequences sorted from longest to shortest, with all description sequence stripped
out. This sorted file was clustered with USEARCH using the cluster_fast option at the 90%
level of identity to create a reduced FASTA file. A perl script was used to transfer the sequence
descriptions from the concatenated FASTA file to the sequences in the clustered FASTA file
and it was this file that was used to create a local BLAST database. Gene Ontology (GO) terms
were mapped to BLAST hits using the Blast2GO mapper followed by annotation of the CDS
with GO terms inferred from their BLAST hits. Lists of CDS were assessed for GO enrichment
relative to a genomic reference using the BLAST2GO Fisher Exact Test (two-tailed) with multi-
ple test correction [32].

BLASTX Search for Proteins with an N-Terminal SSR
CDS with upstream SSR were screened against either the NCBI non-redundant protein data-
base or the microbial protein database created for our BLAST2GO analyses. A 750 bp contigu-
ous region consisting of the SSR and the 5’-end of the CDS was extracted and screened against
these local databases with BLASTX using the BLOSUM45 matrix and a maximum e-value of
0.01.

Results

Genome Features and Gene Content
We compared the protein coding sequence (CDS) content of four sequenced strains of B. treha-
losi (Table 1) using the EDGAR platform [33]. A CDS may have an orthologous gene in
another strain (defined as the reciprocal best BLASTP hit of its translated sequence to a trans-
lated CDS in another strain), may have a non-orthologous homolog (defined as the best
BLASTP hit, although non-reciprocal), or may be a singleton (defined as having no BLASTP
hit above the default EDGAR threshold, Score Ratio Value 0.3). Results show a core genome of
1,963 CDS (defined as having an ortholog in all four strains), and a pan genome of 2,650 CDS
(Fig 1 and S2–S4 Tables). There are 353 “auxiliary” CDS that are shared by at least two, but not
all, genomes, while 334 non-core CDS do not have an ortholog (reciprocal best BLASTP hit) in
any other strain, of which 208 are singletons. A phylogenetic tree based on sequence alignment
of core proteins shows that B. trehalosi strains 189 and 192 are the most similar, while strain
190 is the most dissimilar (Fig 2), and consistent with this, B. trehalosi strains 188, 189 and 192
share the greatest number of orthologs of any three strains, at 139 (Fig 1 and S2 Table).
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For each strain, we examined two sets of CDS using Blast2GO to identify enriched biological
functions: the CDS with no orthologs but at least one non-orthologous homolog in another
strain, and the singletons. The only sets with statistically significant [false discovery rate (FDR)
of< 0.05] enrichment of GO terms were the two sets from B. trehalosi 190. The 228 non-
orthologous CDS in B. trehalosi 190 are enriched in terms such as DNA integration, DNA
recombination, DNA binding, multi-organism process and transposase activity, and depleted
in terms such as cytoplasm, single-organism biosynthetic process, alpha-amino acid metabolic
process and cellular protein metabolic process. The 179 singletons are depleted in terms such
as single-organism cellular process, organic substance biosynthetic process, cytoplasm and cel-
lular biosynthetic process. This is not unexpected given that “non-core” or “accessory” genes
are generally thought to be acquired by horizontal transfer, requiring the action of mobility
and recombination functions [35, 36].

Table 1. Genome sequence data for four B. trehalosi strains.

Isolate GenBank Size (bp) %G+C Protein-coding genes R-M systems

USDA-ARS-USMARC 188 CP006954 2,340,975 38.3 2,053 6

USDA-ARS-USMARC 189 CP006955 2,454,127 41.0 2,127 8

USDA-ARS-USMARC 190 CP006956 2,443,169 36.8 2,160 6

USDA-ARS-USMARC 192 CP003745 2,407,846 41.0 2,137 7

doi:10.1371/journal.pone.0161499.t001

Fig 1. Orthologs in the fourB. trehalosi isolates. The pan genome as determined by EDGAR, consisting of
2,650 ORFs, was used to build the Venn diagram. Numbers in intersecting regions correspond to the number of
orthologs shared by those strains. Numbers in non-intersecting regions correspond to the number of ORFs without
an ortholog in any of the other three strains, and in parentheses are the numbers of these that are singletons (that
is, without non-orthologous homologs, and therefore unique to the strain). Numbers in black represent total ORFs,
and numbers in red represent MTases (i.e., represented in Table 2).

