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Abstract

Background:Glioblastoma (GBM) is themost common primary malignant brain tumor

in adults. For patients with GBM, the median overall survival (OS) is 14.6 months and

the 5-year survival rate is 7.2%. It is imperative to develop a reliable model to pre-

dict the survival probability in newGBMpatients. To date, most prognostic models for

predicting survival in GBM were constructed based on bulk RNA-seq dataset, which

failed to accurately reflect the difference between tumor cores and peripheral regions,

and thus show low predictive capability. An effective prognostic model is desperately

needed in clinical practice.

Methods: We studied single-cell RNA-seq dataset and The Cancer Genome Atlas-

glioblastoma multiforme (TCGA-GBM) dataset to identify differentially expressed

genes (DEGs) that impact the OS of GBM patients. We then applied the least absolute

shrinkage and selection operator (LASSO) Cox penalized regression analysis to deter-

mine theoptimal genes tobe included inour risk scoreprognosticmodel. Then,weused

another dataset to test the accuracy of our risk score prognostic model.

Results: We identified 2128 DEGs from the single-cell RNA-seq dataset and 6461

DEGs from the bulk RNA-seq dataset. In addition, 896 DEGs associated with the OS

of GBM patients were obtained. Five of these genes (LITAF, MTHFD2, NRXN3, OSMR,

and RUFY2) were selected to generate a risk score prognostic model. Using training

and validation datasets, we found that patients in the low-risk group showed betterOS

than those in the high-risk group. We validated our risk score model with the training

and validating datasets anddemonstrated that it can effectively predict theOSofGBM

patients.
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the original work is properly cited.
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Conclusion: We constructed a novel prognostic model to predict survival in GBM

patients by integrating a scRNA-seq dataset and a bulk RNA-seq dataset. Our find-

ingsmayadvance thedevelopmentof newtherapeutic targets and improve clinical out-

comes for GBMpatients.
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1 INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant brain

tumor in adults, accounting for 48.6% of malignant tumors in the cen-

tral nervous system and 14.5% of all tumors (Ostrom et al., 2020). The

median overall survival (OS) time is around 14.6 months for patients

diagnosed with GBM, with only a 5-year survival rate of 7.2% (Lynes

et al., 2020; Ostrom et al., 2020). Currently, the main treatment mea-

sures forGBM include radiotherapy, chemotherapy, and surgical resec-

tion (Fabian et al., 2019). Unfortunately, little progress has been made

toward prolonging survival in GBM despite considerable effort in

improving treatments over the past decades (Alexander & Cloughesy,

2017). The OS of each GBM patient is a crucial factor in developing a

personalized treatment plan. Therefore, it is imperative to develop a

reliable tool to predict the survival probability for patients with newly

diagnosed GBM.

With the advancement of high-throughput technologies, RNA

sequencing (RNA-seq) from bulk tissue has become indispensable for

transcriptome-wide analysis (Stark et al., 2019).Manypublic databases

have been established, including The Cancer Genome Atlas (TCGA,

https://cancergenome.nih.gov/) and Gene Expression Omnibus (GEO,

https://www.ncbi.nlm.nih.gov/geo/). These databases enable scientists

to investigate the relationship between the prognosis of diseases

and gene expression profiles. Studies are in mounting numbers being

reported to identify biomarkers associated with prognosis for GBM

patients (Wang et al., 2019; Zhao et al., 2021; Zhou et al., 2021). How-

ever, the expression of genes obtained frombulk tissue does not reflect

their expression in individual cells, which leads to the high heterogene-

ity of GBMbeingmasked.

The development of single-cell RNA sequencing (scRNA-seq) in

recent years has significantly expanded our knowledge about biologi-

cal systems. As an emerging technology, scRNA-seq has been applied

increasingly to explore extensive intratumoral heterogeneity (Kinker

et al., 2020; Patel et al., 2014; Peng et al., 2019). Compared to calculat-

ing the average gene expression in all the cells, scRNA-seq allows the

evaluation of gene expression at a single-cell resolution, which greatly

compensates for the shortage of RNA-seq from bulk tissue (G. Chen

et al., 2019). In addition, scRNA-seq analysis enables researchers to

discover critical genes that are characteristic of cancer cells (Kulkarni

et al., 2019). In this study, we studied a scRNA-seq dataset and a bulk

RNA-seq dataset and integrated them to construct a novel prognostic

model for predicting survival in GBM.

