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Abstract

In recent years there has been growing interest in measuring time-varying functional connectivity 

between different brain regions using resting-state functional magnetic resonance imaging (rs-

fMRI) data. One way to assess the relationship between signals from different brain regions is to 

measure their phase synchronization (PS) across time. There are several ways to perform such 

analyses, and we compare methods that utilize a PS metric together with a sliding window, 

referred to here as windowed phase synchronization (WPS), with those that directly measure the 

instantaneous phase synchronization (IPS). In particular, IPS has recently gained popularity as it 

offers single time-point resolution of time-resolved fMRI connectivity. In this paper, we discuss 

the underlying assumptions required for performing PS analyses and emphasize the importance of 

band-pass filtering the data to obtain valid results. Further, we contrast this approach with the use 

of Empirical Mode Decomposition (EMD) to achieve similar goals. We review various methods 

for evaluating PS and introduce a new approach within the IPS framework denoted the cosine of 

the relative phase (CRP). We contrast methods through a series of simulations and application to 

rs-fMRI data. Our results indicate that CRP outperforms other tested methods and overcomes 

issues related to undetected temporal transitions from positive to negative associations common in 

IPS analysis. Further, in contrast to phase coherence, CRP unfolds the distribution of PS measures, 

which benefits subsequent clustering of PS matrices into recurring brain states.
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1. Introduction

It was previously assumed that functional connectivity (FC) in the brain was static during 

the course of a single resting-state functional magnetic resonance imaging (rs-fMRI) run. 

Recently, however, several studies (Allen et al., 2014; Chang and Glover, 2010; Hutchison et 

al., 2013a; Lurie et al., 2019; Preti et al., 2016; Tagliazucchi et al., 2012; Thompson et al., 

2013) have pointed to dynamic changes in FC taking place in a considerably shorter time 

window than previously thought (i.e., on the order of seconds and minutes). Several methods 

have been proposed to investigate such time-varying connectivity (TVC). These include the 

widely-used sliding-window approach (Chang and Glover, 2010; Hutchison et al., 2013a; 

2013b; Tagliazucchi et al., 2012), change point analysis (Cribben et al., 2012; 2013; Xu and 

Lindquist, 2015), point process analysis (Tagliazucchi et al., 2011), co-activation patterns 

(CAPs) (Liu and Duyn, 2013), transient-based CAPs (Karahanoğlu and Van De Ville, 2015), 

time series models (Lindquist et al., 2014), time-frequency analysis (Chang and Glover, 

2010), and variants of hidden Markov models (HMMs) (Bolton et al., 2018; Eavani et al., 

2013; Shappell et al., 2019; Vidaurre et al., 2017). Despite development of these promising 

approaches, estimation of TVC remains a challenging endeavor due to the low signal-to-

noise ratio (SNR) of the blood oxygen level dependent (BOLD) signal and the presence of 

image artifacts and nuisance confounds (Hutchison et al., 2013a; Laumann et al., 2016; 

Lindquist et al., 2014).

The term synchronization refers to the coordination in the state of two or more systems that 

can be attributed to their interaction (or coupling) (Rosenblum et al., 1996). Recently, phase 

synchronization (PS) methods were proposed as a means of measuring the level of 

synchrony between time series from different regions of interest (ROIs) in the brain (Glerean 

et al., 2012; Pedersen et al., 2017; 2018). Typically, the phase of a particular time series is 

computed at each time point through the application of the Hilbert transform, and used to 

evaluate the phase difference between various time series. Two time series in 

synchronization will maintain a constant phase difference. In this study, we differentiate 

between methods that combine a PS metric with a sliding window approach, referred to as 

windowed phase synchronization (WPS), with those that directly measure PS at each time 

point, referred to as instantaneous phase synchronization (IPS).

The first class of methods (WPS methods) uses metrics that provide a single omnibus 

measure of the phase synchronization between two time series obtained using the Hilbert 

transform. This approach is similar to how correlations provide an omnibus measure of the 

linear relationship between time series (analogous to the static correlation used in FC). In 

this approach, a sliding window technique is used to compute the metric locally within a 

specific time window. As the window is shifted across time, one can obtain a time-varying 

value of the measure of interest (i.e., the dynamic synchronization between two time series). 
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The use of Phase Locking Value (PLV) (Boccaletti et al., 2018; Glerean et al., 2012; Pauen 

and Ivanova, 2013) to capture time-varying relationship between a pair of signals has 

recently been used in this context (Rebollo et al., 2018). In this paper, we propose two other 

measures that can capture the time-varying relationship between a pair of signals: circular-

circular correlation (Jammalamadaka and Sengupta, 2001; Pauen and Ivanova, 2013), and 

toroidal-circular correlation (Zhan et al., 2017). Importantly, this class of methods suffers 

from similar issues as sliding-window correlations, such as the need to select an a priori 
window length for analysis.

The second class of methods (IPS methods) directly analyzes the instantaneous phases 

extracted using the Hilbert transform. In recent years there has been growing interest in 

using IPS methods in neuroimaging, with the bulk of the work applied to MEG and EEG 

data. However, several studies have also applied IPS methods to fMRI data. For instance, 

Laird et al. (2002) used IPS methods to analyze task-activated fMRI data. However, the lack 

of narrow band-pass filtering in the study’s analysis pipeline brings into question the validity 

of the results. Niazy et al. (2011) studied the spectral characteristics of resting state network 

(RSN) and suggested that it is important to consider the IPS between various RSNs at 

different frequencies. Glerean et al. (2012) proposed using IPS as a measure of TVC. 

Finally, Pedersen et al. (2018) examined the relationship between IPS and Correlation-based 

Sliding Window (CSW) techniques and observed a strong association between the two 

methods when using absolute values of CSW. Benefits of using an IPS approach is that it 

offers single time-point resolution of time-resolved fMRI connectivity, and does not require 

choosing an arbitrary window length.

In this paper, we discuss the concept of phase synchronization in the context of fMRI, with a 

particular focus on TVC. We begin by reviewing the framework for computing the phase 

from time series data using the Hilbert transform, and discuss the importance of band-pass 

filtering the data to accurately estimate the instantaneous phases. In the EEG literature, an 

alternative to band-pass filtering is to use empirical mode decomposition (EMD) (Huang, 

2014) as a preprocessing step. Here we contrast the two approaches in the context of 

analyzing PS in the fMRI setting. We continue by introducing a number of different methods 

for evaluating phase synchronization. We focus both on methods already in common use, 

such as the phase locking value and phase coherence, as well as methods new to the fMRI 

literature, such as circular-circular correlation and toroidal-circular correlation (Zhan et al., 

2017). Finally, we propose a new variant of phase coherence, denoted the Cosine of the 

Relative Phase (CRP), that can be used to compute IPS. We contrast these methods through 

a series of simulations and application to two rs-fMRI data sets. The first consists of test-

retest data with a temporal resolution of 2 s, while the second is data from the Human 

Connectome Project with a temporal resolution of 0.72 s.

