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Abstract: The current vaccines to control bovine Babesia bigemina (B. bigemina) infection are not
fully protective and vaccination failures incur heavy losses to the cattle industry around the world.
Using modified micro-aerophilous stationary phase, we developed a culture-derived attenuated
live vaccine against B. bigemina and tested a single subcutaneous inoculation of 2 × 108 infected
erythrocytes in calves. The protection was measured after a lethal intravenous challenge with 5 × 108

virulent calf-derived B. bigemina. Our results demonstrated that a single shot of attenuated vaccine
was capable of inducing robust humoral and cell-mediated immune responses in calves. We found a
significant increase in the IgG antibody titers post-challenge and a strong proliferation of both CD4+

and CD8+ T cells contributing towards the protection. Our vaccine provided complete protection
and parasitic clearance, which was followed for more than 100 days post-challenge. This immunity
against babesiosis was directly linked to strong humoral responses; however, the parasitic clearance
was attributed to significant T cells effector responses in vaccinated calves as compared to the infected
control calves. We anticipate that these results will be helpful in the development of more efficient
culture-derived vaccines against Babesia infections, thus reducing significant global economic losses
to farmers and the cattle industry.

Keywords: Babesia bigemina; attenuated vaccine; humoral immunity; cell-medicated immunity;
CD4+ T cells; CD8+ T cells; bovine babesiosis

1. Introduction

Bovine babesiosis is an emerging disease that proves not only fatal but also causes enormous
economic loss worldwide in many ways—such as direct treatment cost, the indirect cost of low meat
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production and loss of milk production [1]. Globally, there are around 1.2 billion cattle that are at
risk of being infected with babesiosis including in Asia, Australia, USA, Africa, Central and South
America [2]. According to the Food and Agriculture Organization (FAO), 80% of the world’s cattle
population is exposed to tick infestation and it has estimated an impact of 7.3 US $/head/year [3].
Rhipicephalus microplus is a significant tick for the cattle industry all over the globe, causing almost USD
22–30 billion in losses per year [4] by the transmission of serious pathogens in animals [5].

It is well documented that widely used chemotherapeutic compounds like diminazene aceturate
and imidocarb dipropionate have an ample spectrum against this apicomplexan hemoprotozoan
pathogen for bovine babesiosis [6,7]; but the repeated use of these drugs has led to the development of
drug resistance in the tick-borne hemoprotozoan parasite [8,9], which has residual impact on milk and
meat for a longer period, even after treatment [10]. The aforementioned drugs are banned or restricted
by the Food and Drug Administration in many countries [11]. This drug resistance development
highlights the need for the exploration of new pharmaceutical agents with effective babesicidal activity
and low toxicity in the host [12,13].

It is well established that in future protection against babesiosis can be achieved by better
vaccination of cattle in order to control the disease before it occurs [14]. Vaccines that are presently
employed in Australia, South Africa, several countries of South America and Israel [15–20] consist of
bovine blood containing attenuated parasites. However, by no means all of these attenuated parasites
are completely avirulent. It is generally known that, because of the wide diversity of Babesia spp. [21]
in different geographical regions, it would be preferable to use autochthonous strains to obtain a highly
potent vaccine. Besides, the introduction of new exotic strains, or new genetic/antigenic variants [22]
into a geographical area, might present a serious risk for the severity of the disease status in the field.
The calf derived vaccines developed by “slow” passages in vivo in intact calves [23] were shown to
be highly effective but are known to have the potential of transmitting latent pathogens if testing is
insufficiently stringent [24].

Following the introduction of in vitro culture technology for Babesia bigemina [25], culture-derived
vaccines, which present minimal risk of the inadvertent spread of pathogens, were adopted and
showed immunogenicity comparable with that of calf-derived vaccines [14,17,18,26]. In countries with
no possibility of maintaining cattle under highly stringent conditions, vaccines derived from an in vitro
culture are a suitable alternative source for parasites used for immunization [27]. Recently, Tick Fever
Center, Wacol, Australia has commercialized Tick fever vaccine against B. bigemina and B. bovis,
with a short shelf life and suitable for the local environment [28]. Frozen culture derived parasitic
vaccines have shown promising results in various field trials in Mexico [29], whereas others have tried
co-immunization of live attenuated B. bovis and B. bigemina vaccines with Lactobacillus casei to improve
the parasite specific IgG1 levels [30]. A comprehensive review published on in vitro cultivation of
Babesia aimed exclusively at the purpose of live attenuated vaccine production demonstrated the
importance of the advancement of culture-derived attenuated vaccines to control bovine babesiosis [31].

