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Abstract
Background: Malaria during pregnancy is characterized by the sequestration of malaria-infected
red blood cells (iRBC) in the intervillous spaces of the placenta, often accompanied by the
infiltration of maternal mononuclear cells, causing substantial maternal and foetal/infant morbidity.
The iRBC bind to receptors expressed by the syncytiotrophoblast (ST). How ST responds to this
interaction remains poorly understood. Because it is known that ST is immunoactive and can
respond to infectious agents, the consequences of this ST-iRBC interaction should be investigated.

Methods: An in vitro system was used to assess the biochemical and immunological changes
induced in ST by ST-adherent iRBCs. Changes in ST mitogen-activated protein kinase (MAPK)
activation were assessed by immunoblotting and mRNA expression levels of selected cytokine and
chemokines in primary ST bound by iRBC were determined using real-time, reverse transcription
PCR. In addition, secreted cytokine and chemokine proteins were assayed by standard ELISA, and
chemotaxis of PBMC was assessed using a two-chamber assay system.

Results: Following iRBC/ST interaction, ST C-Jun N-terminal kinase 1 (JNK1) was activated and
modest increases in the mRNA expression of TGF-β and IL-8/CXCL8 were observed. In addition,
this interaction increased secretion of MIF and MIP-1α/CCL3 by ST and induced migration of PBMC
towards iRBC-stimulated ST.

Conclusion: Results from this study provide the first evidence that ST participates in shaping the
local immunological milieu and in the recruitment of maternal immune cells to the maternal blood
space during placental malaria infection.

Background
It is estimated that annually approximately 2.2 billion
people are exposed to the risk for Plasmodium falciparum
malaria infection and between 300–600 million clinical
attacks are attributable to this parasite [1]. Ninety percent
of deaths occur in sub-Saharan Africa, the majority involv-
ing children less than five years of age. In addition to chil-

dren, pregnant women (particularly those in their first
pregnancy) are at highest risk of severe disease [2]. A hall-
mark of malaria during pregnancy is the sequestration of
malaria-infected red blood cells (iRBCs) containing late
developmental stages in the intervillous spaces (IVS) of
the placenta [3-5]. This is usually accompanied by the
infiltration of maternal leukocytes, especially monocytes,
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in the IVS [6,7] and haemozoin deposition [4,8], resulting
in what is referred to as placental malaria (PM). PM poses
substantial risk to the mother, the foetus, and the neonate
in the form of maternal anaemia and poor foetal out-
comes such as low birth weight (LBW) and prematurity
([9,10]; reviewed in [11,12]).

The sequestration of iRBCs in the placenta is thought to be
mediated in large part by the cytoadherence of iRBCs to
placental receptors expressed in the IVS and on the syncy-
tiotrophoblast (ST; foetal epithelial cells that are in direct
contact with maternal blood within the IVS). Currently, it
is believed that the glycosaminoglycan chondroitin sul-
fate A (CSA) is the principal placental iRBC receptor [13-
15]. Other minor receptors are proposed to exist [16-19],
although the role of hyaluronic acid [20] has recently
been questioned [15]. Parasite-encoded surface ligands
expressed on the membrane of iRBCs are thought to facil-
itate this adherence. To date, the only well-studied cytoad-
herence parasite protein is the P. falciparum erythrocyte
membrane protein-1 (PfEMP1) encoded by the highly
polymorphic members of the var gene family [21,22]. The
most well characterized PfEMP1 variant identified to
mediate iRBC binding to the placenta is VAR2CSA [23-
25]. Despite intense effort to elucidate the placental host/
parasite interaction on the molecular level, the conse-
quences of this placental iRBC sequestration on ST cell
function have largely been ignored.