doi:10.1371/journal.pone.0161499.g001
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We also looked for large-scale chromosomal differences using ProgressiveMAUVE and iden-
tified several distinguishing features (S1 Fig). These include an insertion sequence (IS)-mediated
inversion of 12 kb in strain 190; loss of a large multi-drug resistance gene cluster in strain 188; an
apparent 56 kb integrated plasmid in strain 190; and rearrangement of the multi-drug resistance
region in strain 190 to a new location adjacent to the integrated plasmid (S1 Fig).

Methylome Analysis
We also analyzed the kinetic data for these four strains, which were sequenced using the SMRT
platform, to determine the patterns of methylation. Five distinct methylated motifs were
detected in these strains (Table 3), which showed varying degrees of conservation ranging
from those present in all strains to those present in only a single strain. For all motifs, the

Fig 2. Phylogenetic tree of the four B. trehalosi isolates sequenced in this work. The tree was built from an
amino acid MUSCLE alignment of all the core genes (a total of 1,969,970 amino acid residues per genome). This
alignment was used to compute a Kimura distance matrix that was input to PHYLIP [34] to create the Neighbor-
Joining tree as described at the EDGARwebsite. The genome of a related Pasteurellales species,Mannheimia
haemolytica 183 (CP004752.1), was used as the outgroup to root the tree. The tree topology showed 100%
concordance with 500 bootstrapping iterations.

doi:10.1371/journal.pone.0161499.g002
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methylation appeared evenly distributed across the genomes (examples shown in S2 Fig), and
the minority of unmethylated sites did not show significant positional bias (examples shown in
S3 Fig). The Dam methylation pattern Gm6ATC was present in all four strains, which is as
expected since the dam gene was acquired prior to the formation of the Pasteurellaceae, the
order to which B. trehalosi belongs [37]. All four B. trehalosi genomes also encode other pro-
teins functionally associated with Dam such as SeqA, MutH, HN-S, StpA, PriB, and MukFEB
[37].

DNAMTase and other RM-associated genes were identified in each genome using SEQ-
WARE [24], and the MTases were grouped into sets of putative orthologs, each assigned a letter
designation, based on sequence similarity and gene neighborhood criteria (Table 2). Protein
sequences of orthologous genes were typically 100% identical to one another, although there
were minor differences in some cases. The approximate locations of these genes are shown in

Table 3. Methylatedmotifs in four B. trehalosi strains.a

Site 188 189 190 192 MTase Groupb

Gm6ATC 95 98 95 91 A
m6ACGN6CGT 86 97 – 95 B

Gm6AGN6GTC – – 93 – B

ACm6ATC – – – 94 C

ACm6AN6TTTA 88 – – – E

a Output from the PacBio “RS_Modification_and_Motif_Analysis.1” program. Numbers indicate the percentage of all sites determined by the program to be

so modified. Instances where this motif was not detected are indicated by hyphens.
b This refers to the group of orthologous MTase genes, as defined in Table 2, that is responsible for each observed methylated motif.