2. Methods

2.1. A framework for computing instantaneous phase

To obtain the instantaneous phase (Boccaletti et al., 2018) of an arbitrary real signal x(t) one 

must first construct an analytic signal:
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z(t) = x(t) + jℋ{x(t)} (1)

where j = −1 and ℋ represents the Hilbert transform. This signal can in turn be re-

expressed as follows:

z(t) = A(t) exp (j ϕ (t)) (2)

where A(t) represents the envelope and ϕ (t) the instantaneous phase.

Here x(t) is assumed to satisfy Bedrosian’s Product Theorem, which states that a band-

limited signal can be decomposed into the product of envelope and phase when their spectra 

are disjoint. This holds if the signal of interest is first narrow-banded by applying a band-

pass filter.

There are two important considerations when choosing the appropriate filter to apply. First, 

it should not corrupt the phase information in the signal. Thus, it is important to use a filter 

that does not shift the phase. One class of filters that accomplishes this goal are zero-phase 

filters. Second, the width of the frequency band must be sufficiently narrow. The narrower 

the band, the closer the signal will be to a mono-component signal and the Hilbert transform 

will produce an analytic signal with meaningful envelope and phase. The choice of 

appropriate band widths in this context have been investigated in previous studies of fMRI 

data. For example, Ponce-Alvarez et al. (2015) examined band-pass filtering of fMRI data 

using various frequency bands in the range of 0.01 – 0.13 H z and reported consistent results 

for phase statistics at each frequency band. Pedersen et al. (2018) compared using a narrow 

band-pass filter (0.03 – 0.07 H z) with a wider band-pass filter (0.01 – 0.1 H z), and found 

that the narrow-band data yielded stronger associations between the results of CSW and IPS 

analyses.

A schematic framework for obtaining the instantaneous phase synchronization is shown in 

Fig. 1.

Consider that a pair of time series x(t) and y t , t = 1, …T , from two different ROIs are 

filtered using a narrow band-pass zero-phase filter, ℎbp t . and denote the filtered data by 

xn t  and yn t  respectively, i.e.,

xn t = x t * ℎbp t (3)

yn t = y t * ℎbp t . (4)

Here * represents the convolution operator.

If Bedrosian’s theorem holds, the analytical signals of the narrow-banded time series can be 

expressed as the product of instantaneous envelope and instantaneous phase:

xa t = xn t + jℋ xn t = Axn t exp j ϕx t (5)
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ya t = yn t + jℋ yn t = Ayn t exp j ϕy t . (6)

Here the subscript a refers to analytical signal. Throughout, we assume that ϕx t  and ϕy t
are the phase time series extracted from a pair of time series x(t), and y(t). Using the 

instantaneous phases, synchronization can be assessed by studying their differences.

An alternative to band-pass filtering is to use EMD. Here one decomposes the time series 

into a sum of oscillatory modes referred to as intrinsic mode functions (IMF) that 

correspond to different frequency contents in the time series. EMD provides a data-driven 

signal decomposition and does not require an a priori defined basis system. The first IMF 

consists of the largest frequency oscillation present in the signal, and each subsequent IMF 

consists of increasingly smaller frequency oscillations than the those previously extracted. A 

more detailed description of bivariate EMD (BEMD), which is used in this paper, can be 

found in the Supplementary Materials. In the continuation, we refer to this as the BEMD-

based PS framework to differentiate it from the framework described above.

2.2. Methods for assessing phase synchronization

Next, we describe how to measure PS based on the extracted phase time series. We 

discriminate between methods that utilize a PS metric together with a sliding window 

approach (WPS) from those that directly measure IPS.

2.2.1. Windowed phase synchronization—The first class of methods, place a 

measure of PS across two time series within a sliding window framework. Here we describe 

this approach using PLV, circular-circular correlation, and toroidal-circular correlation.

Phase Locking Value: The PLV is a classic metric for assessing phase synchronization 

based on quantifying to what extent the two signals are phase locked. PLV has found 

widespread use in the analysis of MEG/EEG data (Halliday et al., 1998; Rosenblum et al., 

2000). This notion of synchronization can be expressed as follows:

ΔΦm, n t < const, where ΔΦm, n t = nϕx t − mϕy t . (7)

Here the integers m and n are the synchronization indices and ΔΦm, n t  the generalized phase 

difference time series. In this paper, we assume m = n = 1 and drop the indices and let 

ΔΦm, n t = ΔΦ t .

Using the instantaneous phase difference of the signals at each time point, the PLV can be 

computed as follows:

PLV = ejΔϕ t
t (8)

where the operator ⋅ t denotes averaging over time. If the pair of signals are 

unsynchronized, then PLV = 0 and Δϕ t  follows a uniform distribution; otherwise, if the 

pair are synchronized, PLV is constant and equal to 1 (Lachaux et al., 1999).
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To compute PLV within a sliding window framework, for each time window of length ℓ, the 

PLV between the pair of the signals can be obtained using Eq. (8). This approach has been 

previously used for assessing the episodes of elevated gastric-BOLD synchronization by 

Rebollo et al. (2018) in the study of stomach-brain synchrony.

Next, we introduce two other measures in WPS approach that to our best of knowledge have 

not been used to assessing the time varying phase synchornization in a sliding window 

fashion.

Circular-Circular Correlation: The instantaneous phase obtained from each time series are 

directional data and follow a circular distribution. In this context, the use of the standard 

Pearson correlation coefficient is no longer appropriate. Instead, a more suitable measure is 

circular-circular correlation (Jammalamadaka and Sarma, 1988; Jammalamadaka and 

Sengupta, 2001), defined as follows:

ρcirc = E sin Φx − μ sin Φy − ν
E sin2 Φx − μ E sin2 Φy − ν

(9)

In the equation above, Φx = ϕx 1 , …ϕx T  and Φy = ϕy 1 , …ϕy T , while μ and ν 
represent the mean directions of Φx and Φy, respectively. Thus, the terms sin Φx − μ  and 

sin Φy − ν  can be interpreted as the deviations of Φx and Φy from their corresponding mean 

directions.