2 MATERIALS AND METHODS

2.1 Acquisition of bulk RNA-seq dataset and
scRNA-seq dataset in GBM patients

We included the scRNA-seq dataset and three bulk RNA-seq datasets

of human GBM samples in our study. We first obtained the gene

expression dataset and related clinical information of GBM patients

from The Cancer Genome Atlas-glioblastoma multiforme (TCGA-

GBM) dataset. The gene expression dataset and the clinical informa-

tion from GSE43378 were collected from the GEO database. In addi-

tion, the RNA sequencing dataset and corresponding clinical infor-

mation that contained 693 samples (dataset ID: mRNAseq_693) were

downloaded from Chinese Glioma Genome Atlas (CGGA; http://www.

cgga.org.cn) database. We first performed data clean-up. We excluded

cases that do not have follow-up time or survival status, as well as

the ones that had clinical information but no corresponding RNA-seq

data. According to the exclusion criteria, a total of 152 tumor samples

and five normal controls in the TCGA-GBM dataset were enrolled in

the study and selected as the training dataset, and a total of 50 tumor

samples in the GSE43378 dataset and a total of 133 GBM samples in

the mRNAseq_693 dataset were enrolled and selected as the valida-

tion datasets. The scRNA-seq dataset with a total of 3589 cells from

four human primary GBM samples from the GSE84465 dataset was

acquired from the GEO database. Among the 3589 cells, 2343 were

from tumor cores and 1246were from peripheral regions, with a read-

ing depth of 10× genomics based on Illumina NextSeq 500.

2.2 The processing of GBM scRNA-seq dataset

Weanalyzed 2343 cells from tumor cores as follows.We used the Seu-

rat package in R 4.0.0 to perform quality control, statistical analysis,

and explore the scRNA-seq dataset (Gribov et al., 2010). We calcu-

lated the percentage of mitochondrial genes with the PercentageFea-

tureSet function and elucidated the relationship between the sequenc-

ing depth, the mitochondrial gene sequences, and total intracellular

sequences through correlation analysis. We cleaned up data accord-

ing to the following quality control criteria: first, genes detected in< 3

cells were omitted; second, cells with< 100 total detected genes were

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.cgga.org.cn
http://www.cgga.org.cn
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excluded; third, cells with ≥ 5% mitochondria-expressed genes were

discarded; and last, cells with nuclei gene counts< 200 or> 6000were

excluded. We normalized the gene expression of the remaining cells

with the LogNormalize method, and we identified the top 1500 genes

with highly variable features by variance analysis. We then performed

principal component analysis (PCA) to identify significantly available

dimensionswith a p-value< .05 based on the expression of these genes

(Ringnér, 2008). We next applied the t-distributed stochastic neighbor

embedding (tSNE) algorithm to reduce dimensionality with 20 initial

PCs andperformcluster classification analysis (Kobak&Berens, 2019).

With the criteria of log2 [fold change (FC)] > 0.25 and an adjusted p-

value< .05, marker genes in each cluster were obtained. Clusters were

annotated through the “SingleR” package based on thesemarker genes

(Aran et al., 2019).

Then, 1246 cells from peripheral regions were analyzed as

described before, except that the cells with nuclei gene counts < 200

or > 4000 were excluded rather than cells with sequencing number <

200 or nuclei gene counts> 6000.

2.3 The identification of DEGs from the
scRNA-seq dataset and TCGA-GBM dataset

In the GBM scRNA-seq dataset, cancer cells were selected as repre-

sentative tumor cores after annotation, and neurons were selected as

representative peripheral regions. Then, the differentially expressed

genes (DEGs) between cancer cells and neurons were identified by the

“DEsingle” package (Miao et al., 2018). Genes with |log2 FC| > 2 and

an adjusted p-value < .05 were considered DEGs. For the TCGA-GBM

dataset, first, log2 transformation was employed to generate expres-

sion profiles, and then the genes between tumor samples and nor-

mal controls were used for differentially expressed analysis using the

“Limma” package (Ritchie et al., 2015). Genes with |log2 FC| > 1 and p-

value< .05 were defined as DEGs.

2.4 Enrichment analysis of Gene Ontology
functions and Kyoto Encyclopedia of Genes and
Genomes pathways for DEGs

To investigate the biological implications of DEGs identified from both

theGBMscRNA-seq and TCGA-GBMdatasets, we performed an inter-

section of the datasets. We then conducted Gene Ontology (GO) func-

tion and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis usingWebGestalt (WebGestalt:WEB-basedGEne SeTAnaLy-

sis Toolkit, RRID:SCR_006786).Agene set atp< .05 and falsediscovery

rate (FDR)< 0.05was considered to be significantly enriched.

