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Abstract

Critical dynamics have been postulated as an ideal regime for neuronal networks in the

brain, considering optimal dynamic range and information processing. Herein, we focused

on how information entropy encoded in spatiotemporal activity patterns may vary in critical

networks. We employed branching process based models to investigate how entropy can

be embedded in spatiotemporal patterns. We determined that the information capacity of

critical networks may vary depending on the manipulation of microscopic parameters. Spe-

cifically, the mean number of connections governed the number of spatiotemporal patterns

in the networks. These findings are compatible with those of the real neuronal networks

observed in specific brain circuitries, where critical behavior is necessary for the optimal

dynamic range response but the uncertainty provided by high entropy as coded by spatio-

temporal patterns is not required. With this, we were able to reveal that information process-

ing can be optimized in neuronal networks beyond critical states.

Introduction

Maximum unpredictability is reported to occur around phase transitions where criticality is

observed. This hypothesis finds important concrete realizations in biological systems, includ-

ing the brain physiology [1]. Although it is still under discussion, a cornerstone from the theo-

retical perspective is that neuronal networks work in the vicinities of a critical regime, i.e.,

the activities observed in the neuronal networks, in vivo [2,3,4,5], in vitro [2,6,7,8,9,10] silico
[1,11,12,13], are found to exhibit neuronal-avalanche-like behaviors whose size distribution

can be approximated by a power law.

The critical regime is known to provide some advantages for processing in network sys-

tems. In the neuronal network context, we can cite the maximization of both information

processing [2,3,11] and dynamic range [1,11]. Information processing in the brain has

been studied through interdisciplinary perspectives, including biological, psychophysical,

and mathematical approaches [1,2,8,14,15,16]. As a theoretical example, a network of

excitable elements maximizes information processing at the critical point compared with

that at other conditions such as sub- and super-critical regimes [1]. The enhancement of

dynamic range particularly favors neuronal networks in sensory systems [1,7]. This
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finding is compatible with the role of connexin-mediated communication in electrical syn-

apses observed in the retina [17,18,19,20] and olfactory glomeruli [21,22].

Different regions of the brain, other than the sensory systems, have diverse functionalities

and their activity patterns are responsible for coding and storing information. Experiments

have shown that information in the cortex and hippocampus are provided through repeated

spatiotemporal patterns [6,23,24,25,26,27,28] that are related to memory consolidation

[24,28]. Thus, neuronal avalanches present themselves as highly diverse and also repeatable

[6].

Although the pattern variability in criticality is maximum [11,13], the manner in which these

patterns occur in critical networks and the way they are related to the micro-parameters of the

network has not been explored thoroughly. In this study, we investigated the process of encod-

ing information by a neuronal network in the critical regime. Furthermore, we employed simple

branching process based models to demonstrate the distinct information capacity displayed by

the critical networks. Our findings are compatible with those of the distinct neuronal circuitries

observed in the brain, in which different information capacities are required while preserving

the dynamical range provided by the critical state.

Methods

Network construction and avalanche statistics

The model used here is based on that reported previously [1]. Despite its simplicity, consider-

ing only excitatory probabilistic neurons, it is highly suitable for our goals. Briefly, the network

has N excitable elements, where each element, i, has n states: si = 0 is the resting state, si = 1 is

the excited state, and the remaining states, si = 2,3,. . .,n−1, are refractory states. The ith ele-

ment can reach the state si = 1 from si = 0 in two different ways; (1) because of an external stim-

ulus provided by a Poisson process with rate r (transition probability λ = 1−exp(−rΔt) per time

step, Δt = 1 ms), or (2) with probability pij because of a neighbor j being in the state sj = 1 in the

previous time step. The dynamics after excitation are deterministic, i.e., after si = 1, in the next

step it will change to si = 2, and this will continue to occur until state si = n−1 leads to the si = 0

resting state, forming a cyclic cellular automaton. We employed an Erdös–Rényi undirected ran-

dom network, with NK/2 links assigned to randomly chosen pairs of elements. Therefore, we

obtain a network with average connectivity K, where each element i = 1,2. . .,N is randomly con-

nected to Ki neighbors. The probability pij of an element j activates another element i is given by

a random variable with uniform distribution in the interval [0,pmax]. The local branching ratio is

given by sj ¼
PKj

i pij and corresponds to the average number of excitations generated in the

next time step by the jth element. The average branching ratio σ = hσii is the parameter that sets

the criticality (σ = 1), which is chosen using pmax = 2σ/K.