The circular-circular correlation provides a measure of the static interdependence between 

the two phase time series. It can also be used within the sliding windows framework to 

investigate the time-varying PS. This can be expressed as:

ρcirc, t =
∑s = t − ℓ − 1

t − 1 [sin(ϕx(s) − μt)sin(ϕy(s) − ν t)]
∑s = t − ℓ − 1

t − 1 [sin2(ϕx(s) − μt)] ∑s = t − ℓ − 1
t − 1 [sin2(ϕy(s) − ν t)]

, (10)

where μt and ν t represent the estimated time-varying mean of the two phase time series over 

the sliding window. It is important to note in the context of directional statistics, μt is 

computed as follows (Bishop, 2006; Jammalamadaka and Sengupta, 2001):

μt = tan−1 ∑s = t − ℓ − 1
t − 1 sin ϕx(s)

∑s = t − ℓ − 1
t − 1 cos ϕx(s)

(11)

This formulation can be understood by representing each directional variable on a unit circle 

(r = 1) in the polar coordinate system (r, ϕ). Re-expressing to the Cartesian coordinate 

system (x, y), we can write cos ϕx i = xi and sin ϕy i = yi, for i = 1, …, n. Thus, 

x = n−1 cos ϕx i , y = n−1 sin ϕy i , and the mean direction thus can be written as 

expressed in Eq. (11). Here ν t is computed analogously.
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Toroidal-Circular Correlation: In a critique of circular-circular correlation, Zhan et al. 

(2017) argued that the sine of an angle contains less information than the angle itself, as 

multiple angles can take the same sine value. Furthermore, since the sine function is not 

monotone within an interval of π, this may lead to unreasonable results. To circumvent these 

issues, they introduced a circular correlation coefficient for bivariate directional data on a 

torus, which is the equivalent to the product of two circles (Sojakova, 2016; Zhan et al., 

2017).

To elaborate, let ϕx t1  (or similarly ϕy t1 ) and ϕx t2  (or ϕy t2 ) be two circular data points 

and set 0 ≤ ϕx t1 , ϕx t2 < 2π, so ϕx t1 − ϕx t2 < 2π. When −π < ϕx t1 − ϕx t2 ≤ 0 OR 

ϕx t1 − ϕx t2 > π, by convention the direction from ϕx t1  to ϕx t2  is considered to be 

clockwise. When ϕx t1 − ϕx t2 ≤ − π OR 0 < ϕx t1 − ϕx t2 ≤ π, the direction is considered 

counter-clockwise. The same definition holds for ϕy t1  and ϕy t2 .

Let δ = ϕx t1 − ϕx t2 , then the order function can be expressed as follows:

ℎ δ = δ + 2π mod 2π − π = δ + π, −2π < δ < 0,
δ − π, 0 ≤ δ < 2π . (12)

Now, let us assume that ϕx t1 , ϕy t1  and ϕx t2 , ϕy t2  are independent. The toroidal-

circular correlation is then defined as follows:

ρtor = E ℎ ϕx t1 , ϕx t2 ℎ ϕy t1 , ϕy t2
E ℎ ϕx t1 , ϕx t2 2 E ℎ ϕy t1 , ϕy t2 2 (13)

Note that ρtor can take values between −1 to +1. Based on this definition, the two variables 

ϕx and ϕy move on the circumference of the torus in the same direction if 

ℎ ϕx t1 , ϕx t2 ℎ ϕy t1 , ϕy t2 > 0, making ρtor > 0. Similarly, ρtor < 0 indicates that the two 

variables are moving in opposite directions.

An estimator can be obtained as follows:

ρtor = 1 ti tj n ℎ(ϕx(ti) ϕx(tj))ℎ(ϕy(ti) ϕy(tj))

1 ti tj n ℎ(ϕx(ti) ϕx(tj))2
1 ti tj n ℎ(ϕy(ti) ϕy(tj))2 (14)

The main advantage of using toroidal-circular correlation is that no information about the 

angles are lost. Thus, the estimator circumvents problems due to the non-monotonicity of the 

sine function that could result in irregular estimation when using the circular-circular 

correlation. It can be calculated within a sliding window framework similar to the previous 

sections.

2.2.2. Instantaneous phase synchronization—The second class of methods are 

based on directly working with the instantaneous phases of two time series. Here we focus 
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on phase coherence (Pedersen et al., 2017; 2018), which has already found wide usage in the 

field, and the cosine of the relative phase, introduced for the first time in this work.

Phase Coherence: The phase coherence at each time point is defined as follows:

Ψ t = 1 − sin(ΔΦ(t)) (15)

Here the absolute value of the sine of the relative phase differences is included to account for 

phase wrapping and resolve issues with phase ambiguity over time. Note that the range of 

the values obtained using this metric will take values between 0 and 1, where 0 implies no 

phase coherence and 1 corresponds to maximal phase coherence.

A shortcoming of this approach is that it discards information about the direction of the 

relationship as sin −ΔΦ = sin ΔΦ . As these values vary between 0 and 1, Ψ(t) as defined 

in Eq. (15) does not capture negative association (i.e., when signals are in anti-phase). This 

may help explain why Pedersen et al. (2018) found that the association between IPS and 

CSW analysis was strongly dependent on negative correlations obtained from the CSW 

analysis, and that the association increased when comparing the absolute values of the 

correlations. In addition, it explains why their analysis was unable to capture temporal 

transitions from positive to negative associations, and vice versa, that appeared in the CSW 

analysis.

Cosine of the Relative Phase: To circumvent the issues outlined above, we propose a 

modification of phase coherence that takes temporal transitions into account and preserves 

the correlational structure in the data. This can be achieved by not taking the absolute value 

of the phase difference and using a cosine function instead of a sine function. We refer to 

this measure as the cosine of the relative phase (CRP), defined as follows:

ϑ t = cos ΔΦ t (16)

Notably, the range of the values obtained using this metric take values between −1 and 1, 

and is therefore directly comparable to standard correlation values.

The CRP approach avoids phase unwrapping and takes phase ambiguity into consideration. 

When the instantaneous phase of two signals are similar to one another (i.e., ΔΦ t ≈ 0), 

CRP yields a value close to 1. When the phases are dissimilar but in the same direction, their 

relative phase difference is bounded between −π/2, π/2 , which is the range where the 

cosine function is positive. As the phases become orthogonal to one another, CRP 

approaches 0 indicating a lack of coherence. Similarly, the CRP captures negative 

associations between phases. If the phase difference is greater than ±π/2, this results in 

negative values of the cosine function. Thus, using CRP as a measure of phase synchrony 

helps overcome the issue of detecting temporal transitions from positive to negative 

associations (or vice-versa), and preserves the positive and negative dependence in the data.

2.3. Simulations

In this section we introduce three simulations designed to compare the methods presented in 

Section 2.2 for the two different classes of PS analysis. The first investigates their 
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performance in a null setting, while the second and third investigate PS measures when two 

sinusoidal signals have the same frequency but differing phase shifts. For all three 

simulations data was generated with a sampling frequency of 1/T R, where T R represents 

the repetition time of an fMRI experiment. To be comparable with the main rs-fMRI data set 

used in this paper we chose T R = 2 seconds.

For each simulation we computed WPS values using the PLV, circular-circular correlation, 

and toroidal-circular correlation, and IPS values using phase coherence and the CRP 

method. All simulations were repeated 1000 times, and the mean and variance of the PS 

measured at each time point was used to construct a 95% confidence interval. Furthermore, 

the effect of different window lengths in the WPS analysis was evaluated using three 

different window lengths (30, 60, and 120 TRs).