The immunological consequences of malaria in preg-
nancy have been widely investigated. A protective IgG
antibody response that blocks the binding of iRBC to CSA
in the placenta has been shown to develop in a sex- and
gravidity-dependent manner [26,27]. In addition, several
studies have demonstrated the presence of both proin-
flammatory and anti-inflammatory immune factors in
malaria-infected placentas [28-31]. For example,
increased amounts of Th1 cytokines such as TNF-α
[29,31], IFN-γ [29,30] and IL-1β [31] have been demon-
strated in PM-positive placental blood. Production of IL-
10 by intervillous blood mononuclear cells (IVBMC) was
also shown to be increased in PM [28,30] and was
hypothesized to be important in the control of the nega-
tive effects of Th1 cytokines on pregnancy [28-31]. In
addition, several proinflammatory chemokines have been
observed in association with PM including interleukin-8
(CXCL8/IL-8) [31,32] and beta chemokines such as mac-
rophage inflammatory protein-1 alpha (MIP-1α/CCL3),
macrophage chemoattractant protein-1 (MCP-1/CCL2), I-
309/CCL1 [32] and MIP-1β/CCL4. [33]. Massively ele-
vated levels of macrophage migration inhibitory factor
(MIF) were observed in the placental plasma from women
with PM [34], and immunohistochemical analysis sug-
gests that ST contributes to this increase, particularly in
cases of PM (36). However, in most cases, the cell types

responsible for the production of these immune factors
have not been definitively identified, although cells of
both foetal and maternal origin have been impli-
cated[31,32,35]. While proinflammatory responses are
important in the clearance of iRBCs and protection
against PM, they have also been shown to play a major
role in malaria pathophysiology and contribute to mor-
bidity [36]. These proinflammatory immune responses
have been associated with the ensuing monocytic infiltra-
tion [6,32] which has been associated with poor foetal
outcomes [6,7,9]

Foetally-derived tissues have been demonstrated to be
active participants in maintaining the immunological
milieu at the maternal-foetal interface during pregnancy
[37]. However, their role during PM remains largely
unknown. Furthermore, the consequences of iRBC
sequestration in the IVS on the function of the immuno-
logically active ST are not known. This has partly been due
to the lack of a good in vitro model system with which to
investigate this. Previous studies utilizing such a system
[18] showed that the ST is capable of responding to iRBC
binding via pan-tyrosine phosphorylation of ST proteins
[18]. In the present study, the impact of iRBC interaction/
binding on ST cells was further investigated. Activation of
immunologic signaling in ST was observed upon stimula-
tion with P. falciparum infected-RBC selected for binding
to ST. This activation was found to be associated with
changes in cytokine and chemokine expression and secre-
tion. Furthermore, this iRBC/ST interaction stimulated the
chemotactic migration of peripheral blood mononuclear
cells (PBMC).

Materials and methods
Trophoblast and parasite culture
Trophoblast isolation and cell cultures were performed as
previously described [18]. Briefly, BeWo cells were grown
in minimum essential medium and induced to form ST
(BeWoST) by use of 40 uM forskolin. Primary placental
cytotrophoblast cells (CT) were isolated from fresh
human placentas obtained from women delivering at Ath-
ens Regional Medical Center, Athens, Georgia, USA. Pla-
centas were obtained with written, informed consent
under approval by the University of Georgia and Athens
Regional Medical Center Institutional Review Boards. The
immunopurified cells were used immediately or cryopre-
served in liquid nitrogen until use.

Plasmodium falciparum was cultured and selected for bind-
ing to ST as described elsewhere [18]. Briefly, the FCR3
(Malaria Research and Reference Reagent Resource Center
(MR4)) laboratory strain was sequentially panned on ST
to select for ST-binders (iRBCST). The CS2 isolate (MR4),
known to bind to CSA, was also included. The parasites
were synchronized by freezing and thawing or by sorbitol
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purification [38] and experiments performed using the
FCR3 selected cultures consisting largely of mature tro-
phozoite and schizont stages that bind to ST. The parasite
cultures were routinely tested and found negative for myc-
oplasma contamination by PCR. All experiments used
FCR3 except where noted.

Immunoblotting
BeWoST were incubated with iRBCST for given time points
after which whole-cell lysate extracts were obtained as
described [18]. Unstimulated cells or cells incubated with
uninfected RBC (uRBCs) were included in the assays as
controls. Immunoblotting was carried out as described
earlier [18] with a few changes. The membranes were
probed with primary antibodies against phosphorylated
extracellular signal-regulated kinase 1/2 (ERK1/2), C-Jun
N-terminal kinase 1 (JNK1) and p38 (Cell Signaling Tech-
nology Inc., Beverly, MA) as recommended by the manu-
facturer. Final detection was performed with appropriate
horseradish peroxidase-labelled (HRP) secondary anti-
bodies (Sigma St. Louis, MO) in blocking buffer for one
hour at room temperature. Phosphorylated proteins were
visualized by enhanced chemiluminescence (SuperSignal,
Pierce, Rockford, IL). Each membrane was stripped with
freshly prepared stripping buffer (2% SDS; 62.5 mM Tris-
HCl, pH 6.7; 100 mM 2-mercaptoethanol) and reprobed
in a similar fashion with antibodies to the housekeeping
gene, β-actin (Sigma, St. Louis, MO). The latter was used
as a loading control and for densitometric analysis per-
formed using QuantityOne software (Bio-Rad, Hercules,
CA).