The average activity F is defined as F ¼ T � 1
PT

t¼1
rt , where ρt is the network instantaneous

density activity of elements s = 1 at time t and T is a large time window (of the order of 103 ms)

[1]. The response curve is defined as the average activity, F, dependent on the stimulus rate

r. The network has a minimum response, F0, and a maximum response, Fmax. The dynamic

range is defined as D ¼ 10log r0:9=r0:1

� �
, in dB, as the interval whose variations in the stimulus

result in robust variations of F. The interval [r0.1, r0.9] is found from the correspondent interval

[F0.1, F0.9], where Fx = F0 + x(Fmax−F0) [1].

The avalanches were triggered by the random activation of one single element and the

spontaneous activity was recorded till the active elements became absent. The avalanche size

was defined as the amount of involved active elements without considering repetitions. This

procedure was repeated nava times to generate the probability density function (PDF) of
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avalanche sizes. We also calculated the linear least squares regression to check the power law

exponent and the R-squared coefficient.

Spatiotemporal activity entropy evaluation

To evaluate the entropy on the basis of the activity of the networks, 10% of the elements were

randomly activated at the initial time. First, as an indication of the homogeneity of individual

element activity during nava avalanches, we counted the number of times each element was

activated (s = 1). Thus, we were able to obtain the activation PDF of element i, FS(i). If the

activity between the elements was homogeneously distributed, a flat distribution would have

been observed. Therefore, we used a theoretical curve of a constant PDF FC(i) as reference. We

defined the parameter Δd as a measure of the distance between the PDF obtained by simula-

tion in relation to the theoretical one:

Dd ¼
1

N
PN

i¼1
jFCðiÞ � FSðiÞj:

The greater the value of Δd was, lesser was the homogeneity of the resulting activity.

In order to calculate the activity entropy, we reduced the random networks to full con-

nected smaller ones of size N0. The reduction was obtained by following these steps, as shown

in Fig 1B: (i) nava avalanches were simulated with the time window Tj
ava (explained later), with

j = 1,2,. . .,nava; (ii) the elements of the networks were set in an order in a matrix of N � Tj
ava for

each avalanche on the basis of their activity; (iii) the dimension of the matrix was reduced by a

factor c, where N0 = N/c, thereby grouping sequential elements; (iv) each new element was con-

sidered active if nact amount of its components were activated; (v) the probability of activation

of each element with time, piat, was calculated for each new element, with i = 1,2,. . .,N; (vi) the

mean probability by avalanche hpiatinava was calculated. The time window Tj
ava of the jth ava-

lanche was shown in Fig 1A. It was defined as the interval that corresponded to the period

Fig 1. Reduction method employed in the analysis of the network activity. Method used to obtain a smaller network, which resembled the

same features of activation probability density function FS as those of the original. (A) Example of the network density activity ρ during the jth

avalanche. The time window Tjava starts at approximately 13 ms. (B) Simplified representation of the reduction method. The first step was the

arrangement of the element activities during an avalanche in a matrix of sizeN� Tjava (step i), followed by ordering the elements according to their

activity (step ii). The dimension of the matrix was reduced by a factor of c = 1250, grouping sequential elements (step iii), and each new element was

considered active if at least 2 of its components was activated (step iv). Then, the probability of activation of each element was calculated by time,

piat (step v), and finally the mean from nava = 10 000 avalanches, hpiatinava , was calculated (step vi).

https://doi.org/10.1371/journal.pone.0184367.g001
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after the initial high activity provoked by the external stimulus and after the final drop. Tava

was the longest of all Tj
ava, i.e., Tava ¼ maxfTj

avajj ¼ 1; 2; . . . ; navag.