doi:10.1371/journal.pone.0161499.t003

Table 2. MTase genes in four B. trehalosi strains.a

Groupa Type Organizationb Site 188c 189c 190c 192c

A Orphan M Gm6ATC M.Btr188I M.Btr189II M.Btr190IV M.Btr192I

B I M-x-S-x-R m6ACGN6CGT M.Btr188IId M.Btr189I M.Btr192IIId

B Gm6AGN6GTC M.Btr190Id

C III M-R ACm6ATC 10530 11930 M.Btr192IId

C RGTAm6AT M.Btr190IId

D II Me no activity 1790–1760 2480–2420 20590–20600d 20770–20830

E I M-S-x-R ACm6AN6TTTA M.Btr188IIId 11560 – 11890

F II M-R Cm5CWGG 820 850 – M.Btr192Vd

G Orphan M m6A – 5700 – M.Btr192IVd

H Orphan M Gm6ATCf – 2030 M.Btr190IIId –

J IIG MR-S no activity – – 12260d –

a Orthologous groups are assigned letters for comparison with Table 3.
b M = MTase, R = REase, S = specificity protein, and x = any other gene; genes are separated by hyphens.
c If the gene has not been assigned an activity by REBASE, only the locus tag number is given, with “M.Btr. . .P” removed for clarity; absence of an ortholog is

denoted by a hyphen. Those MTases that are active in the native hosts and responsible for one of the observed activities in Table 3 are shown in boldface.
d Activity tested by cloning.
e Gene broken; frameshifted or multiple subunits required.
f Significant off-target activity was also observed in the clone.

doi:10.1371/journal.pone.0161499.t002

Methylome Analysis of B. trehalosi

PLOSONE | DOI:10.1371/journal.pone.0161499 August 24, 2016 7 / 17



Fig 3, and we found that two MTase groups (G and H) are located within putative prophage
regions, as identified by PHAST [38]. Except for groups A (dam) and G (prophage-encoded),
all of the MTases are clustered in two genomic “hot spots,” one between 0–0.25 Mb and the
other around 1.25 Mb (Fig 3). These hot spots are not located in the regions of genomic rear-
rangement discussed above (S1 Fig and Fig 3).

General predictions of which motifs were associated with which MTases could be made for
some genes based on evidence such as the type of R-M system, similarity to previously charac-
terized MTases, and patterns of presence and absence of genes and motifs across strains. How-
ever, precise matching of genes and activities was determined by cloning MTase genes in
isolation to separate the activities. At least one representative from most sets of orthologs (i.e.,
one member of each row in Table 2) was cloned and overexpressed in a methylation-deficient
E. coli strain, and the genomic DNA of the clone was sequenced using the SMRT platform to
identify the methylation activity. Using this process, the genes responsible for all five methyl-
ated motifs identified in the four native B. trehalosi genomes were determined. In addition,
four MTases (M.Btr190II, M.Btr190III, M.Btr192IV, and M.Btr192V) demonstrated activity
when cloned that was not observed in the native context, suggesting their expression is silenced
in B. trehalosi under the growth conditions we used.

MTases Shared Between All Four B. trehalosi Strains
M.Btr188I (Group A). The product of this gene is 60% identical to M.EcoKDam. Further-

more, it is an orphan (i.e., lacking a cognate REase), shares some genomic context with E. coli

Fig 3. Schematic representation of the four B. trehalosi genomes, showing approximate locations of
prophages and MTase genes.Gray boxes (not to scale) mark the locations of prophage regions, as annotated by
PHAST. Colored arrows mark the locations of MTase genes, with arrows of the same color marking orthologous
genes. Genes are labeled with the letter groups defined in Table 2. Those genes shared by all four genomes are
connected by dotted lines. Strains 190 and 192 are shown in reverse-complement orientation relative to the NCBI
sequences, so that all four are in the same relative orientation.

doi:10.1371/journal.pone.0161499.g003
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dam (downstream of 3-dehydroquinate synthase and shikimic acid kinase genes), and has an
ortholog in all four strains we examined, suggesting it is the dam ortholog. An example of this
group was not cloned, but based on homology and synteny we presume that M.Btr188I and
other members of group A are functionally equivalent to E. coli dam and responsible for the
Gm6ATC modification observed in all four strains of B. trehalosi. A second MTase capable of
methylating Gm6ATC is present in strains 189 and 190 [see the entry for M.Btr190III (group
H) below]. However, in both strains 189 and 190, that MTase is encoded on a prophage (Fig 3),
where DNAMTases are in some cases rendered inactive [39]. This second Gm6ATCMTase
exhibited significant off-target activity when cloned, which was not observed in the B. trehalosi
189 and 190 genomic DNA, further suggesting its inactivity in the genome.