Real-time PCR
Total RNA was isolated from primary ST using the RNeasy
Qiagen kit (Qiagen, Valencia, CA) following the manufac-
turer's protocol and stored at -85°C. Contaminating
genomic DNA (gDNA) was digested using RNAse-free
DNase (Ambion Inc. Austin, TX) as recommended by the
manufacturer. First strand cDNA was synthesized from 1
µg of total RNA using the Omniscript reverse transcription
kit (Qiagen, Valencia, CA). Real-time PCR was carried out
using specific primers for TNF-α, TGF-β, IL-8/CXCL8, IL-
10, MIF, MCP-1/CCL2, IFN-γ and 18S ribosomal RNA
(Table 1) (all from MWG-Biotech Inc., High Point, NC).
All primers were validated for use in comparative real-
time PCR. Real-time PCR was performed using the
Mx3000P thermocycler and programme (Stratagene, La
Jolla, CA). No template controls and no reverse transcrip-
tion controls were included. The 2^∆∆ CT method of anal-
ysis was used with the 18S RNA gene as normalizing gene.
Each sample was analysed in duplicate. Results from three
different experiments are given as mean fold increase over
uRBC-stimulated ST cells.

Cytokine and chemokine ELISA
Primary ST were stimulated over a 24 hour time course
with iRBCST, uRBCs or left unstimulated. Supernatants
were collected from the stimulated cells and stored until
use. As a control, wells containing uRBCs or iRBCST with
no ST were included in the experiments and supernatants
collected. A standard cytokine sandwich ELISA was per-
formed according to the manufacturer's protocol (R&D
Systems, Inc. Minneapolis, MN) for TNF-α, TGF-β, IL-10,
MIF, MIP-1α/CCL3, MIP-1β/CCL4, and IL-8/CXCL8.
ELISA results for TGF-β were inconsistent and difficult to
interpret and thus were not included in the analysis.

Chemotaxis assay
Peripheral blood was obtained from healthy female
American volunteers by a trained phlebotomist. An equal
part of sterile phosphate buffered saline (PBS) was added
to the blood and this was layered on fico-lite LymphoH
(Atlanta Biological, Atlanta, GA) in a 50 ml centrifuge
tube. To obtain PBMCs, the tube was centrifuged at 355 ×
g for 30 minutes at 25°C. The interface, containing the
PBMCs, was collected and washed twice with sterile PBS.
The cells were counted and used for the chemotaxis exper-
iments. ST cells were grown in 24-well plates (BD Bio-
sciences, Franklin Lakes, NJ) and stimulated with iRBCST

or uRBCs for 12 hours or left unstimulated. PBMCs were
used at 5 × 105 cells/ml. 3-µm pore size cell culture inserts
(BD Biosciences, Franklin Lakes, NJ) were placed into
each well and 350 µl of PBMC were added and allowed to
migrate for 12 hours. The inserts were removed and
placed in new wells. Using a cotton swab the inserts were
carefully wiped to remove cells that had not migrated.
Migrated cells, on the underside of the membranes, were
stained with calcein-AM (Molecular Probes, Eugene, OR)
for 30 minutes at 37°C and washed 3 times. The number