To illustrate the necessity of band-pass filtering the data, PS analysis was performed on the 

simulated data both before and after band-pass filtering it in the range [0.03, 0.07] H z. 

Throughout we used a 5th order Butterworth filter. The zero-phase version of this filter is 

implemented in MATLAB by filtering backward in time using MATLAB’s filtfilt function to 

cancel out the phase delay introduced by this filter.

For comparison purposes we repeated the simulations using BEMD, described in Section 

S1.1, in place of the band-pass filtering. Using the BEMD-based PS framework, the pairwise 

intrinsic mode functions (IMF)s are obtained and PS measures are computed on the IMF 

pair whose frequency is closest to central frequency of 0.05 Hz which corresponds to the 

peak of the power spectrum.

Simulation 1: To simulate time series with independent phase dynamics, we generated two 

independent random signals from a Gaussian distribution with mean 0 and standard 

deviation 1. Using the logic of surrogate data testing, we generated surrogate data under the 

assumption of no relationship between the phase from the two signals. To achieve this goal 

we used cyclic phase permutation (CPP) surrogates (Lancaster et al., 2018), constructed by 

reorganizing the cycles within the extracted phase of the signals. This destroys any phase 

dependence between the pair, whilst preserving the general form of the phase dynamics of 

each time series. For this simulation, the 1000 realizations of signal pairs were generated 

using CPP surrogates.

Simulation 2: Here we generated two sinusoidal signals with the same frequency, but with 

a time-varying phase shift corresponding to a ramp function. To elaborate, consider two 

sinusoidal signals x(t) and y(t). Let x(t) be the reference signal with an angular frequency of 

ω0 and phase φx(t). Further, let y(t) have the same angular frequency but with phase φy(t). 
The signals can be expressed as follows:

x t = Axcos ω0t + φx t + εx
y t = Aycos ω0t + φy t + εy

(17)

Without loss of generality, let φx t = 0 and φy t  be a ramp function,
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r t − t0 =
0 t ⩽ t0
t − t0 t > t0

(18)

The time series can then be expressed as follows:

x t = Axcos ω0t + εx
y t = Aycos ω0t + 4πr(t − t0) + εy

(19)

Throughout, ω0 = 2πf rad / s with f = 0.05 H z, and the transition is set to occur at t0 = 170 

s. The noise terms εx and εy are Gaussian white noise with mean 0 and standard deviation 1.

To summarize, the two signals start out phase synchronized and remain in this state up to t0 

= 170 s. After which the phase difference starts linearly increasing and transition into a non-

synchronized state.

Simulation 3: Here we generated two sinusoidal signals with the same frequency, but with 

a time-varying phase shift corresponding to a sigmoid function. As in the previous 

simulation, data was generated according to Eq. (17). Here we let φx(t) = 0 and φy(t) be a 

sigmoid function, i.e.

s t − t0 = a
1 + exp b t − t0 (20)

Hence, the time series can be expressed as follows:

x t = Ax cos ω0t + εx

y t = Ay cos ω0t + a
1 + exp b t − t0

+ εy
(21)

Throughout, we set a = 2π, b = −0.01. t0 = 170, and ω0 = 2πf rad / s with f = 0.05 H z. The 

noise terms εx and εy are Gaussian white noise with mean 0 and standard deviation 1.

To summarize, the signals are initially in phase, after which the amount of phase shift 

gradually increases. This continues until t = 170 when the pairs are in anti-phase 

synchronization. Thereafter, the signals gradually return to being in phase. The transition 

between the phase of the signals from 0 to 2π occurs smoothly and monotonically 

increasing.

2.4. Application to Kirby21 dataset

2.4.1. Image acquisition—We used the Multi-Modal MRI Reproducibility Resource 

from the F.M. Kirby Research Center, commonly referred to as Kirby21. It includes data 

from 21 healthy adults scanned on a 3T Philips Achieva scanner designed to achieve 80 

mT/m maximum gradient strength with body coil excitation and an eight channel phased 

array SENSitivity Encoding (SENSE) (Pruessmann et al., 1999) head-coil for reception. All 

subjects completed two scanning sessions on the same day, between which they briefly 

exited the scan room. A T1-weighted (T1w) Magnetization-Prepared Rapid Acquisition 
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Gradient Echo (MPRAGE) structural run was acquired during both sessions (acquisition 

time = 6 min, TR/TE/TI = 6.7/3.1/842 ms, resolution = 1 × 1 × 1.2 mm3, SENSE factor = 2, 

flip angle = 8° ). A multi-slice SENSE-EPI pulse sequence (Pruessmann et al., 1999; 

Stehling et al., 1991) was used to acquire two rs-fMRI runs during each session. Each run 

consisted of 215 volumes sampled every 2 s at 3 mm isotropic spatial resolution (acquisition 

time: 7 min. TE = 30 ms, SENSE acceleration factor = 2. flip angle = 75°, 37 axial slices 

collected sequentially with a 1 mm gap). Subjects were instructed to rest comfortably while 

remaining still. One subject was excluded from further analyses due to excessive head 

motion. For a more detailed description of the acquisition protocol see Landman et al. 

(2011).

2.4.2. Image processing—The data was preprocessed using SPM8 (Wellcome Trust 

Centre for Neuroimaging, London, United Kingdom) (Friston et al., 1994) and custom 

MATLAB (The Mathworks, Inc., Natick, MA) scripts. Five initial volumes were discarded 

to allow for the stabilization of magnetization. Slice-time correction was performed using as 

a reference the slice acquired at the middle of the TR. Rigid body realignment 

transformation was performed to adjust for head motion. Structural runs were registered to 

the first functional frame and normalized to Montreal Neurological Institute (MNI) space 

using SPM8’s unified segmentation-normalization algorithm (Ashburner and Friston, 2005). 

The estimated nonlinear spatial transformations were applied to the rs-fMRI data, which 

were high-pass filtered using a cutoff frequency of 0.01 H z. The rs-fMRI data was spatially 

smoothed using a 6 mm full-width-at-half-maximum (FWHM) Gaussian kernel, which is 

twice the nominal size of the rs-fMRI acquisition voxel.