Btr188II and Btr190I (Group B). All four B. trehalosi strains contain a Type I R-M sys-
tem with the gene order M-S-R, where there are one or two intervening ORFs between M and
S, and between S and R. The systems in strains 188, 189, and 192, including the intervening
ORFs, are essentially identical, and all three of these strains exhibit methylation at the palin-
dromic site m6ACGN6CGT. We cloned the MTase and specificity-governing subunit from two
of these three, btr188IIMS and btr192IIIMS, and found that they both indeed methylated this
sequence.

The Btr190I system occurs at the same locus as the other three and its R and M genes are
highly similar to the other group B members. However, its S gene and the intervening ORFs
that flank it are not homologous, suggesting a gene conversion event that involved homologous
recombination at or outside the R and M genes (Fig 4). Furthermore, the S gene is fused at its
5’ end to a copy of the DNA damage-inducible gene dinD, a feature not found in the other
group B members. We cloned btr190IMS and found that it methylated the site Gm6AGN6GTC,
which was observed only in strain 190 (Tables 2 and 3) and is consistent with the novel S sub-
unit sequence. Interestingly, the fusion of hsdS to dinD does not seem to have prevented its
activity as a specificity protein for this system.

M.Btr192II (Group C). This MTase is part of a Type III R-M system present in all four
strains. The MTase gene, which in Type III systems contains the specificity determinant, is
100% identical in strains 188, 189 and 192, while that in strain 190 has undergone an apparent
gene conversion event that has replaced the central TRD region with a non-homologous
sequence. (The TRD region in strain 190 bears closest similarity to that of M.Sdy378ORF287P,

Fig 4. Gene comparison of btr188II R-M system orthologs. Top row, gene order of orthologous systems from B.
trehalosi strains 188, 189 and 192. Bottom row, gene order of orthologous but functionally distinct system from
strain 190, btr190I. R-M system genes are shown in solid color, and apparent non-R-M related genes are cross-
hatched. Genes from the btr190I system similar to those in the other three strains are shown in blue, and genes
unrelated to those in the other three strains are shown in red; the region of apparent replacement is shown by the
dotted lines. Note btr190IS is fused to the upstream gene, a homolog of dinD. The TRDs of the two S genes are
indicated by lower-case letters, showing that the S gene in the top line comprises two imperfect copies of the same
TRD, resulting in a palindromic recognition site.

doi:10.1371/journal.pone.0161499.g004
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of unknown specificity.) Only one methylated motif indicative of a Type III system was
observed in the B. trehalosi strains, namely ACm6ATC, which was observed only in strain 192.
We cloned the btr192IIM and R genes together and found they methylated this sequence, but
interestingly, we observed no activity when btr192IIM was cloned in isolation.

We also cloned the homologous system from strain 190, btr190IIM and R together, and
found that it modified the sequence RGTAm6AT, a different sequence from Btr192II, consis-
tent with the replacement of the TRD. This site is not modified in strain 190 or any of the other
three, suggesting that the Btr190II R-M system is likewise silenced in its native host under the
conditions we observed. We did not attempt to clone btr190IIM in isolation.

The accompanying REase gene appears to be intact and nearly identical in all four strains,
so the requirement for the REase probably does not account for the silencing of this system in
strains 188, 189, and 190. There is an SSR that lies upstream of the gene, but its relevance to
silencing is unclear (see below).

Btr188ORF1790 and Btr188ORF1760 (Group D). These genes lie near each other in all
four genomes, and may represent pieces of the same ancient Type IIG R-M system, bearing
greatest similarity to that of DrdVI (29). The incarnations in strains 188, 189 and 192 are nearly
identical to one another, while that in strain 190 has diverged considerably. Btr188ORF1790,
which is either frameshifted or present as multiple ORFs, bears similarity to both M1.DrdVI at
its N-terminus and M2.DrdVI at its C-terminus. Btr188ORF1760, which contains a GIY-YIG
endonuclease domain, resembles DrdVI (a fused translocase and REase), and is present in its
full length only in strain 190. In the other three strains, the gene is truncated by a frameshift
and represents only an N-terminal fragment. Several small ORFs now intervene between
Btr188ORF1790 and Btr188ORF1760 in all four B. trehalosi strains, and may represent addi-
tional fragments of the original gene. Due to its fragmented nature, and because it is not active
in any of the four strains examined in this work, this system was not analyzed further.