2. Materials and Methods

2.1. Ethical Statement

The current study was approved by the animal welfare and ethics society of the University of
Veterinary and Animal Science, Lahore, Pakistan with No. DR 1112, Dated: 13 October 2017.

2.2. Source of Infection

The local strain of Babesia bigemina was isolated form an infected calf located on a farm near
the city of Lahore (31.4340◦ N, 74.1945◦ S). The infected erythrocytes were visualized on thin smear
and validated by species-specific PCR methods. We also reared B. bigemina-infected colonies of
Rhipicephalus microplus at 28 ◦C temperature and at humidity >80% in a Biological Oxygen Demand
(BOD) incubator (Model ICO105 Memmert, Germany) which were fed periodically on cattle host.
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Two six-month-old calves (non-splenectomized) were infested with B. bigemina-infected Rhipicephalus
microplus. Thin blood smears of their samples were prepared to examine the Percentage Parasitized
Erythrocytes (PPE) of the infected calves. To calculate the parasitemia level in infected calves and in
cultured red blood cells (RBCs), three smears from each sample were prepared to count the average
number of B. bigemina-infected RBCs. Parasitemia level was calculated according to the previously
reported formula [32]. After experimentation, the morbid animals were medicated. (Parasitemia = log
(infected RBCs/105 erythrocytes)).

2.3. Genomic DNA Extraction and PCR Assay

A pair of oligonucleotides was selected for the identification of B. bigemina as described
earlier [33]. Genomic DNA was extracted from 200 µL of blood samples through a DNA
extraction kit (GeneAll®, Exgene™, 105-101) according to the manufacturer’s instructions, while a
quantity of DNA was measured through NanoDrop spectrophotometer (Thermo Scientific
2000/2001, Wilmington, DE USA). PCR was used for confirmation of B. bigemina by using
specific primer pairs: Bg-forward: 5′-GTATCAGCCGCCGACCTCCGTAAGT-3′ and Bg-reverse:
5′- GGCGTCAGACTCCAACGGGGAACCG-3′. PCR was performed according to the protocol
described previously [33] with slight modifications. Briefly, PCR reaction was carried out in 20 µL of
reaction mixture containing 1 µL of each primer pair (10 pmol), 2 µL of DNA, 10 µL of 2×AmpMaster™
Taq (GeneAll®, Exgene™, 541-001) and 6 µL of UltraPure™ DEPC water (Cat no. 750023; Invitrogen,
Carlsbad, CA, USA). The positive control DNA extracted from known B. bigemina positive sample was
run with each reaction. The PCR cycle was initiated by initial denaturation at 95 ◦C for 5 min, followed
by 35 cycles, comprising of 95 ◦C for 30 s, annealing at 68 ◦C for 1 min and extension at 72 ◦C for 1 min.
The final elongation step was performed at 72 ◦C for 10 min, followed by agarose gel electrophoresis in
1.5% (120 V, 200 mA, 45 min) stained with ethidium bromide (Cat no. 15585-011; Invitrogen, Carlsbad,
CA, USA) and observed under a GelDoc 100 imaging system. DNA ladder of 100 bp (Genedirex,
Catalogue # DM001-R500) was used to compare the amplified product of 738 bp specific for B. bigemina.

2.4. Attenuation of Local Strain and Vaccine Preparation

B. bigemina parasites were subjected to in vitro passages for attenuation through the modified
micro-aerophilous stationary phase (MASP) technique [34]. On the confirmation of infected calves,
blood samples (10 mL each calf) were collected for in vitro propagation of the parasite as described
elsewhere [35]. Briefly, the subcultures were performed in 24-well culture plates (Corning, New York,
NY, USA) using Medium 199 (Thermo Fisher, Helsinki, Finland) supplemented with fetal bovine serum
(40%), penicillin (100 IU), streptomycin (100 µg/mL), HEPES (15 mM) and amphotericin B (50 µg/mL).
The cultures were incubated at 37 ◦C with 5% CO2 and after every 72 h, the cells were washed three
times using PBS (0.1 M) and re-suspended in fresh culture medium. After about 20 in vitro passages,
with the cultured parasites at 10% parasitemia in the Giemsa-stained smears, their pathogenicity
was determined by inoculating them into naïve calves. The calves were evaluated on the basis of
characteristic clinical signs of acute babesiosis (pyrexia, hemoglobinuria, anemia and packed cell
volume decrease, Jaundice). No clinical signs were observed in the calves inoculated with attenuated
parasites. A culture-derived vaccine was prepared by propagating the attenuated parasites in 225 cm2

Corning® cell culture flasks (Merck, New York, NY, USA). The vaccine doses contained 4 × 108

culture-derived infected erythrocytes frozen in a total volume of 2 mL having 15% DMSO (Dimethyl
sulfoxide) in liquid nitrogen. The vaccine doses thawed at 40 ◦C and 2 mL PBS having 15% DMSO was
added before inoculation.