After determining hpiatinava for each element i, we applied a minimalistic model for the net-

work dynamic. In this model, the elements had two states, active and inactive, indicated by 1 and

0, respectively. The model started with one randomly chosen single active element. For each

step, the active nodes in the previous step became 0 and remain 0 for one more time step, the

nodes i that had active neighbours j in the previous step have the probability p0ji to become active.

In order to obtain the news p0ij for the reduced networks, we normalized hpiatinava by its

mean value and obtained one variable similar to the σi, defined as γi. So, the p0ji ¼
gi
N 0, with p0ij 6¼

p0ji and gi ¼
PN0

j¼1
p0ji. While σi is related to the number of activation that departs from element

i, λi is related to the number of possible neighbours that are able to activate the element i.
The activity entropy HA was based on the spatiotemporal patterns of the avalanches. For

each time step, we represented the activity by a vector of size 1 ×N0. An avalanche of length t0

was created by concatenating t0 vectors into a single one of size 1 ×N0t0 [2]. These vectors were

then tested using a similarity matrix. For the original networks the length t0 was chosen by set-

ting t0 = Tava, and for the reduced networks we considered the same time window for all the

avalanches. We did not take into account the initial time, and by doing this we did not con-

sider the first random active element in each avalanche.

The similarity between two patterns varied from 0 to 1, and is defined as [11]:

Sim vi; vj
� �

¼
hvi; vji

hvi; vii þ hvj; vji � hvi; vji
;

where h�, �i is a dot product and v are the vectors of configurations. Finally, the entropy HA, in

bits, was defined as HA = −∑ipilog2(pi), where pi is the probability of the ith activity configura-

tion considering the total patterns found when Sim� th, with th is an arbitrary threshold.

Results

Networks with different connectivities produce similar dynamic features

We started simulating avalanches in critical networks using the methodology described before.

We generated networks with the same number of nodes but distinct mean connectivities K.

The simulations were performed using 3 chosen values of K, K = 10, 100, and 1 000, with

N = 20 000. Fig 2A and 2B show the Ki and branching parameter σi distributions for the three

cases. The Ki distributions were centralized in 0, that is, Ki − K. Because the inverse depen-

dence between the pmax and K parameters, as the P(Ki) became more broad, the P(σi) became

more sharp. We used σ as the control parameter because of the randomness of the pij. Other-

wise, it is known that the best parameter control is given by the largest eigenvalue of the con-

nection matrix [29].

Fig 2C show the avalanche size distributions calculated for nava = 10 000, where the dashed

line is a curve with a referent slope of −1.5. The slopes were calculated using linear least squares

regression, which provided the fitted exponent values of −1.48 (−1.55, −1.41), −1.47 (−1.54,

−1.41), and −1.45 (−1.52, −1.39) for K = 10, 100, and 1 000, respectively, with R-square value

of 0.99 for all fits. The dynamic range responses related to σ were also calculated (Fig 2D)

showing similar values for all networks. Although the networks have different K and distribu-

tions of Ki and σi, all three exhibited very similar avalanche statistics as revealed by the power

law fitting, including similar dynamic responses.
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Homogeneity of activity in network elements depends on mean

connectivity

As we were able to determine that networks with distinct mean connectivities produce similar

global dynamics, we next investigated the individual activity during the avalanches. Therefore,

we analysed the activation PDF, FS, of the element i and the homogeneity index, Δd, for the

above-mentioned 3 cases with nava = 10 000, N = 20 000, and 10% of active initial elements