MTases Shared by Three of Four B. trehalosi Strains
Two sets of MTase genes are encoded by three of the four strains under study. In all cases, the
strain from which it is missing is 190.

M.Btr188III (Group E). This MTase is part of a Type I R-M system found in B. trehalosi
strains 188, 189, and 192 but only active in strain 188. At the 5’ ends of these MTases is a five
base SSR (ACAGC) that exhibits copy number variation between strains (see below). We
cloned btr188IIIMS and found it methylated the sequence ACm6AN6TTTA. Although an
ortholog of this gene is found in three strains, the sequence ACm6AN6TTTA is methylated only
in strain 188, likely as a result of changes in the SSR copy number. Consistent with this, only in
btr188IIIM, which contains 27 repeats, is the gene in-frame with the ATG start codon.

Strain 190 also contains an R-M system (group J; see below) at the same locus as group E
(Fig 3). However, it is a Type IIG system and bears no similarity to group E. There are no obvi-
ous repeat sequences surrounding this locus, so the change may have been driven by homolo-
gous recombination at or beyond the flanking genes, which encode an aspartate––tRNA ligase
and a glmU homolog.

M.Btr192V (Group F). This enzyme is encoded by an m5C DNAMTase gene that appears
to be part of a Type II R-M system found in strains 188, 189, and 192. It is the only identifiable
m5CMTase gene in the B. trehalosi strains analyzed here. We cloned the homolog from strain
192, and TET treatment of the clone gDNA amplified its kinetic signal enough to deduce a rec-
ognition sequence using SMRT sequencing at 118x coverage. Under various modification QV
thresholds between 30 and 100, the most likely recognition sequence appeared to be Cm5CGGG
as determined by the RS_Modification_and_Motif_Analysis software (PacBio), with
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modification primarily or exclusively on one strand. As expected, this modification was not
detected by SMRT sequencing of the untreated B. trehalosi 192 gDNA.

To further elucidate the recognition site, we challenged both the clone gDNA and the native
B. trehalosi 192 gDNA with several restriction enzymes: HpaII (CCGG), NciI (CCSGG), PspGI
(CCWGG), and StyD4I (CCNGG). The clone exhibited virtually complete protection from
PspGI cleavage, but not the others, while B. trehalosi 192 gDNA exhibited weak protection
from PspGI and StyD4I cleavage (data not shown). PspGI is blocked by full m5C methylation,
but not hemi-methylation, at either C position [40], indicating the correct recognition
sequence for M.Btr192V is Cm5CWGG. The fact that the gDNA of the native host B. trehalosi
192 was only partially protected indicates that the MTase may be poorly expressed under native
conditions.

The group F genes are flanked by short direct repeats with the sequence TCTTTATA.
Recombination between these sites may have caused the loss of this R-M system in strain 190.

MTases Shared by Two of Four B. trehalosi Strains
Two sets of MTases are encoded by only two of the four strains under study, both of which
appear to be orphans. Both are encoded on apparent prophages as determined by PHAST anal-
ysis (Fig 3), consistent with the sporadic distribution among the strains.

M.Btr192IV (Group G). The orphan MTase M.Btr192IV is found only in B. trehalosi
strains 192 and 189, and was not obviously responsible for any of the observed methylated pat-
terns in the B. trehalosi genomes. It is highly similar to the promiscuous m6AMTase M.Hind-
VII (also called hia5) fromHaemophilus influenzae [39], which modifies Bm6A sequences, is
found on a prophage and we expected it to have similar properties. We cloned btr192IVM and
found it was indeed a promiscuous m6AMTase modifying essentially all adenine residues
(m6A).