2.5. Animal Trial

Twelve calves (6–8 months old) were used for vaccination and challenge trials. The calves
were placed in research pens at University of Veterinary and Animal Sciences, Lahore (UVAS) and
acclimatized for 10 days, received “ad libidum” food and water and tested for B. bigemina negative
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by blood smear and PCR screening. The calves were randomly divided into three groups. Group A
(three calves) was kept as a healthy control group for measuring the baseline antibody titers, CD8+

and CD4+ T cell populations. Group B (six calves) was inoculated subcutaneously with 2 mL of
vaccine dose containing 2 × 108 culture-derived infected RBCs (containing attenuated parasites) and
served as a vaccinated group. Group C (three calves) was the infected control and served as an acutely
challenged group without any vaccination. The vaccination and challenge were performed according
to the protocol described previously, with modifications [35]. Briefly, the animals of vaccinated group B
were challenged intravenously two months after the immunization, with 5 × 108 calf-derived virulent
B. bigemina infected RBCs. The group C infected control was challenged simultaneously with the group
B calves. The vaccinated and infected animals were monitored daily by animal care staff for signs of
depression, drop in feed intake and rise in rectal temperature. The survival of different groups was
recorded up to day 100 post-challenge. All calves were reared with free access to water and corn silage
during the trial.

2.6. Preparation of Native Antigens

Merozoites of B. bigemina were harvested from iRBCs according to the protocol described
elsewhere [36] with modifications as follows. Twenty milliliters of whole blood was centrifuged
for plasma and erythrocyte separation at 250× g (BIOShield Swing-out Bucket Rotor, Catalogue #
75003182, ThermoFischer®) at 4 ◦C for 3 min. Supernatant was discarded and the pellet of cells
was washed thrice with 1× Phosphate Buffered Saline (PBS) following centrifugation at 1000× g.
Immediately after centrifugation, the pellet was treated with three parts of cold ammonium chloride
lysis buffer (0.17 M) for one minute (Podoba and Stevenson, 1991). Reaction was stopped by adding
RPMI-1640. The mixture was centrifuged at 1000× g for 15 min and the erythrocyte-free pellet was
washed three times in PBS. The pellet was resuspended in 5 volumes of PBS containing protease
inhibitor (1 mM PMSF, 2 mM TPCK and 0.1 mM TLCK). B. bigemina merozoites were disrupted by
repeated freeze/thaw method in liquid nitrogen. The supernatant obtained after centrifugation at
10,000× g for 1 h at 4 ◦C was stored at −20 ◦C. Quantification of the Ag was assessed through BCA Kit
(Bicinchoninic Acid) (Cat. 786-570, G-Biosciences®), following the manufacturer’s protocol.

2.7. Serology

ELISA was performed to detect bovine immunoglobulin (IgG) according to the protocol described
elsewhere [36,37]. Briefly, 10 µg/mL of native antigens were coated in a 96 well ELISA plate (BIOFIL®,
Guangzhou, China) in 50 mM bicarbonate buffer, incubated at 4 ◦C overnight. The ELISA plates
were washed three times with washing buffer (0.05% Tween 20, 0.01 M PBS, PH 7.2). Saturation
of the microtiter plate was performed with 4% BSA in PBS followed by incubation at 37 ◦C for 2 h.
Both negative and positive sera were diluted in PBS to achieve two-fold serial dilutions. Diluted sera
were poured into each well. The plate was incubated again at 37 ◦C for 1 h. The second washing was
performed with a washing buffer as described above. Bound antibodies were detected by incubating at
37 ◦C for 2 h with goat anti-bovine IgG-alkaline phosphatase conjugate (1:10,000). After washing thrice,
phosphatase activity was measured with P-nitrophenyl phosphate (pNPP, Cat. 41480004-1, Bioworld®,
Dublin, OH, USA) at 1 mg/mL in 1 M diethanolamine (Cat. 40400060-3, Bioworld®). Optical density
(OD) values were obtained by ELISA reader (Elisa reader, Model ELx 800, BioT, Winooski, VT, USA) at
a wavelength of 405 nm.