2.5 Analysis of DEGs associated with overall
survival in GBM patients

First, univariateCoxproportional hazards regression analysiswasused

to assess the relationship between the expression of genes and the OS

of patients in the TCGA-GBMdataset. Genes with hazard ratio (HR)≠1

and p < .05 were defined as genes associated with OS. Then, DEGs

associated with OS were obtained by overlapping genes associated

with OS and DEGs from both the GBM scRNA-seq and TCGA-GBM

datasets.

2.6 Prognostic model construction

The DEGs associated with OS were regarded as candidate genes for

constructing a prognostic model. Then, we conducted least absolute

shrinkage and selection operator (LASSO) Cox penalized regression

analysis using the R package “glmnet” (Friedman et al., 2010), and the

genes with nonzero coefficients were selected to establish a risk score

prognosticmodel. Based on the results of LASSOCoxpenalized regres-

sion analysis, we calculated the risk score for each GBM patient in the

training dataset.

2.7 Prognostic model validation

After constructing the risk score prognostic model, we used one

independent dataset GSE43378 including 50 patients with com-

plete OS information from GEO and the other independent dataset

mRNAseq_693 including 133 patients with complete OS information

from CGGA to validate the model, respectively. First, we performed

time-dependent receiver operating characteristic (ROC) curve analysis

to predict the 12-, 15-, and 18-month survival using the R package “sur-

vivalROC” (Lorent et al., 2014). Then, based on the median risk score,

wedividedGBMpatients intohigh- and low-risk groups.Weperformed

Kaplan–Meier survival analysis to determine the association between

the risk score prognostic model and the OS of GBM patients. The sig-

nificance of differences in survival between the two groups was deter-

mined by the log-rank test.

3 RESULTS

3.1 Identification of cancer cells and neurons in
the GBM scRNA-seq dataset

Thirty-eight nonconforming cells were excluded, and 2305 cells

were preserved for further analysis after quality control from tumor

cores (Figure 1a). We performed correlation analysis and found that

there appeared to be no correlation between sequencing depth and

mitochondrial gene sequences (Figure 1b). However, there was a

significant positive correlation between the sequencing depth and

total intracellular sequences (r = 0.37, Figure 1c). We also found that

among the total of 18,545 genes analyzed, 1500 had high variation and

17,045 had low intercellular variation (Figure 1d). For PCA analysis,

we picked 20 principal components (PCs) that have a p-value < .05 for

subsequent analysis (Figure 1e). Then, we applied the tSNE algorithm

and successfully classified the cells from tumor cores into 13 separate
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F IGURE 1 The processing of cells from tumor cores in the glioblastoma (GBM) scRNA-seq dataset. (a) Thirty-eight nonconforming cells were
filtered out during quality control and normalization, and 2305 cells were screened for further analysis. (b) Correlation analysis of sequencing
depth andmitochondrial gene sequences. (c) Correlation analysis of sequencing depth and total intracellular sequences. (d) Among the 18,545
genes analyzed, 17,045 showed low and 1500 showed high intercellular variation. (e) Twenty principal components (PCs) with significant
differences were identified with p< .05. (f) Two thousand three hundred five cells were divided into 13 separate clusters. (g) Heatmap displaying
the top 10marker genes in each cluster

clusters (Figure 1f). We identified a total of 13,616 marker genes

from all 13 clusters, and the top 10 marker genes from each cluster

were presented in the heatmap (Figure 1g). We annotate clusters with

singleR based on the expression of these marker genes (Figure 3a).

We determined that the Clusters 0, 1, 7, and 8, containing 1176 cells,

were macrophages; Clusters 2 and 4, containing 450 cells, were GBM

cancer cells; Clusters 3, 5, 6, 9, 10, and 12, containing 637 cells, were

astrocytes; and Cluster 11, containing 42 cells, was endothelial cells.

A total of 1193 cells were screened, and 53 nonconforming cells

were excluded for further analysis after quality control fromperipheral

regions (Figure 2a). We found that though the sequencing depth did

not have correlation with mitochondrial gene sequences (Figure 2b),

it showed a significant positive correlation with total intracellular

sequences (R = 0.43, Figure 2c). Among the 17,210 genes analyzed,

500 had high variation and 15,710 had low intercellular variation

(Figure 2d).We executed PCA and selected 17 PCswith a p-value< .05
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F IGURE 2 The processing of cells from peripheral regions in the glioblastoma (GBM) scRNA-seq dataset. (a) Fifty-three nonconforming cells
were filtered out during quality control and normalization, and 1193 cells were screened for further analysis. (b) Correlation analysis of
sequencing depth andmitochondrial gene sequences. (c) Correlation analysis of sequencing depth and total intracellular sequences. (d) Among the
total of 17210 genes analyzed, 15710 showed low intercellular variation, while 1500 showed high variation. (e) Seventeen principal components
(PCs) with significant differences were identified with p< .05. (f) A total of 1193 cells were divided into nine separate clusters. (g) Heatmap
displaying the top 10marker genes in each cluster