The Group ICA of fMRI toolbox (GIFT) (https://trendscenter.org/software/gift/) was used to 

estimate the number of independent components (ICs) present in the data, perform data 

reduction via principal component analysis (PCA) prior to independent component analysis 

(ICA), and perform group independent component analysis (GICA) (Calhoun et al., 2001) 

on the PCA-reduced data. The number of ICs was estimated using the minimum description 

length (MDL) criterion (Li et al., 2007). Across subjects and sessions, 56 was the maximum 

estimated number of ICs and 39 the median. Prior to GICA, the image mean was removed 

from each time point for each session, and three steps of PCA were performed. Individual 

session data were reduced to 112 principal components (PCs), which were concatenated 

within subjects in the temporal direction and further reduced to 56 PCs. Finally, data were 

concatenated across subjects and reduced to 39 PCs. The dimensions of the individual 

session PCA (112) was chosen by doubling the estimated maximum IC number (56), to 

ensure robust back-reconstruction (Allen et al., 2011; 2012) of subject- and session-specific 

spatial maps and time courses from the group-level ICs. ICA was repeated on these 39 

group-level principal components 10 times, utilizing the Infomax algorithm with random 

initial conditions (Bell and Sejnowski, 1995). The resulting 390 ICs were clustered across 

iterations using a group average-link hierarchical strategy, and 39 aggregate spatial maps 

were defined as the cluster modes. Subject- and session-specific spatial maps and time 

courses were generated from these aggregate ICs using the GICA3 algorithm.

The spatial distribution of each IC was compared to a publicly available set of 100 

unthresholded t-maps of ICs estimated using rs-fMRI data collected from 405 healthy 
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participants (Allen et al., 2014). These maps were pre-classified as resting-state networks 

(RSNs) or noise by a group of experts, and the 50 components classified as RSNs have been 

organized into seven functional groups, namely visual (Vis), auditory (Aud), somatomotor 

(SM), default mode (DMN), cognitive-control (CC), subcortical (SC) and cerebellar (Cb) 

networks. For each spatial map, we calculated the percent variance explained by each of the 

seven sets of RSNs. The functional assignment of each Kirby component was determined by 

the set of components that explained the most variance, and if the top two sets of RSNs 

explained less than 50% of the variance in a Kirby component, the component was labeled 

as noise. In total 21 of the 39 components were assigned to a RSN. Subject- and run-specific 

time series from these components served as input for our analyses.

2.4.3. Analysis—The Kirby21 dataset consists of 21 ROIs measured over 210 time 

points for 20 subjects in two repeated sessions. The framework described in Section 2.1 (see 

Fig. 1), using a band-pass filter with range [0.03, 0.07] H z, was applied to the data for each 

session separately to compute the region-wise instantaneous phase for each of the 20 

subjects. For each pair of subject-specific phase time series, we applied the WPS and IPS 

methods. We also applied CSW for comparison purposes. To facilitate comparison between 

the WPS and CSW methods, we used a common window length of 28 time points. We 

further compared the results with a prewhitened Correlation-based Sliding Window (PW-

CSW) assuming an AR(1) model. This comparison was performed as a previous study 

(Honari et al., 2019) showed that prewhitening the data prior to analysis can lower the 

variance of the estimated TVC and improve brain state estimation.

For each of the two sessions, application of each method gave rise to a subject-specific 21 × 

21 × 210 array of PS measures. Following the approach of Allen and colleagues (Allen et 

al., 2014), we applied k-means clustering to estimate recurring brain states across subjects. 

First, we reorganized the lower triangular portion of each subject’s dynamic correlation data 

into a matrix of dimension 210 × 210. Here the row dimension corresponds to the number of 

elements in the lower triangular portion of the matrix (i.e., 21(21 − 1)/2), and the column 

dimension corresponds to the number of time points. Then we concatenated the data from all 

subjects into a matrix with row dimensions 210 and column dimensions (210 × 20 = 4200). 

Finally, we applied k-means clustering to the concatenated data, where each of the resulting 

cluster centroids were assumed to represent a recurring brain state. The k-means clustering 

was repeated 200 times, using random initialization of centroid positions, in order to 

increase the chance of escaping local minima. In this study, we set the number of centroids 

to two, representing two distinct brain states, as determined using the Davies-Bouldin Index 

(DBI) (Davies and Bouldin, 1979). This is consistent with the number of the clusters for this 

dataset used in previous studies by Choe et al. (2017) and Honari et al. (2019). In order to 

validate the reproducibility of the brain states estimated using each of the phase 

synchronization measures, the results obtained from each of the two sessions were further 

compared and contrasted.

2.5. Application to the Human Connectome Project (HCP)

To validate the results obtained using the Kirby21 dataset, we applied the proposed 

methodology to a second rs-fMRI dataset from the Human Connectome Project (HCP). This 
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data set has a different repetition time and scan length than the Kirby21 data, thus providing 

valuable insight into the performance of our method in this alternate setting. We used 50 

subjects from the Human Connectome Project 500 Parcellation+Timeseries+Netmats 

(HCP500-PTN) release (Van Essen et al., 2013) to evaluate the performance of the PS 

measures. For space reasons, the image acquisition, image processing and analysis are 

discussed in Section S1.4 of the Supplementary Materials.

3. Results

3.1. Simulation 1

Fig. 2 shows a single realization of Simulation 1 for illustration purposes. Panel (a) shows a 

randomly generated pair of time series, and (b) the extracted instantaneous phases between 

the two time series at each time point. Since this is null data, the phase difference should 

vary uniformly in the interval [0, 2π] as illustrated in Panels (c) and (d).

Fig. 3 shows a summary of the results for 1000 surrogate data sets with the analysis 

performed on the data prior to band-pass filtering. The mean and 95% confidence interval 

for each measure are shown at each time point. Results for the WPS measures (Panels (a)–

(c)) are shown for each window length (30, 60, and 120 time points). The results illustrate 

that all measures of PS are roughly constant across time.

Note that measures such as PLV and phase coherence take values between 0 and 1. The 

mean value using phase coherence is roughly 0.35 (Panel (d)), which is consistent with the 

results obtained using PLV for a window size of 60 (Panel (a)). As the window size 

decrease, the value of PLV tends to be lower. In contrast, circular-circular correlation, 

toroidal-circular correlation, and CRP all take values between −1 and 1 The mean of the 

CRP is 0 at each time point (Panel (e)), which is consistent with the results of the WPS 

obtained using circular-circular and toroidal-circular correlation (Panels (b) and (c)).

It is important to note that phase coherence and CRP preserve the temporal resolution of the 

phase difference as they are not estimated using a sliding window. However, this appears to 

come at the cost of increased variability as indicated by the relatively wider 95% confidence 

intervals.

The effect of the chosen window length on various WPS measures shows that for this 

simulation as the window size increases, the estimates converge towards their true values 

(i.e., 0 for circular-circular correlation and toroidal-circular correlation). The average bias 

and variance of each method is reported in Table S1.

Fig. 4 shows the comparison between various measures of PS used on the surrogate data 

after band-pass filtering. The results indicate that synchronization measures remain roughly 

constant across time. However, the WPS measures (Panels (a)–(c)) show a noticeable 

difference compared to the results without band-pass filtering. Significantly, the results of 

the WPS measures show inflated values, indicating a higher degree of phase synchronization 

than would be expected in a null setting. PLV, circular-circular correlation, and toroidal-

circular correlation take values around 0.84, 0.53, and 0.62, respectively. These is driven by 
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the fact that both signals have a center frequency of 0.05 H z after applying band-pass 

filtering, leading to a situation where the signals are constrained to remain phase locked 

throughout the time course. The IPS measures are not similarly affected. The mean value 

using phase coherence is again roughly 0.35 (Panel (d)), and the mean of the CRP is 0 at 

each time point (Panel (e)). Both values are roughly equivalent to those seen before band-

pass filtering. The average bias and variance of each method is reported in Table S2.