M.Btr190III (Group H). The gene encoding this MTase, present only in strains 189 and
190, is related to the Gm6ATC-modifying M.EcoT1Dam (35% amino acid identity). We cloned
the gene encoding M.Btr190III and found it indeed methylated the sequence Gm6ATC, but it
also exhibited significant off-target activity, modifying significant fractions of many related
sequences as well. Any methylation of Gm6ATC by this protein in the native host would be
masked by the action of the group A (dam) ortholog, which we know to be active in strains 188
and 192 (Table 3). In strains 189 and 190, where both groups A and H are present, we cannot
determine how much of the observed Gm6ATC methylation is due to each gene. However,
because we see no modification of these off-target sequences in the native B. trehalosi genomes,
we suspect that the predominant activity is due to the dam ortholog and not to the prophage-
encoded group H.

MTase Exclusive to One B. trehalosi Strain (Group J). Btr190ORF12260P is a two-gene
R-M system that is found only in strain 190, and it consists of a Type IIG fused R-M gene and a
companion S gene, similar to the BcgI R-M system. We cloned the two genes together but did
not observe any activity in the clone, consistent with the fact that it does not seem to be respon-
sible for any of the observed activities on the original genomic DNA. The reason for its inactiv-
ity is not immediately clear, since both genes appear to be full-length with no frameshifts. As
described above, it occurs at the same locus as group E in the other three strains, but is not
homologous to them.

Simple Sequence Repeats (SSR) Affecting MTase Genes
In several other systems MTase genes have been found to vary in their expression as a result of
SSRs present at their transcription/translation start sites. Of the eight sets of non-fragmented
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DNAMTase genes in these B. trehalosi strains (Table 2), three have apparent SSRs close to the
CDS start codon.

In group G, both M.Btr192IV and M.Btr189ORF5700P are located on prophages, and both
have 12 copies of CAAG within their coding sequences starting 63 bp downstream of the initia-
tor codon. Neither of these genes is expressed in its native host, so the significance of the SSR is
unclear.

Group C members, present in all four strains, are Type III MTases. The MTase is inactive in
B. trehalosi strains 188, 189, and 190 but active in strain 192. In strains 190 and 192 there are
15 copies of the pentanucleotide CGCAA, which form an SSR the 3’ end of which lies 43 bp
upstream of the initiator ATG of the MTase gene. This same 43 bp spacing is preserved in
strains 188 and 189 (allowing for one imperfect copy at the end), but the SSR length itself var-
ies, with 17 copies of the repeat in strain 188 and 14 copies in 189. Given that the length of the
SSR is different between the “active” strain 192 and the “inactive” strains 188 and 189, and the
fact that there are no other differences within either the MTase ORF or 1 kb upstream of it, it
might be suggested that the SSR is playing a role in silencing. However, the SSR length is identi-
cal between the “active” strain 192 and the “inactive” strain 190. Strain 190 has additional sin-
gle-base changes upstream of the MTase ORF, so its silencing may be due to a different
mechanism. This phenomenon warrants further study.

In group E, M.Btr188III has 27 copies of the pentanucleotide ACAGC within its coding
region resulting in an in frame version of this repeat. However, in strains 189 and 192 there are
only 17 copies of the repeat putting it out of frame. The translated N-terminal protein sequence
of these genes is MPN(STAQH)n, where n is dependent on the repeat copy number.

Discussion
Within a bacterial species, strains can undergo rapid changes in genetic content and phenotype
due to horizontal gene transfer, recombination, and epigenetic mechanisms [5, 41, 42]. Such
changes, the scale of which far outstrips that of base-by-base mutation, enable bacteria to
quickly respond to environmental changes and to exploit new ecological niches [43–45]. With
regard to bacteria such as B. trehalosi, which dwell within metazoan hosts, these changes can
involve alternation between commensal and pathogenic states. Our comparative study of four
strains of this organism has uncovered several mechanisms of rapid change, which we hope
will ultimately shed light on the etiology of ruminant respiratory disease. Further study will
necessarily include association of strain genotypes with virulence and pathology and thus
uncover connections between genotype, epigenetic patterns, and fitness for populating the
ruminant lung.