for subsequent analysis (Figure 2e). Then,weperformed the tSNEalgo-

rithm and divided the cells from peripheral regions into nine separate

clusters (Figure 2f). We have identified a total of 6748 marker genes

from all nine clusters, and the top 10 marker genes from each cluster

were laid out in the heatmap (Figure 2g). All clusters were annotated

by singleR based on the expression of these marker genes (Figure 3b).

Clusters 0, 5, and 6, containing 482 cells, were annotated as astro-

cytes; Clusters 1, 2, 4, and 7, containing 559 cells, were classified as

macrophages; Cluster 3, containing 105 cells, was annotated as mono-

cytes; and Cluster 8, containing 47 cells, was classified as neurons.

3.2 DEGs from scRNA-seq dataset and
TCGA-GBM dataset

Atotal of 450cancer cellswere selectedas representative tumor cores,

and 47 neurons were selected as representative peripheral regions in

the GBM scRNA-seq dataset. We obtained 2128 DEGs at |log2 FC| >

2 and an adjusted p-value < .05 between these cancer cells and neu-

rons. In addition, 6461 DEGs at |log2 FC| > 1 and p < .05 were identi-

fied between152 tumor samples and five normal controls in theTCGA-

GBMdataset.
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F IGURE 3 Cell annotation by singleR corresponding to the
composition of themarker genes in each cluster. (a) All 13 clusters of
cells from tumor cores in glioblastoma (GBM) scRNA-seq dataset were
annotated. (b) All nine clusters of cells from peripheral regions in GBM
scRNA-seq dataset were annotated

3.3 Enrichment analysis of GO functions and
KEGG pathways

There were 896 genes in the intersection of the identified DEGs from

the GBM scRNA-seq and TCGA-GBM datasets. The KEGG analysis on

the896 genes suggested that theywere enriched in signaling pathways

such as theMAPK signaling pathway, the apelin signaling pathway, and

pathways involved in circadian entrainment (Figure S1).

3.4 DEGs associated with OS in GBM patients

We preliminarily identified 1418 genes that are linked to the OS of

patients using univariate Cox proportional hazards regression analysis

on the TCGA-GBM dataset. We found that 43 genes were at the inter-

section of genes associated with OS and DEGs from the GBM scRNA-

seq dataset and TCGA-GBMdataset. These genes were chosen as can-

didate genes for constructing a prognostic model.

3.5 Construction of the prognostic model

After LASSO Cox penalized regression analysis in the training dataset

(Figure 4a,b), we constructed a five-gene (LITAF, MTHFD2, NRXN3,

OSMR, and RUFY2)-based risk score prognostic model. The risk score

= 0.01301 × expression of LITAF – 0.03406 × expression of MTHFD2

+ 0.04864 × expression of NRXN3 + 0.09675 × expression of OSMR –

0.00038 × expression of RUFY2. We performed time-dependent ROC

curve analysis to predict the 12-, 15-, and 18-month survival, and the

area under curves (AUCs) for 12-, 15-, and 18-month OS were 0.728,

0.721, and 0.713, respectively (Figure 4c). In addition, the survival

curve suggested that the high-risk group showed a worse prognosis,

compared to the low-risk group, with p< .001 (Figure 4d).

3.6 Validation of the prognostic model

We used the dataset GSE43378 including 50 patients with complete

OS information from GEO and the dataset mRNAseq_693 including

133 patients with complete OS information from CGGA as the exter-

nal validation datasets to evaluate the robustness and effectiveness of

our risk score prognostic model. We also performed time-dependent

ROC curve analysis to predict the 12-, 15-, and 18-month survival. The

AUCs for 12-, 15-, and 18-month OS were 0.645, 0.701, and 0.733 in

GSE43378, respectively (Figure 4e). The AUCs for 12-, 15-, and 18-

monthOSwere 0.616, 0.634, and 0.622 inmRNAseq_693, respectively

(Figure 4g). Additionally, in Figure 4f,h, the survival curve indicated

that the high-risk group presented aworse prognosis than the low-risk

group (p < .001) in these two validation datasets. In summary, these

results indicate the effective predictive capability of the risk score

prognosticmodel constructed by integrated analysis of scRNA-seq and

bulk RNA-seq datasets.