Figure S1 in the Supplementary Materials show the results of this simulation using the 

BEMD-based PS framework. The results are similar to those obtained using band-pass 

filtering, with the exception that the variance of the estimates are slightly higher; see Table 

S3. This can be explained by the well-known sensitivity of the EMD-based approach to 

noise (Imaouchen et al., 2017; Wu and Huang, 2009; Zheng et al., 2014), which in turn leads 

to a higher variance of the phase synchronization measures.

3.2. Simulation 2

Figs. 5 and 6 illustrate the results of Simulation 2 performed on the data before and after 

band-pass filtering, respectively. Recall that in this simulation the two signals are designed 

to have the same phase up to time t = 170, after which a phase shift is introduced that varies 

linearly from 0 to 4π (see Fig. 5a). Thus, the signals should gradually move in and out of 

phase during the second half of the time course. Here the signals will be in-phase when the 

phase difference is 2π and 4π, and in anti-phase when the difference is π and 3π.

The costs of not band-pass filtering the data are apparent in Fig. 5, as all five of the methods 

return results consistent with those seen in the null setting. None of the methods does a good 

job of either detecting the fact that the signals are in phase in the first half of the time course, 

or that they gradually move in and out of phase in the second half. This can be explained by 

the fact that the signal is contaminated with noise from all frequencies, which in turn 

corrupts the estimated instantaneous phase.

Contrast this with the results after band-pass filtering shown in Fig. 6. Here all of the 

measures of PS correctly predict a value close to 1 in the first half of the signal, indicating 

that all methods are picking up on the fact that the signals are in phase. In Panels (b)–(d), 

which represents the WPS measures, the phase shift occurring after t = 170 leads to a 

decrease in phase synchronization from this time point on. The toroidal-circular correlation 

appears to perform best, showing more sensitivity in detecting the episodes of phase 

synchronization compared to PLV and circular-circular correlation. It can also be observed 

that the circular-circular correlation is more susceptible and sensitive to the noise than the 

other measures (see the increased wiggles in the estimates values). Interestingly, the PLV 

results appear to be more sensitive to the window length used than the other two metrics. 

However, it is important to note that none of the WPS methods are able to detect that the 

signals are in phase when the phase shift equals 2π and 4π.

In contrast, both the phase coherence and CRP better captures the PS variation than the WPS 

measures. This is partly due to the fact that using a sliding window deteriorates the 

resolution of the PS depending on the window size. In particular, note how well CRP detects 

that the signal is in phase at points when the phase shift equals 2π and 4π. This is in contrast 
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to phase coherence that erroneously assumes that signals are also in phase when the shifts 

are equal to π and 3π. The latter is due to the fact that phase coherence cannot differentiate 

between when the signals are in phase from when they are in anti-phase. The benefits of 

band-pass filtering can be clearly seen in Tables S1 and S2, which show a reduction in bias 

when the data is properly filtered.

Figure S2 and Table S3 in the Supplementary Materials show the results of this simulation 

using the BEMD-based PS framework. Again, the results are consistent with those seen 

using band-pass filtering, though the variance of the estimates are somewhat higher.

3.3. Simulation 3

Figs. 7 and 8 illustrate the results of Simulation 3 performed on data before and after band-

pass filtering. As illustrated in Fig. 7a, the two signals are designed to initially be in phase, 

after which they gradually go out of phase. At time t = 170 when the phase difference is 2π, 

the two signals will be in anti-phase, before returning to being in phase at the end of the time 

course.

The costs of not band-pass filtering the data are again apparent in Fig. 7, as all of the 

methods show results consistent with the null setting. This is in contrast to the results 

obtained after band-pass filtering shown in Fig. 8. Here all measures of phase 

synchronization pick up on the fact that the signals start out in phase, gradually goes out of 

phase (culminating at time t = 170), before gradually return to being in phase. Tables S1 and 

S2 show a reduction in bias when the data is properly filtered, except for PLV.

In Panels (b)–(d), which represents the WPS measures, we see that using a longer window 

length tends to capture phase dynamics better than using a smaller window length. Again, 

the toroidal-circular correlation performs best, showing increased sensitivity in detecting the 

episodes of phase synchronization compared to circular-circular correlation and PLV. 

Increased window lengths provide better results. Both phase coherence and CRP capture the 

manner in which phase synchonization varies more clearly than the WPS measures. In 

particular, CRP provides the most reliable measures in this simulation and clearly detects 

both when the signals are in and out of phase. In comparison, phase coherence cannot 

separate when the signals are in phase and anti-phase, illustrating one of the shortcomings of 

the approach.

Figure S3 and Table S3 in the Supplementary Materials shows the results of this simulation 

using the BEMD-based PS framework. Again, the results are consistent with those seen 

using band-pass filtering, though the variance of the estimates are somewhat higher.

3.4. Analysis of rs-fMRI data

After applying each method to the Kirby21 rs-fMRI data, two brain states were extracted 

using k-means clustering. Fig. 9 contrasts the estimated brain states obtained using the 

different methods for assessing phase synchonization, as well as with correlation-based 

sliding window analysis (both with and without pre-whitening). Brain states are organized 

into seven functional groups as described earlier in Section 2.4.2.
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Beginning with the WPS methods, PLV (top row), circular-circular correlation (second row) 

and toroidal-circular correlation (third row) show roughly similar results with regards to the 

relationship between functional groups in each brain state. However, the PLV derived brain 

states in general take higher values than those obtained using toroidal-circular correlations, 

which in turn take higher values than those obtained using circular-circular correlations. 

These results are largely consistent with those seen in the simulation studies, and the fact 

that toroidal-circular and circular-circular correlations take a wider range of values 

(compared to PLV which is constrained between 0 and 1).

Turning to the IPS methods, the brain states obtained using phase coherence (fourth row) 

tends to provide higher values in general compared to CRP (fifth row). This is not 

necessarily surprising as the range of potential values are different (phase coherence takes 

values between 0 and 1, while CRP takes values between −1 and 1). In addition, as seen in 

the simulation studies phase coherence has problems differentiating between when signals 

are in phase versus when they are in anti-phase. Together, this provide higher values in the 

estimated brain states. For example, State 2 shows a hyper-connected state where all PS 

measures are close to 1.