(Fig 3). Fig 3A shows FS for K = 10, 100 and, 1 000, with FC as the homogeneity reference. The

overlapped lines represent results from 10 networks of each case. Fig 3B shows the results of

mean, Δd, and the errors obtained, i.e., (16.300 ± 0.060) � 10−6, (7.400 ± 0.014) � 10−6, and

(6.150 ± 0.005) � 10−6 for K = 10, 100, and 1 000, respectively. Our simulations revealed that

homogeneity of activity in network elements depended on the mean connectivity. Indeed,

higher values of K resulted in smaller Δd values. As shown in Fig 2A and 2B, smaller K implies

a broad σi distribution, leading to a higher variety of σi values. The largest values could produce

more probably paths, in contrast to the smallest ones. That way, these results revealed that

Fig 2. General features of the networks and activity. In our network model, the total number of elements was N = 20 000 and we used 3 distinct values for

mean connectivity; K = 10, 100, and 1 000. We simulated nava = 10 000 avalanches triggered by one random active element in the initial time with a dynamic

model based on [1], as explained in the Methods section. (A) Probability density distributions of connectives Ki P(Ki) for K = 10 (red), 100 (blue), and 1 000

(black) centralized in 0, that is, Ki−K. (B) Probability density distributions of the branching parameters σi P(σi) for K = 10 (red), 100 (blue), and 1 000 (black).

(C) Probability density distributions of the avalanche sizes P(S) for K = 10 (red), 100 (blue), and 1 000 (black). The dashed black line has a reference slope of

−1.5. (D) Dynamic range Δ versus σ for networks with K = 10 (red), 100 (blue), and 1 000 (black).

https://doi.org/10.1371/journal.pone.0184367.g002

Information in critical networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0184367 September 18, 2017 5 / 12

https://doi.org/10.1371/journal.pone.0184367.g002
https://doi.org/10.1371/journal.pone.0184367


homogeneity in the involvement of individual elements in the network activity varied depend-

ing on the mean connectivity, although the global features were very similar.

Network reduction method maintains similar activation features of the

original networks

Networks made up with different configurations, although had showed similar avalanches fea-

tures and dynamic responses, could hidden features that could only be seen if one had looked

closer. In order to analyse the spatiotemporal patterns of the activity in these networks with

more details, we employed a reduction method. The reduction decreased the number of possi-

ble paths facilitating the analyses, besides ensures the same features of FS as those of the origi-

nal simulated networks. Moreover, in reduced networks we were able to maintain the same K,

as K = N0 − 1 = 15. (Fig 1). First, we chose the time window Tj
ava as the interval corresponding

to the period after the initial high activity provoked by the external stimulus and after the final

drop (Fig 1A). In our analysis we computed spatiotemporal patterns after 13 ms to avoid the

background activity related to the random stimulus and Tava = 413,462, and 273 ms for K = 10,

100, and 1 000, respectively. We then arranged the avalanche into a matrix of size N � Tj
ava

(step i) and ordered it by activity (step ii). The dimension of the matrix was reduced by a factor

of c = 1 250, grouping sequential elements (step iii). Each new element was considered active if

at least nact = 2 of its components was activated (step iv) (Fig 1B). Then, we computed the prob-

ability of activation of each element with time piat (step v) and finally the mean from nava = 10

000 avalanches hpiatinava (step vi). The values obtained for hpiatinava are shown in Fig 4A. These

probabilities were used in the reduced networks, as explained in the next section. It is noted

that the curves collapsed themselves when the transform ðhpiatinava � 0:5ÞðKÞ1=2
is used.