Table 1: Oligonucleotide primers used in the amplification of the 
genes

Primer Name Sequence

IL-8 Forward 5'-GCCAAGGAGTGCTAAAGAAC-3'
Il-8 Reverse 5'-TCCATCAGAAAGCTTTACA-3'
TNF-α Forward 5'-GAGCACTGAAAGCATGATCCG-3'
TNF-α Reverse 5'-AGCAGGCAGAAGAGCGTGGT-3'
MCP-1 Forward 5'-CAATCAATGCCCCAGTCACC-3'
MCP-1 Reverse 5'-GGAGTTTGGGTTTGCTTGTC-3
TGF-β Forward 5'-TACCAGAAATACAGCAACAAT-3'
TGF-β Reverse 5'-CTCCACGGCTCAACCACTG-3'
IFN-γ Forward 5'-GCATCGTTTTGGGTTCTCTTG-3'
IFN-γ Reverse 5'-TCCATTATCCGCTACATCTGAA-3'
IL-10 Forward 5'-GCACCCACTTCCCAGGCAA-3'
IL-10 Reverse 5'-GAAGGAATCATACTCACAAAGAAAG-3'
MIF Forward 5' CCACCGGCAAGCCCCCCCA-3'
MIF Reverse 5'-TGTAGGAGCGGTTCTGCG-3'
18 S Forward 5'-GTAACCCGTTGAACCCCATT-3'
18S Reverse 5'-CCATCCAATCGGTAGTAGCG-3'
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of migrated cells was then determined by counting eight
random fields under an inverted fluorescence microscope
at 20× magnification.

Statistical analysis
A non-parametric Friedman's test was used to determine
differences in the chemokine production and differences
in the CT values for the real-time PCR. For chemotaxis
experiments, the differences in number of migrated cells
upon stimulation with the different stimuli were analysed
using a student's t-test.

Results
Stimulation of JNK1 in ST cells by binding of iRBCST

Increased phosphorylation of JNK1 (~2.5 fold increase)
was evident after 30 minutes incubation of BeWoST with
iRBCST (Figure 1). Incubation with both uRBC and iRBCST

demonstrated slight increases in JNK1 activation (< 1.5
fold increases) within 5–15 minutes, but a greater than 2

fold increase was only observed in the presence of iRBCST

30 minutes post stimulation. These stimulation condi-
tions did not lead to changes in ERK1 nor p38 mitogen-
activated protein kinases (MAPKs).

Gene expression changes in ST stimulated with 
cytoadherence iRBCST

To determine if the MAPK activation resulted in gene
expression changes, several factors were selected for anal-
ysis by real-time PCR (Figure 2). Following in vitro stimu-
lation of primary ST with iRBCST compared to stimulation
with uRBC, greater than two-fold increases were observed
in the mRNA expression of TGF-β (at two hours) and IL-
8/CXCL8 (12 hours post stimulation) but not at the other
time points. However, none of the observed differences
reached statistical significance (p > 0.05). Major changes
in the mRNA levels of TNF-α, MIF and IL-10 were not evi-
dent (Figure 2). Expression of the genes encoding IFN-γ
and MCP-I/CCL2 was not detected under any conditions.

Cytokine secretion upon stimulation with iRBCST

In addition to gene expression analysis, functional ST acti-
vation was assessed via the measurement of cytokine and
chemokine secretion. Supernatants from stimulated pri-
mary ST were used. Similar to BeWoST [35], substantial
time-dependent secretion of MIF was observed upon stim-
ulation of primary ST with iRBCST but not with uRBC or

Gene expression changes in ST stimulated with iRBCSTFigure 2
Gene expression changes in ST stimulated with 
iRBCST. Primary ST was stimulated with either uRBC or 
iRBCST. RNA was extracted and gene expression changes 
assayed by real time PCR. This treatment led to the marginal, 
but not statistically significant, upregulation of both TGF-β 
and IL-8/CXCL8 which showed more than two-fold 
increases in their mRNA expression at two hours and 12 
hours, respectively. TNF, IL-10 and MIF mRNA did not 
change considerably with this treatment. Dotted line shows 
gene expression of uRBC-stimulated cells. Mean ± SD from 
three placentas is shown.
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Activation of JNK following iRBCST bindingFigure 1
Activation of JNK following iRBCST binding. BeWoST 

cells were co-cultured with iRBCST or uRBC for the indi-
cated time course or left unstimulated (0). Panel A repre-
sents a western blot analysis of cellular proteins from ST cells 
following stimulation. Densitometry analysis of the western 
blot results from two experiments was performed. Figure B 
shows specific enhanced phosphorylation (~2.5 fold) of JNK1 
(p-JNK1) after 30 minutes of co-culture with iRBCST. Co-cul-
ture with uRBCs led to a slight increased phosphorylation (< 
1.5 fold increase over unstimulated) after 15 minutes. Data 
shown represent mean ± SD fold increase relative to unstim-
ulated cells from two separate experiments.
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unstimulated cells (Figure 3A). The differences in MIF
secretion were significantly different among the stimuli (p
< 0.0032). MIP-1α/CCL3 was not consistently detected,
but in 2 of 5 ST cultures, secretion was upregulated in
response to iRBCST (Figure 3B) (p < 0.0040). The produc-
tion of IL-8/CXCL8 did not increase with iRBCST binding,
although a time-dependent increase, clearly representing
constitutive expression, was observed (Figure 3C). No
secretion of TNF-α, MIP-1β/CCL4, or IL-10 was detected.