2.8. Blood Cell Isolation for Flow Cytometry

Whole blood was collected from the right jugular vein of calves from groups A, B and C.
The procedure for blood processing for flow cytometry (FCM) was performed as described earlier [38].
Briefly, a total of 10 mL of blood was collected in syringes with EDTA (1.8 mg per mL blood). Blood was
transferred to falcon tubes and centrifuged at 2400× g for 20 min at 4 ◦C with no brakes. The top
layer of plasma was discarded and the buffy coat layer was collected. The buffy coat cells were mixed
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with PBS and then re-centrifuged at 2400× g for 20 min with no brakes. We removed and discarded
the supernatant and lysis of red blood cells was performed. The cells were incubated with a lysis
solution for 10 min and re-centrifuged as mentioned above. The pellet obtained after centrifugation
was suspended in PBS. The cells were counted, and cell viability was over 95% as determined by
trypan-blue exclusion method.

2.9. Antibodies

Mouse-anti-bovine monoclonal anti-CD4 antibody (Cat # MA1-80176; Thermo Fisher Scientific,
USA) was used for flow cytometric detection of bovine CD4+ T cells (1:100 dilution) and
mouse-anti-bovine monoclonal anti-CD8 antibody (Cat # MA1-80900; Thermo Fisher Scientific,
USA) was used for flow cytometric detection of bovine CD8+ T cells (1:100 dilution). A non-specific
mouse IgG2a (Cat # PA5-33239; Thermo Fisher Scientific, Waltham, MA, USA), used at the same
concentration as the primary antibodies, was employed as an isotype control.

2.10. Flow Cytometry

Flow cytometry was used to quantify bovine CD4+ and CD8+ T cells. The counted cells aliquot of
5 x 105 cells per tube for each sample and animal were blocked by incubation on ice for 30 min in PBS
+ 4% BSA. The final staining with antibodies was done in 100 µL PBS + 1% BSA. Every monoclonal
antibody concentration was titrated to obtain the best staining intensity without background staining.
The cells were incubated in the dark with the monoclonal antibody on ice for 30 min and later washed
twice by adding 500 µL PBS + 1% BSA. Cells were then fixed with 200 µL of 2% paraformaldehyde
(SigmaAldrich® St. Louis, MO, USA), before proceeding with flow cytometry. A FACS AttuneXTM

NxT acoustic focusing cytometer (Invitrogen®, Waltham, MA, USA) was used for sample acquisition
and 10,000 events were acquired per sample and analyzed with NxT software (version 2.7).

2.11. Statistical Analyses

The antibody titers and FCM quantification of CD8+ and CD4+ T cells were assessed with
Mann-Whitney test when comparing two groups and Kruskal–Wallis test when comparing more than
two groups. Statistical differences were considered significant at p ≤ 0.05 a priori. Data were analyzed
using GraphPad Prism 7 for Mac OS X (GraphPad Software, La Jolla, CA, USA, www.graphpad.com).

3. Results

3.1. Microscopic and PCR Detection

Microscopic blood smear examination and PCR was performed for animal screening before
starting the animal trial. The infected control calves from group C showed intra-erythrocytic pear
shaped piroplasmic bodies (Figure 1a). The representative image from group B calves showing multiple
Babesia-infected erythrocytes (Figure 1b). The parasitemia levels observed in B. bigemina infected control
calves in group C were at 3% ±0.5, whereas the parasitemia levels in vaccinated calves post-challenge
were at 0.8% ±0.2. The parasitemia in Group B was observed till day 12 post-challenge and afterwards
a clearance was recorded up to day 100 post-challenge. Confirmation of B. bigemina was accomplished
through a highly specific PCR at different time points of the animal trial. The PCR product size of
738 bp was obtained as shown in Figure 1c.

www.graphpad.com
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Figure 1. Babesia bigemina detection using bright field microscopy and PCR. (a) Microscopic 
examination at 1000× magnification (100× oil emersion lens with 10× eye piece) showing Babesia-like 
(pear shaped piroplasm) in the erythrocytes (dotted box), with an inset box showing close up of 
infected cell from group C. (b) Blood smear from vaccine trial group B calves (post-challenge) 
showing multiple Babesia-infected erythrocytes (dotted box) and inset box showing close up of 
infected cells. (c) Agrose gel showing PCR product size 738 bp amplicons specific for B. bigemina 
(black arrow). Lanes 1 and 3 show control positive B. bigemina DNA and control negative DNA 
extracted from uninfected blood sample, while lane 2 and 4 show representative vaccine trial 
samples from Group C and Group A. Lane M shows 100 bp DNA ladder. 