Results were shown as inset in Fig 4A. We observed that the same dependence with K was

valid for the FS.
There is a little difference between calculation of FS and hpiatinava , but they follow the same

general tendency as we can see for the original network with K = 10 as example (Fig 4B). That

Fig 3. Analysis of individual element activity. The activity of each element i of the networks during the avalanches was computed and activation

probability density function (PDF) of elements i FS was calculated. We simulated nava = 10 000 triggered by random 10% active initial elements. (A)

We simulated activity in 10 distinct networks for each mean connectivity, K = 10 (red), 100 (blue) and 1 000 (black). The dashed black line represents

homogeneity reference PDF, FC. All 10 simulations were plotted in the graph and appeared as overlapped lines. (B) We also calculated the mean

difference Δd index between the results obtained for each condition and those obtained for the reference line.

https://doi.org/10.1371/journal.pone.0184367.g003
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way, the FS of the simulations of the reduced networks could be calculated to check the method

functionality.

Entropy as coded by spatiotemporal patterns depends on mean

connectivity

The capacity of a network stores information is related to the nodes that are activated, for

example, in a neuronal network. Not only the amount of nodes, but the temporal sequence of

activation, and if the same sequence could be posteriorly achieved again. A highly used way to

characterize the distribution of these patterns is based on the Shannon entropy, and can give

us some clues of how the entropy can vary in critical networks.

To evaluate the entropy based on spatiotemporal patterns we used the reduced-sized net-

works for our simulations from now on. Then, each one of the original networks generated a

reduced one, which are shown in Fig 5A, 5B and 5C. They are fully connected and the nodes

activation probability are featured by the colour distribution. For the simulations we chose

N0 = 16, t0 = 4 ms and nava = 10 000. Calculating the FS, the results are shown in Fig 5D, from

which we can see the agreement between the values obtained from reduced and original net-

works, both normalized by the area under the curve.

The simulated avalanches generated 10 000 vectors of activity of size 1 ×N0t0. Based on

these vectors, we calculated the similarity matrix. Applying the threshold Th = 0.7, all values

above it were considerated as 1 and below it as 0. That way, we identified all similar patterns

and computed the activity entropy HA. Fig 5E shows one example for K = 10 related to patterns

that repeated more frequently (top), as well as patterns that repeated less frequently (bottom).

We can see that the less repeated patterns were generally composed by the elements with low

activation probability, in contrast with the more repeated patterns. The vertical line separates

the initial time, when the active element was chosen randomly. Fig 6A shows that maximum

repeatability of the patterns and Fig 6B the HA versus the deviation of the σi distribution. The

markers colour are related to the referent K and the colourless marker are the theoretical value

idealized for a network with 10 000 avalanches and 0 patterns repeated. We can see that the

Fig 4. The probability of activation of the reduced networks versus the original networks. The reduction methods generated the activation

probability for the reduced networks, and keep the tendency with the FS. (A) The activation probabilities hpiatinava of the reduced networks for the

three cases, K = 10 (red), 100 (blue) and 1 000 (black). The inset shows the collapsed curves adopting ðhpiatinava � 0:5ÞðKÞ1=2
. (B) Example of the

tendency between the hpiatinava and the FS for the original network with K = 10. Both were normalized by the area under the curve.

https://doi.org/10.1371/journal.pone.0184367.g004
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repeatability increases as the deviation increases (or the K decreases) and the HA has the oppo-

site behaviour.

We were able to determine that the entropy increased monotonically with K, reinforcing

the results observed in Fig 3. Indeed, the most likely spatiotemporal patterns increased the

probability of repetition and decreased the entropy. In contrast, an increase in K produced

more equi-probable spatiotemporal patterns, leading to an increase in entropy.

Discussion

Critical dynamics have been considered as an optimum regime for neuronal networks, mainly

to enhance both information processing and dynamic range. Despite the importance of the

Fig 5. Reduced networks. Scheme of the hpiatinava for the reduced networks. (A), (B) and (C) show the activation probabilities hpiatinava coming from the

original three cases, K = 10, 100 and 1 000 respectively, distributed in fully connected reduced networks of size N0 = 16. (D) show the comparison between

hpiatinava obtained from the original networks, circles, and the FS calculated from the simulations of the reduced networks, dashed lines, both normalized by

the area under the curve. The colours blue, red and black are related to K = 10, 100 and 1 000 respectively. (E) Example of patterns observed in networks

with K = 10. The pattern that was observed more frequently is located in the top, whereas the pattern that was observed less frequently is located in the

bottom. The vertical line separates the initial time, when the active element was chosen randomly.

https://doi.org/10.1371/journal.pone.0184367.g005
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criticality, the knowledge about embedding information in the phase transition provided by

this regime is very limited.