PBMC migrate toward iRBCST -stimulated ST cells
Given that iRBCST-stimulated ST is capable of secreting
chemokines, potentially including others not assayed in
this study, it was critical to ascertain whether this secretion

was sufficient to induce the migration of leukocytes.
Using a two-chamber system, increased migration of
PBMCs toward iRBCST-stimulated ST cells (mean number
of cells ± SD: 116 ± 29) compared to uRBC-stimulated (68
± 9) or unstimulated ST (45 ± 13) was observed (Figure 4).
The difference between the mean number of migrated
cells upon uRBC and iRBCST interaction was statistically
significant (p < 0.004).

Discussion
Results from this study demonstrate for the first time that
the ST is capable of responding immunologically to inter-
action with P. falciparum-infected RBCs selected for bind-
ing to ST. This was evidenced by the induction of MAPK
pathways, secretion of immune factors such as MIF and
MIP-1α/CCL3, and induction of migration of PBMC
towards iRBCST-stimulated ST.

The activation of MAPK pathways via phosphorylation is
initiated by a large variety of external signals and leads to
a wide range of cellular responses, including growth, dif-
ferentiation, inflammation, apoptosis (reviewed in [39]),
and secretion of cytokines (reviewed in [40]). This study
demonstrates that the interaction of iRBCST with ST cells
leads to the activation of the JNK1 pathway. In a previous
study, the binding of iRBCST to ST cells was shown to
result in the tyrosine phosphorylation of at least two ST

Migration of PBMC towards iRBCST -stimulated ST cellsFigure 4
Migration of PBMC towards iRBCST -stimulated ST 
cells. Primary ST was stimulated with iRBCST, uRBC or left 
unstimulated for 12 hours. PBMCs added to the upper cham-
ber of a dual chamber were allowed to migrate for 12 hours. 
Calcein AM-stained cells in 8 random fields for each stimu-
lant were counted. The mean ± SD of migrated cells upon 
stimulation was compared to the spontaneous migration 
towards unstimulated ST (MED). Interaction with iRBCST led 
to a significant migration of cells towards iRBCST-stimulated 
ST compare to both controls (* = P < 0.0040). Representa-
tive data from one of two experiments is shown.
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Chemokine Secretion by primary ST cells upon the binding of iRBCSTFigure 3
Chemokine Secretion by primary ST cells upon the 
binding of iRBCST. Primary ST was stimulated with iRBCST 

(iRBC), uRBCs or left unstimulated (MED) over given time 
courses as indicated. (A) While stimulation with uRBC did 
not lead to any increase in MIF secretion more than that 
observed for unstimulated ST, stimulation with CS2-iRBCST 

led to an increased time-dependent secretion. This difference 
in MIF production among the different stimulant was statisti-
cally significant (p < 0.0032). (B) Two out of five placentas 
tested showed a time dependent increase in MIP-1α/CCL3 
secretion upon interaction with iRBCST but not with uRBC 
or unstimulated this difference being statistically significant (p 
< 0.0040). (C) Secretion of IL-8/CXCL8 increased over time 
even in unstimulated cells, with no significant additional 
increase with iRBCST stimulation. Independent results from 
two placentas are shown.
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proteins [18], altogether suggesting that a number of com-
ponents of cellular activation pathways are activated in ST
in the context of PM.