In the case of the B. trehalosi strains we have examined, epigenetic patterns and genotypes
are directly linked through MTase genes. We have observed changes in MTase activity that
appear to have arisen through several mechanisms, which differ in reversibility and persistence:
(1) non-reversible gain or loss of MTases through bacteriophage integration and recombina-
tion; (2) reversible activation or inactivation of MTase expression through SSM at SSRs; (3)
non-reversible alteration of activity by recombination at TRD regions within R-M systems; and
(4) silencing of MTases through unknown mechanisms, which may or may not be reversible.
The results of these changes, in aggregate, are the alteration of methylomes, which we were
able to examine using SMRT sequencing (Table 3).

We observed several cases where MTase genes were present but not active. The reasons for
this inactivity are in all cases unknown, but it is possible that the in vitro conditions used for
growing the strains did not replicate the environment(s) necessary for expression. However, in
the case of group E described above, our failure to detect activity in two of the three strains
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where the gene is present is parsimoniously explained through the effect of SSM on MTase
activity. Within the CDS N-terminal region of the only active homolog, M.Btr188III, there are
27 copies of the tandem repeat ACAGC. However, B. trehalosi 189 and 192 have 17 copies of
this repeat, resulting in a frameshifted and a shorter open reading frame that apparently does
not code for an active MTase. A similar mechanism may be at work in groups C and G as well,
although the association with SSR copy number and activity is less obvious.

Methylation in bacteria has been traditionally viewed as a mechanism to protect the host
from the action of REases, and thus the methylome has been viewed as simply a byproduct of
MTases performing this protective function. However, it is becoming increasingly apparent
that specific methylation marks can affect bacterial gene expression, and therefore can affect
cellular processes not obviously connected to restriction-modification. Well known examples
include the orphan MTases Dam in Gamma-Proteobacteria [46] and CcrM in Alpha-Proteo-
bacteria [47], and more recent work has shown that MTases within R-M systems can also have
consequential transcriptional effects [43, 44, 48]. Therefore, changes in the activity of any given
MTase may, through resulting changes in the methylome, have unknown, pleiotropic effects. It
is in such effects that the links to pathogenicity may lie, and a more detailed study of gene
expression in one or more of the strains described here, under varying growth conditions, is
likely to be rewarding. Understanding the nuances of epigenetic variation within the methy-
lome, and the effect of such variation on the transcriptome, could ultimately be important in
developing strategies to mitigate ruminant respiratory disease associated with infection by B.
trehalosi and possibly other Pasteurellaceae.
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S1 Fig. ProgressiveMAUVE alignment of the four B. trehalosi chromosomes sequenced in
this work. The two general “hot spots” where MTases are located are indicated at the top.
Lower case letters indicate the following regions of interest: (a) IS-mediated inversion of a 12
kb region in strain 190; (b) Short region containing a MarR family transcriptional regulator
and tetracycline efflux gene, partially duplicated in region d, and largely missing from strains
190 and 188; (c) Multi-drug resistance region, missing from strain 188; (d) Short region con-
taining a beta-lactamase gene and a partial duplication of region b, missing from strain 188
and 190 with the exception of the beta-lactamase gene in strain 190; (e) Possible integrated
plasmid, 56 kb, including such functions as ParB and TraG, and present only in strain 190.
Note that region c and the beta-lactamase gene from region d are found at a different location
in strain 190 than in strains 189 and 192.
(PDF)

S2 Fig. Circos plots showing the distribution of methylated sites for the three motifs in
strain 192. The outermost track carries the base modification signal with height proportional
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S3 Fig. Distribution of unmethylated sites for each methylated motif in strain 188.
Unmethylated sites were identified using the getUnmodifiedMotifKin function from BaseMod-
Functions.v2.1.R [49], and the plots were generated using the same software based on a 6 kb
window.
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