In this study, we employed branching process based models to study the spatiotemporal

activity entropy. Our results revealed that the information capacity of networks set within

the limits of critical dynamics may vary depending on the choice of parameters. Distinct values

of K resulted in different distributions of σ with equal means but decreasing standard devia-

tions. A large deviation in σ led the networks to superimpose some paths that repeated more

than others, even creating a large number of patterns such as those fitted to a power law

distribution.

The existence of more likely paths induced a reduction in the entropy as coded by spatio-

temporal patterns. Therefore, it was possible to obtain variations in the information capacity

even inside the critical regime, which does not interfere with both input sensitivity and

dynamic response range. Moreover, adaptation in dynamic range response has been investi-

gated as a physiological mechanism in neuronal cortical networks [30].

Although the model employed here has specific features, such as the dependence of K and σ
variables, our results can be extended to neuronal biology. In this context, the synaptic plastic-

ity plays a fundamental role, increasing or decreasing the recurrence of certain connections,

producing more or less likely spatiotemporal activity paths. We can speculate that this balance

is required in a neuronal network. For example, in circuitries related to memory and learning,

spatiotemporal patterns may repeat more frequently than expected by chance. In this condi-

tion, neuronal circuitries do not work in full capacity in relation to the information, although

this particular feature is maximum in critical regime.

Others models have been used to examine the repetitive patterns found in neuronal activi-

ties, such as the spike-timing dependent plasticity (STDP)-based learning process [13,31],

where phase coded spike patterns are stored in the synaptic connections. Another example is

related to learning model presented by de Arcangelis et al. [32]. In that paper the authors

Fig 6. Analyses of the entropy as the result of spatiotemporal patterns. A minimalistic model was applied for the dynamics in the reduced networks

with size N0 = 16, activation probabilities hpiatinava , nava = 10 000 and t0 = 5 ms, as described in Methods section. The avalanches were compared using

similarity matrix, and were subjected to an arbitrary threshold th = 0.7 in order to identify the similar patterns. The initial activated elements were not take

into account. After this, we identified the number of different patterns and the maximum repeatability founded in each case. (A) The maximum repeatability

of each case versus the σi deviation. (B) The entropy HA versus the σi deviation. The associated K with the σi deviation is colour highlighted. Blue, red and

black are related to K = 10, 100 and 1 000 respectively. The colourless circle is associated to the theoretical result where repetition is not observed.

https://doi.org/10.1371/journal.pone.0184367.g006
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showed a network model with plastic synaptic strength that presented critical behaviour and

also was able to learn. They concluded that the system learns more efficiently as more possible

spatiotemporal paths exist. However, in a simpler version, branching process models can

achieve repeatable patterns, more or less, changing the deviation of the branching parameter,

which may also result in controlling of information capacity.

To summarize, our findings disclosed new theoretical predictions involving dynamics and

topology in real neuronal networks. For example, it was possible to postulate that brain circuit-

ries located in the cortex might comprise a large amount of information as encoded by numer-

ous distinct spatiotemporal patterns [6]. In contrast, we demonstrated that other circuitries

may show a dynamic response, but with less information entropy. For example, when com-

pared with those of the cortex, neuronal circuitries in the brain stem might not require a mas-

sive combination of distinct spatiotemporal patterns, although circuitries should be able to

maintain optimum sensitivity to stimulus. Notably, a large variety of neuronal subtypes in the

brain stem have been described [33,34]. The role of morphological heterogeneity, which may

underlie variations in the connectivity degree, in the formation of networks with decreased

entropy is a matter that needs to be empirically investigated.
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