Interestingly, the results obtained using sliding windows without any prewhitening (sixth 

row) is very similar to those obtained using the CRP. Across both sessions and estimation 

methods, State 2 was characterized by stronger correlations (both positive and negative) 

relative to State 1. Moderate to strong negative correlations between sensory systems 

(auditory, somatomotor, and visual) components were present in State 2 but were reduced in 

State 1. Similarly, negative correlations within the DMN (grey) components were present in 

State 2 and were reduced in State 1. This similarity between methods indicates that CRP 

may be finding similar brains states as CSW, but using more high-resolution data as it does 

not use a predefined window. These findings are largely consistent with those of Pedersen et 

al. (2018) who found that IPS and CSW conveyed comparable information of time-resolved 

fMRI connectivity, though IPS provided finer temporal resolution. The results obtained 

using sliding windows without prewhitening (seventh row) show lower estimated values than 

the results without prewhitening, which is consistent with results found in Honari et al. 

(2019).

Finally, we found that both States 1 and 2 were highly reliable across sessions regardless of 

estimation method. The results for CRP and the sliding window approaches (described 

above) appear more interpretable than those obtained using the other methods. In particular 

the results for PLV and PC, which takes values between 0 and 1 appear to show extremely 

hyperconnected states, perhaps reflective of the lower range of values that these measures 

return.

Figure S8 in the Supplementary Materials shows the results for the analysis of the HCP 

dataset. Here after applying each method to the rs-fMRI data, four brain states were 

extracted using k-means clustering. Brain states are organized into the same seven functional 

groups as before. The results show a great deal of similarity between the HCP and Kirby21 

results with respect to the properties of the estimated brain states obtained using each PS 

measure. Again, PLV derived brain states (top row) take higher values than those obtained 
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using toroidal-circular correlations (third row), which in turn take higher values than those 

obtained using circular-circular correlations (second row). Similarly, the brain states 

obtained using phase coherence (fourth row) tend to provide higher values compared to CRP 

(fifth row). Finally, the results obtained using sliding windows without any prewhitening 

(sixth row) is very similar to those obtained using the CRP.

Focusing on the CRP results, States 1, 2 and 4 all show moderate to high correlations among 

signal components representing sensory systems (i.e., visual, somatomotor, and auditory 

components). In States 1 and 4, a set of components in the cerebellum showed negative 

correlations with sensory components. The HCP states were largely similar to those obtained 

from the Kirby21 data, though it is important to note that the number and placement of the 

components in each HCP RSN do not map directly onto one another.

4. Discussion

There is growing interest in measuring time-varying functional connectivity between time 

courses from different brain regions using rs-fMRI data. One such approach is to measure 

their phase synchronization across time. In this paper, we evaluate a number of methods for 

measuring PS and contrast them with one another. In discussing methods, we differentiate 

between two classes of methods: windowed phase synchronization and instantaneous phase 

synchronization.

WPS methods combine a static PS measure between two different signals with a sliding 

window to obtain a time-varying measure of PS. In principal, any metric that allows one to 

calculate an omnibus measure of PS can be used within this framework. Since phase 

information is circular data, the use of circular-circular correlation and toroidal-circular 

correlation were deemed natural candidate methods to use as a measure of PS. To the best of 

our knowledge, neither approach has previously been used to study PS in fMRI. The PLV in 

WPS method, has in contrast previously been used to assess episodes of elevated gastric-

BOLD synchronization (Rebollo et al., 2018).

IPS methods directly use the phase difference time series obtained from applying the Hilbert 

transform, allowing one to compute an instantaneous measure of PS. This has the benefit of 

providing a higher temporal resolution, as there is no need to choose an arbitrary window 

size as for the WPS methods. However, there remains a related somewhat arbitrary choice of 

filter bandwidth to narrow-band the signals prior to analysis. Here we focused on two 

measures of IPS, phase coherence, which has already found wide usage in the field, and 

CRP, a newly developed method.

The three simulations illustrate several important points regarding the performance of these 

methods. Simulation 1 shows that the WPS methods are highly affected by band-pass 

filtering. To illustrate, Fig. 4 shows that these methods tend to provide estimates that indicate 

that signals are consistently in phase, even when the phases are designed to randomly vary. 

These results hold because the two signals being compared have a center frequency of 0.05 

Hz after applying band-pass filter with cutoff frequencies [0.03, 0.07] Hz. This leads to a 

situation where the signals are constrained to remain relatively phase locked and thus have 
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constant PS throughout the time course. Importantly, the IPS results appear to perform 

similarly on the data both before and after band-pass filtering (see Figs. 3 and 4), and thus 

appear to be less sensitive to filtering in the null setting.

While at first glance, the results of Simulation 1 appear to indicate that band-pass filtering is 

not beneficial, and may in fact be detrimental, Simulations 2 and 3 put this notion to rest. 

Here, the results performed on the non band-pass filtered data indicate that none of the 

methods are able to pick up changes in real PS present in the data, and instead appear to 

erroneously indicate that the data behave in manner consistent with null data. This is largely 

corrected after band-pass filtering the data (see Figs. 6 and 8). This result holds both for 

WPS and IPS methods, and indicates that band-pass filtering is a necessary step in the 

analysis of PS.

This result corresponds to theoretical findings (Bedrosian’s theorem) that suggest using 

band-pass filters in the study of PS is critical for the signal to have physically meaningful 

demodulation into its envelope and instantaneous phase components. However, it is 

important to note that band-pass filtering comes at the cost of introducing further 

autocorrelation into the phase of the signal. In addition, band-pass filtering increases the risk 

of spurious detection of phase synchronization (Rosenblum et al., 2000). While a band-pass 

filter denoises the signal, it can also lead to an increase in the degree of synchronization by 

narrowing the band width; see Fig. 4.

The results of Simulations 2 and 3 together show that all methods to a certain extent were 

able to detect changes in PS. Focusing on the WPS measures, toroidal-circular correlation 

performed best, showing increased sensitivity to detecting episodes of PS compared to PLV 

and circular-circular correlation. Circular-circular correlation was the most susceptible and 

sensitive to noise. A previous study comparing PLV and circular-circular correlation (Pauen 

and Ivanova, 2013) suggested that circular-circular correlation is appropriate for estimating 

the phase coupling reliably and not restricted to bivariate analyses. It also indicated that 

using it as a measure of phase coupling could show slightly lower estimates than its 

counterpart. This result is consistent with what we found in our simulations.

When assessing WPS measures, we also investigated a variety of window lengths. The 

simulations indicated that shorter windows yielded a higher estimate of phase 

synchronization and increased risk of detecting spurious PS. However, longer windows 

made it harder to detect subtle changes. In general, longer window lengths tend to provide 

more accurate estimates of PS as they lead to a decrease in the variation of the estimates. 

However, this may be only the case if the pairwise phase coupling between the underlying 

signals is of semi-stationary nature with no abrupt changes.