3.2. Flow Cytometric Quantification of CD4+ and CD8+ T Cells in Control Calves (Group-A) 

To evaluate the quantities of CD4+ and CD8+ T cells in healthy control calves in group A, we 
isolated buffy coat cells from whole blood and enumerated them under a bright-field microscope 
before staining for FCM (Figure 2a). The purified bovine buffy coat cells were then processed 
through Attune NxT and adjustment of forward and side scatter of cells was performed for gating 
(Figure 2b). The fluorochrome intensity (in BL-1 filter) was adjusted using unstained cells (Figure 2c) 
and isotype control labeled cells (Figure 2d). We found 15.1% of CD8+ T cells (Figure 2e) and 8.5% of 
CD4+ T cells (Figure 2f). The overlays were generated using NxT software to show unstained, CD8+ 
and CD4+ T cells (Figure 2g). The bar graph was plotted for percentage positive CD8+ and CD4+ T 
cells found in healthy calves (Figure 2h). 

Figure 1. Babesia bigemina detection using bright field microscopy and PCR. (a) Microscopic examination
at 1000×magnification (100× oil emersion lens with 10× eye piece) showing Babesia-like (pear shaped
piroplasm) in the erythrocytes (dotted box), with an inset box showing close up of infected cell
from group C. (b) Blood smear from vaccine trial group B calves (post-challenge) showing multiple
Babesia-infected erythrocytes (dotted box) and inset box showing close up of infected cells. (c) Agrose
gel showing PCR product size 738 bp amplicons specific for B. bigemina (black arrow). Lanes 1 and 3
show control positive B. bigemina DNA and control negative DNA extracted from uninfected blood
sample, while lane 2 and 4 show representative vaccine trial samples from Group C and Group A.
Lane M shows 100 bp DNA ladder.

3.2. Flow Cytometric Quantification of CD4+ and CD8+ T Cells in Control Calves (Group-A)

To evaluate the quantities of CD4+ and CD8+ T cells in healthy control calves in group A,
we isolated buffy coat cells from whole blood and enumerated them under a bright-field microscope
before staining for FCM (Figure 2a). The purified bovine buffy coat cells were then processed through
Attune NxT and adjustment of forward and side scatter of cells was performed for gating (Figure 2b).
The fluorochrome intensity (in BL-1 filter) was adjusted using unstained cells (Figure 2c) and isotype
control labeled cells (Figure 2d). We found 15.1% of CD8+ T cells (Figure 2e) and 8.5% of CD4+ T cells
(Figure 2f). The overlays were generated using NxT software to show unstained, CD8+ and CD4+ T
cells (Figure 2g). The bar graph was plotted for percentage positive CD8+ and CD4+ T cells found in
healthy calves (Figure 2h).
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were separated and counted. The cells were blocked using 4% BSA for 30 min and the staining of 
cells using a specific antibody. (b) Attune™ NxT Acoustic Focusing Cytometer was used for flow 
cytometry. Scatter plot showing gating of total Bovine buffy coat cells, (c) Histogram showing 
unstained cells, (d) Histogram showing cells stained with isotype control, (e) Histogram showing 
CD8+ FITC stained cells, (f) Histogram showing CD4+ T-FITC stained cells, (g) Overlay plot showing 
unstained, isotype control, CD8+ and CD4+ positive populations. (h) Bar graph showing data from 
three control uninfected calves. Data is representative of three independent experiments with each 
condition performed in triplicate. FSC = Forward scatter, SSC = Side scatter, FITC = Fluorescein 
Isothiocyionate. Scale bar = 100 µm. 

3.3. Subcutaneous Immunization with Culture-Derived Attenuated B. bigemina Elicited Increased CD4+ and 
CD8+ T Cells Responses 

The single dose of subcutaneous immunization leads to an efficient increase in the T-cell 
responses in Group B vaccinated calves. We conducted FCM for quantification of CD4+ and CD8+ T 
cells at pre-immunization (Figure 3a), 7 days post-immunization (Figure 3b) and 21 days 
post-challenge (Figure 3c). We evaluated the calves at the pre-immunization stage to set-up a 
base-line quantification before vaccination, and we found a trend towards an increase in the number 
of both CD4+ and CD8+ T cells post-immunization; however this increase was found to be 
statistically significant (Figure 3d,e). We then quantified the CD4+ and CD8+ T cells in calves 
post-challenge and found a significant increase in the number of T cells at the post-challenge stage of 
the vaccine trial when compared with pre-immunization counts (p < 0.05) (Figure 3d,e). 