Indeed, the ST is known to be immunoactive, secreting
cytokines and chemokines important for the maintenance
of pregnancy [37] and in response to bacterial infections
[41,42] and lipopolysaccharide [43]. The interaction with
iRBCST led to the secretion of MIF and MIP-1α/CCL3 by
ST. MIP-1α/CCL3 levels were shown to be increased in
placental plasma of PM-positive women [32], although
not so in another study [33]. The current study suggests
that the ST may contribute to elevated MIP-1α/CCL3 lev-
els in the placenta during PM. However, dramatic varia-
tion in the magnitude of the secretion of MIP-1α/CCL3
(~300 pg/ml of MIP-1α/CCL3 from one placenta prepara-
tion to below detectable levels in others) was observed.
This is not unprecedented as other studies using isolated
trophoblast cells from term placentas have reported varia-
bility in receptor expression on the trophoblast cells [44]
and cytokine/chemokine secretion [45] among the differ-
ent placenta preparations utilized.

Previous studies demonstrated that PM resulted in
increased levels of MIF in the intervillous blood [34] and
that BeWo cells, a trophoblastic cell line, secreted substan-
tial amounts of MIF upon iRBCST interaction [35].
Together, these studies implicate the ST as an important
source of MIF. This cytokine is known to play an impor-
tant biologic role during pregnancy [46]. Importantly, it is
also known to be involved in macrophage activation [47]
and retention, as it inhibits macrophage migration. There-
fore, MIF may play a role in the retention of maternal
immune cells that may be recruited to the IVS by other
chemokines such as MIP-1α/CCL3 and RANTES/CCL5
(unpublished data), leading to the increased levels of
monocytes in the IVS during PM. Previous studies have
shown that PM is commonly associated with monocyte
recruitment to the IVS [6,7] which, in turn, is associated
with high levels of intervillous chemokines [32]. Results
from this study suggest that the ST contributes to the
migration of immune cells into the IVS. It remains to be
determined, however, what cell types are specifically
migrating toward iRBC-stimulated ST and whether this
activity contributes to protective or pathogenic effects in
vivo.

Both IL-8/CXCL8 [31,32] and TNF-α have been associated
with PM in previous studies. In this study, however, ST
constitutively secreted IL-8/CXCL8 in a stimulation-inde-
pendent manner and did not secrete any detectable TNF-
α. This implies that the increased levels of IL-8/CXCL8
and TNF-α observed in PM-positive placentas are not
derived from ST.

Variability in the secretion and gene expression of the
investigated chemokines and cytokines between ST prep-
arations from individual donors was observed. This
reflects the inherent variability of human-based immuno-
logic studies. In this context, it is important to keep in
mind that differences in host genetic backgrounds con-
tribute to the heterogeneities of malaria morbidity and
disease manifestations [48-52]. Indeed, some cases of PM
are accompanied by a massive infiltration of maternal
mononuclear cells into the IVS but not others. It is cur-
rently unknown if these different disease manifestations
are the result of variations in chemokine levels in the IVS
which are driven by host genetic polymorphisms.

The experimental design utilized in the current study does
not allow one to categorically claim that the effects
observed were all directly due to the binding of iRBCST.
Both late stage trophozoites and schizonts (early and
mature) were used to stimulate the ST and this co-culture
was incubated for up to 24 hours in some experiments.
Especially at late time points, some of the schizonts would
have ruptured, releasing both haemozoin and glycosyl-
phosphatidylinositol (GPI) among other host- and para-
site-derived materials. Thus, it is possible that these
malarial products also stimulated the ST cells. However,
this system is not physiologically irrelevant. On the con-
trary, this complex mixture of malarial products and
iRBCs is precisely what the ST cells experience in vivo,
and, in fact, ongoing unpublished work suggests that
haemozoin is a potent stimulator of ST immunologic
responses (N. Lucchi et al., unpublished data). Nonethe-
less, further experiments including controls such as unse-
lected iRBC or var2csa-null P. falciparum would reveal the
extent to which the hypothesized points of iRBCST/ST
interaction (i.e., var2csa-encoded PfEMP1 and CSA) are
required for ST activation. Furthermore, determining
whether or not iRBCST binding affects non-immunologic
ST functions such as nutrient and gaseous exchange could
shed some light on the mechanisms leading to LBW asso-
ciated with PM.

Conclusion
This study provides the first evidence that the interaction
of malarial parasites with ST cells in the placenta induces
immunologic changes in the ST cells as evidenced by the
activation of the MAPK pathways, upregulated secretion
of MIF and MIP-1α/CCL3, and stimulation of PBMC
chemotaxis. Thus, ST cells play an active immunological
role in response to malarial parasites in the placenta and
are capable of influencing and/or contributing to the local
maternal immune environment.
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