It is important to note that if overlapping windows are used, an autocorrelation (beyond that 

already present due to the smoothness of the BOLD signal) is induced in the estimated WPS 

values, making changes in connectivity appear artificially smooth. Overlapping windows do 

provide a finer temporal resolution than non-overlapping windows, as the latter is a subset of 

the former. However, the exact gain in resolution is hard to quantify as it depends heavily on 

the autocorrelation between windows. One of the goals of IPS is to gain a time-resolved 
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resolution. However, it is worth noting that the band-pass acts as an implicit window due to 

Parseval’s therorem.

The simulations clearly point to the benefits of band-pass filtering when computing PS. An 

alternative approach is to instead use empirical mode decomposition to extract frequencies 

of interest. This approach has been widely used to analyze EEG data, but also found recent 

use in application to fMRI data (Niazy et al., 2011; Yuen et al., 2019; Zhou et al., 2020). In 

the Supplemental Materials the results of the simulations described above were contrasted 

with results obtained using an EMD-based PS framework. Both approaches yielded similar 

results for the different PS measures. However, the variance of the estimates obtained using 

EMD were somewhat higher for the same level of noise compared to band-pass filtering.

IPS measures consistently outperformed WPS measures in the simulations, and were able to 

better pick up changes in PS across time. While phase coherence offers more accurate and 

sensitive results than the WPS methods, it still discards information about the direction of 

the relationship. In contrast, CRP was not only able to detect phase synchronization but also 

preserve the directional information contained in the relative phase difference of the signals. 

However, one should note that the variation present in the IPS methods appears larger than 

WPS methods as evidenced by the wider confidence bounds.

It is interesting to consider the range of values each method returns. PLV and phase 

coherence take values between 0 and 1. In contrast, circular-circular correlation, toroidal-

circular correlation, and CRP all take values between −1 and 1. This has to be taken into 

consideration when interpreting the results of each method. For example, in Simulation 1 

where we analyzed null data, the latter methods returned values that lay symmetrically 

around 0. This makes it easier to interpret null results compared to PLV and phase coherence 

whose null values were around 0.35. Understanding what null values look like is a critical 

component towards understanding the performance of a method, as it is otherwise difficult to 

differentiate signal from noise.

Application to real rs-fMRI data showed results that were consistent with the simulations. 

The WPS methods showed roughly equivalent results with respect to the relationship 

between functional groups in each estimated brain state. As described above, the shorter 

range of values for PLV and phase coherence made it more difficult to pick up subtle 

differences between brain states, and they both returned a hyper-connected brain state where 

all PS measures are close to 1. Interestingly, the brain states estimated using CRP closely 

resembled those estimated using sliding window correlations. Thus, it appears that CRP is 

finding similar brains states but using more high-resolution data as it does not require the 

use of a sliding window. Finally, there was a large degree of similarity between states 

estimated from the Kirby21 and HCP datasets, even though they differ in important aspects 

including repetition time, scan length, and sample size.

The focus of this work is on showing the potential of the PS framework and highlighting the 

necessity of using appropriate PS measures to estimate time-varying functional connectivity. 

However, we believe the approach can be extended to allow for the analysis of directed 

connectivity between regions of interest. For example, this could be studied using 
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instantaneous phase time series from fMRI data in conjunction with transfer entropy (phase-

based transfer entropy) (Lobier et al., 2014).

In summary, we recommend the use of CRP as a measure of PS as it is able to separate when 

the signals are in phase from when they are in anti-phase. In addition, it returns a range of 

values similar to correlation, which makes it possible to interpret results similarly. Of all the 

methods tested, it showed the greatest concurrence with CSW, with the benefit of not having 

to predefine a window length.
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Fig. 1. 
A schematic of the approach to calculate the instantaneous phase (IP) framework.
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Fig. 2. 
A single realization of Simulation 1. (a) A pair of signals x(t) and y(t) generated from an 

independent Gaussian process. (b) The difference in the estimated phase between the signals 

at each time point. (c) The circular distribution of the phase difference time course in a polar 

coordinate system. (d) Same results in histogram form.
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Fig. 3. 
Results of Simulation 1 without band-pass filtering. The bold line indicates the estimated 

value, while the shaded area represents the 95% confidence interval. Results are shown for: 

(a) PLV using a sliding window; (b) circular-circular correlation using a sliding window; (c) 

toroidal-circular correlation using a sliding window; (d) phase coherence; and (e) CRP. The 

sliding window techniques are evaluated at three different window lengths.
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Fig. 4. 
Results of Simulation 1 with band-pass filtering. The bold line indicates the estimated value, 

while the shaded area represents the 95% confidence interval. Results are shown for: (a) 

PLV using a sliding window; (b) circular-circular correlation using a sliding window; (c) 

toroidal-circular correlation using a sliding window; (d) phase coherence; and (e) CRP. The 

sliding window techniques are evaluated at three different window lengths.
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Fig. 5. 
Results of Simulation 2 without band-pass filtering. (a) The ground truth phase shift between 

the two signals as a function of time. Results are shown for: (b) PLV using a sliding window; 

(c) circular-circular correlation using a sliding window; (d) toroidal-circular correlation 

using a sliding window; (e) phase coherence; and (f) CRP. The sliding window techniques 

are evaluated at three different window lengths.

Honari et al. Page 28

Neuroimage. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Results of Simulation 2 with band-pass filtering. (a) The ground truth phase shift between 

the two signals as a function of time. Results are shown for: (b) PLV using a sliding window; 

(c) circular-circular correlation using a sliding window; (d) toroidal-circular correlation 

using a sliding window; (e) phase coherence; and (f) CRP. The sliding window techniques 

are evaluated at three different window lengths.
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Fig. 7. 
Results of Simulation 3 without band-pass filtering. (a) The ground truth phase shift between 

the two signals as a function of time. Results are shown for: (b) PLV using a sliding window; 

(c) circular-circular correlation using a sliding window; (d) toroidal-circular correlation 

using a sliding window; (e) phase coherence; and (f) CRP. The sliding window techniques 

are evaluated at three different window lengths.
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Fig. 8. 
Results of Simulation 3 with band-pass filtering. (a) The ground truth phase shift between 

the two signals as a function of time. Results are shown for: (b) PLV using a sliding window; 

(c) circular-circular correlation bsing a sliding window; (d) toroidal-circular correlation 

using a sliding window; (e) phase coherence; and (f) CRP. The sliding window techniques 

are evaluated at three different window lengths.
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Fig. 9. 
Analysis of the Kirby21 Data. After applying each method the time-varying connectivity 

measures were clustered into 2 reoccurring brain states. Results are shown for both sessions 

(top to bottom) for: PLV using a sliding window; circular-circular correlation (CIRC) using 

a sliding window; toroidal-circular correlation (TORC) using a sliding window; phase 

coherence (PC); cosine of the relative phase (CRP); correlation-based sliding window 
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(CSW); and prewhitened correlation-based sliding window (PW-CSW). The sliding window 

techniques are evaluated with window length 30 time points.
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