Figure 2. Detection and quantification of bovine CD4+ and CD8+ T cells in Group A healthy
uninfected calves using flow cytometry (FCM). (a) Bovine blood was processed and buffy coat cells
were separated and counted. The cells were blocked using 4% BSA for 30 min and the staining of
cells using a specific antibody. (b) Attune™ NxT Acoustic Focusing Cytometer was used for flow
cytometry. Scatter plot showing gating of total Bovine buffy coat cells, (c) Histogram showing unstained
cells, (d) Histogram showing cells stained with isotype control, (e) Histogram showing CD8+ FITC
stained cells, (f) Histogram showing CD4+ T-FITC stained cells, (g) Overlay plot showing unstained,
isotype control, CD8+ and CD4+ positive populations. (h) Bar graph showing data from three control
uninfected calves. Data is representative of three independent experiments with each condition
performed in triplicate. FSC = Forward scatter, SSC = Side scatter, FITC = Fluorescein Isothiocyionate.
Scale bar = 100 µm.

3.3. Subcutaneous Immunization with Culture-Derived Attenuated B. bigemina Elicited Increased CD4+ and
CD8+ T Cells Responses

The single dose of subcutaneous immunization leads to an efficient increase in the T-cell responses
in Group B vaccinated calves. We conducted FCM for quantification of CD4+ and CD8+ T cells
at pre-immunization (Figure 3a), 7 days post-immunization (Figure 3b) and 21 days post-challenge
(Figure 3c). We evaluated the calves at the pre-immunization stage to set-up a base-line quantification
before vaccination, and we found a trend towards an increase in the number of both CD4+ and CD8+

T cells post-immunization; however this increase was found to be statistically significant (Figure 3d,e).
We then quantified the CD4+ and CD8+ T cells in calves post-challenge and found a significant
increase in the number of T cells at the post-challenge stage of the vaccine trial when compared with
pre-immunization counts (p < 0.05) (Figure 3d,e).
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CD8+ (Red) and CD4+ (Green) stained T cells and their overlay for calves before vaccination 
(pre-immunization), (b) Histograms of T-cells and their overlay after vaccination 
(post-immunization), (c) Histograms of T-cells and their overlay after challenge of vaccinated calves 
(post-challenge), (d) Bar graph showing a significant increase in the CD8+ T cells in post-challenge, 
(e) Bar graph showing a significant increase in the CD4+ T cells in post-challenge. Bar graph showing 
representative data from three independent experiments. Each individual animal had each treatment 
performed in triplicate, and the bar graphs show representative data as medians with error bars. 
Significant results are shown at *, p < 0.05, ns = not significant. 

3.4. Significant Reduction in CD4+ and CD8+ T Cells in B. bigemina Challenged Calves of Group C 

We quantified, using flow cytometry, the CD4+ and CD8+ T cells in blood collected from the 
Group C calves that were unvaccinated and challenged by virulent B. bigemina and compared them 
to healthy control calves in Group A. The FCM analysis showed CD8+ T cells decreased to 1.6% in 
the infected samples and the CD4+ T cells were found at 1.37% (Figure 4). We compared the 
cytometry data of the two groups to show the comparative difference and found significant 
difference in both CD4+ T cells (p < 0.05) and CD8+ T cells (p < 0.01) (Figure 4). 

Figure 3. CD4+ and CD8+ T cells quantification in Group B vaccinated calves during pre-immunization,
post-immunization and post-challenge stage. (a) Histograms of unstained (Grey), CD8+ (Red) and
CD4+ (Green) stained T cells and their overlay for calves before vaccination (pre-immunization),
(b) Histograms of T-cells and their overlay after vaccination (post-immunization), (c) Histograms of
T-cells and their overlay after challenge of vaccinated calves (post-challenge), (d) Bar graph showing a
significant increase in the CD8+ T cells in post-challenge, (e) Bar graph showing a significant increase
in the CD4+ T cells in post-challenge. Bar graph showing representative data from three independent
experiments. Each individual animal had each treatment performed in triplicate, and the bar graphs
show representative data as medians with error bars. Significant results are shown at *, p < 0.05,
ns = not significant.

3.4. Significant Reduction in CD4+ and CD8+ T Cells in B. bigemina Challenged Calves of Group C

We quantified, using flow cytometry, the CD4+ and CD8+ T cells in blood collected from the
Group C calves that were unvaccinated and challenged by virulent B. bigemina and compared them to
healthy control calves in Group A. The FCM analysis showed CD8+ T cells decreased to 1.6% in the
infected samples and the CD4+ T cells were found at 1.37% (Figure 4). We compared the cytometry
data of the two groups to show the comparative difference and found significant difference in both
CD4+ T cells (p < 0.05) and CD8+ T cells (p < 0.01) (Figure 4).
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3.5. Comparison of CD4+ and CD8+ T Cells between Calves from Group A, B and C

In the vaccination trial, we addressed the establishment of cell-mediated immunity by comparing
the CD4+ and CD8+ T cell quantities among the different groups. Our results demonstrated that there
was a trend towards an increase in the amount of both CD4+ and CD8+ T cells between Group A
calves (healthy control) and Group B calves (vaccinated pre-challenge); however, this increase was
not statistically significant (Figure 5a,b). Concerning the comparison of Group B calves (vaccinated
post-challenge) with the Group C calves (unvaccinated and challenged), we found a significant
increase (p < 0.05) in the quantities of both CD4+ and CD8+ T cells in vaccinated post-challenge ones
(Figure 5c,d).
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C) and vaccinated calves (Group B). (a) The FCM quantification of CD8+ T cells of Group A healthy
control calves and Group B vaccinated pre-challenge calves. (b) Bar graph of CD4+ T cells of Group
A healthy control calves and Group B vaccinated pre-challenge calves. No significant increase was
seen in both cell populations. (c) The Bar graph shows a statistically significant increase of CD8+

T cells in vaccinated group B post-challenge when compared with Group C challenged infected control
calves without vaccination. (d) Bar graph comparing vaccinated group B post-challenge with Group C
challenged infected control calves without vaccination showed a significant increase of CD4+ T cells in
vaccinated calves. Data shown is representative of three independent experiments. Each individual
animal had each treatment performed in triplicate, and the bar graphs show representative data as
median with error. Significant results are shown at *, p < 0.05. ns = not significant.

3.6. Subcutaneous Immunization with Culture-Derived Attenuated B. bigemina Elicited Increased
Humoral Response

We evaluated the humoral response at different time points starting at Day 0 pre-immunization,
Day 7 post-immunization, Day 7 post-challenge, Day 21 and Day 60 post-challenge. We found a steady
increase over time and a significant difference between Group A vs Group B (p < 0.05). We also found
that, within the vaccinated group, there is a significant difference between pre-immunization and Day
21 and Day 60 post-challenge (p < 0.05) (Figure 6a).Pathogens 2020, 9, x FOR PEER REVIEW 11 of 16 
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their survival post-challenge. (a) Line graph showing humoral response between Group A (Control), B
(Vaccinated) and C (unvaccinated). Significant increase was found at day 21 and day 60 post-challenge
in comparison to control Group A and Group B. (b) Bar graph showing percentage survival among
different groups with no death in control group A, one calf lost in vaccinated group B and one death and
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two clinically critical, hence humanely euthanized. Representative data from three independent
experiments. Each individual condition performed in triplicate. OD = Optical density (405 nm).

3.7. Animal Trial Outcome and Survival Curve

After the challenge, we observed the calves for clinical signs such as high fever, depression,
anorexia and hematuria. The three calves from Group A remained healthy with no clinical signs or
mortality. The six calves from vaccinated Group B were challenged and monitored, and no significant
clinical signs were observed up to three months post-challenge. However, one calf from Group B
died with non-Babesia-like clinical signs and a necropsy report showed death linked to enteric lesions.
The three non-vaccinated challenged calves in Group C displayed severe clinical signs characteristic
of acute Babesiosis and one calf died on day 10 post-challenge, whereas the other two calves were
humanely euthanized due to adverse clinical signs on day 18 and day 35 post-challenge (Figure 6b).

4. Discussion

Bovine babesiosis is considered as a top arthropod-transmitted disease of bovines, and researchers
around the globe are struggling to reduce the economic burden linked to this disease [39]. Temporal and
spatial analysis revealed increased incidence over the years and the possibility of spread to new areas
of the world [40]. Currently, babesiosis is prevalent across six continents infecting 62 countries and
causing major losses to the livestock sector [40]. The highest prevalence was reported in South America
(64%) and Babesia bigemina was found to be the highest prevalent among all other cattle diseases [40].

The disease is being partly controlled using therapeutic drugs or local vaccines but with limited
success; hence more in-depth research is needed to develop a better understanding of its pathogenesis
in order to eradicate this disease from bovine herds. It has been established that there exists a gap
in knowledge of how Babesia parasite interacts with immune cell populations and how the parasite
can generate acute infection with clinical signs, and also generate persistent infection status without
evident clinical symptoms, helping in long-term survival in the host [41].

We know that many bovine pathogens including viruses, bacteria and parasites inhibit immune
proliferation of CD4+ and CD8+ T cells leading to the development of poor cell-mediated immunity.
Bovine leukemia virus causes progressive exhaustion of T cell functions by up-regulation of programmed
death-1 (PD-1) and lymphocyte activation gene-3 [42], and blockage of its receptor PD-L1 leads
to enhancement of antiviral responses [43]. Certain bovine respiratory complex pathogens like
Mycoplasma bovis strongly inhibit lymphoproliferation of CD4+ and CD8+ T cells during infection [44].
Anaplasma marginale is also known to downregulate antigen-specific T and B cells leading to a failure
to establish effective memory T cell responses and persistent infection [45]. There have been several
studies which indicate that strong T lymphocyte activation is needed to confer protection against
Babesial infections [46–49], malarial infections [50] and Theilerial infections [51].

In accordance with the above-mentioned findings, we set out to investigate the quantities of
CD4+ and CD8+ bovine T cells during the course of Babesia infection and enumerate them during
our new culture-derived attenuated live vaccine trial as a hallmark of protection [52]. We found an
acute depletion of both CD4+ and CD8+ T cell populations in B. bigemina challenged calves (Group C)
as compared to healthy calves (Group A) and their up-regulation in the vaccinated calves (Group B).
This phenomenon of parasite-induced T cell depletion can directly be correlated to acute infection
and poor elimination of infected cells from circulation [53]. This has also been observed in other
parasites like Trypanosoma cruzi, Leishmania sp., Toxoplasma gondii and Plasmodium sp. where CD8+ T cell
mediated cytolysis of infected cells is considered critical for long-term resistance and effective vaccine
development [54,55]. The depletion of CD4+ T cells in acute infection was also indicative of poor
protection against the parasite, as a similar phenomenon was reported for Toxoplasma gondii infection
where CD8+ T cell dysfunction was linked to CD4+ T cell exhaustion [56].

Our vaccine with single immunization not only induced long-lasting humoral response but
also strongly induced both CD4+ and CD8+ T cell proliferation contributing synergistically towards
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parasite clearance, whereas other vaccine studies using viral vectors required a prime boost strategy
with multiple vaccine shots to induce substantial immune responses [57]. The induction of immune
responses to live-attenuated vaccines is known to buildup gradually as compared to the recombinant
vaccines [58]. This was observed for our vaccine trials where both CD4+ and CD8+ T cells showed
a gradual increase from pre-immunization to post-immunization status. The FCM quantification
performed at day 7 post-immunization could have been too early to record a significant increase in
cellular responses; however, a promising boost in both humoral and cellular responses was observed
post-challenge. A similar effect was observed in an increasing trend towards differences in CD4+ and
CD8+ T cells between healthy control calves (Group A) and vaccinated calves (Group B), but most
importantly there was a significant difference between infected control calves (Group C) and vaccinated
calves (Group B) elucidating their potential role in protection.

It has already been established over the years that control of parasitemia in bovine babesiosis is
dependent on clearance of Babesia-infected erythrocytes by splenic macrophages, which are activated
by a fine balance between CD4+ and CD8+ T cells in circulation [59]. It is necessary that higher CD4+

T cells availability will be able to provide significantly higher assistance to CD8+ T cells and other
immune cells in performing adequately enough to reduce intra-cellular parasite burden in order to
block disease systems and completely clear the infection [60]. Hence, the significant higher induction
of both CD4+ and CD8+ T cells in our study at the post-challenge stage is directly associated with
the absence of parasitemia on blood smear and PCR in Group B vaccinated calves up to day 100
post-challenge. We also observed a significant boost in antibody titers post-challenge that are well
known to directly neutralize extracellular merozoites [59]. The mechanism(s) involved in the depletion
of CD4+ and CD8+ T cells during Babesiosis are likely to be linked with molecular signaling pathways
induced by the Babesia parasite orchestrating the infection. The present study was not designed to
explore molecular interactions but envisions a significant interest for future studies to find molecular
targets for interventional therapy in controlling this parasitic infection in bovines.

Collectively, our findings provide novel evidence of the role of both bovine CD4+ and CD8+ T cell
populations in bovine Babesiosis, as their depletion, seen during the challenge, leads to the development
of acute babesiosis. To our knowledge, this is the first study of flow cytometric quantifications of
bovine CD4+ and CD8+ T cell during B. bigemina vaccine trials as many previous studies focused on
functional assays rather than critical absolute quantifications of immune cells induced post-vaccination
and post-challenge. Our culture-based attenuated live vaccine from local B. bigemina isolate provided
complete protection of vaccinated calves and has the potential for playing a vital role in controlling
this infection in bovine herds and reducing economic losses for farmers linked to the dairy and
meat industry.
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