4 DISCUSSION

Over years, there are increasing studies using public databases to pre-

dict survival in GBM. However, the DEGs were identified from bulk

RNA-seq in most studies, which failed to accurately reflect the dif-

ference between tumor cores and peripheral regions, thus weaken-

ing the predictive ability of the models (P. F. Chen et al., 2019; Xu

et al., 2020; Zhang et al., 2020). On the other hand, analysis using the

scRNA-seqdata could resolve gene expression at single-cell resolution,

allowing the classification and annotation of their expression in a cell-

type- or tissue-specific manner. Neurons are regarded as the original

cells of cancer cells in GBM (Friedmann-Morvinski et al., 2012; Vescovi

et al., 2006). In this study, we first obtained candidates DEGs from the

scRNA-seq dataset GSE84465, and then combined them with TCGA-

GBM to acquire the DEGs associated with OS. Finally, we constructed

a risk scoreprognosticmodel andvalidated themodelwith the external

dataset GSE43378. Figure 5 shows the flow of the study.

The results of KEGG analysis showed that DEGs were enriched in

signaling pathways such as theMAPKpathway, the apelin pathway, and

pathways involved in circadian entrainment. A report suggested that

the MAPK signaling pathway plays an important role in GBM develop-

ment and malignant progression through promoting GBM cell tumori-

genicity (X. Chen et al., 2020). Another study also demonstrated that
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F IGURE 4 (a) least absolute shrinkage and selection operator (LASSO) coefficient profiles of the differentially expressed genes (DEGs)
associated with the overall survival (OS) of glioblastoma (GBM) patients. (b) Partial likelihood deviance plotted versus log(lambda). The vertical
dotted line indicates the lambda value with theminimum error and the largest lambda value where the deviance is within one SE of theminimum.
(c) The receiver operating characteristic (ROC) curves for the risk scoremodel in the training dataset. (d) TheOS of patients in the five-gene risk
scoremodel low- and high-risk groups in the training dataset. (e) The ROC curves for the risk scoremodel in the GSE43378. (f) TheOS of patients
in the five-gene risk scoremodel low- and high-risk groups in the GSE43378. (g) The ROC curves for the risk scoremodel in themRNAseq_693. (h)
TheOS of patients in the five-gene risk scoremodel low- and high-risk groups in themRNAseq_693
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F IGURE 5 The process of constructing the five-gene risk scoremodel. First, 2128 differentially expressed genes (DEGs) and 6461DEGswere
identified from the GSE84465 and TCGA-GBMdatasets by differential expression analysis, respectively. In addition, using univariate Cox
proportional hazards regression analysis, 1418 genes were identified to be associated with overall survival (OS) in glioblastoma (GBM) patients.
Then, 43 DEGs associated with OS in GBMpatients were obtained. Next, least absolute shrinkage and selection operator (LASSO) Cox penalized
regression analysis was applied to construct a gene risk scoremodel for prognosis prediction. Subsequently, the gene risk scoremodel was
constructed based on the five genes (LITAF,MTHFD2,NRXN3,OSMR, and RUFY2). Finally, the five-gene risk scoremodel was validated using
validation datasets

the apelin signaling pathway controls GBM angiogenesis and invasion

(Mastrella et al., 2019). Our risk score model suggests that the five

gene (LITAF,MTHFD2, NRXN3, OSMR, and RUFY2) might affect the OS

of GBMpatients through these pathways.

In the training dataset, we constructed a five-gene (LITAF,MTHFD2,

NRXN3, OSMR, and RUFY2)-based risk score prognostic model. The

risk score = 0.01301 × expression of LITAF – 0.03406 × expression of

MTHFD2 + 0.04864 × expression of NRXN3 + 0.09675 × expression

of OSMR – 0.00038 × expression of RUFY2. LITAF was identified as

a transcription factor which activates the proinflammatory cytokine

transcription in macrophages upon response to lipopolysaccharide.

Recently, a study demonstrated that the LITAF expression is decreased

in glioma tissues, which likely enhances the radiosensitivity of glioma

cells through upregulating the FoxO1 pathway (Huang et al., 2019).

MTHFD2 is broadly required for cancer cell proliferation and viability

as a metabolic enzyme and was overexpressed around the tumor

regions with poor nutrient access in GBM patients, and the suppres-

sion of MTHFD2 could cause cancer cell death (Tanaka et al., 2021).

NRXN3 belongs to a family of highly polymorphic neuronal-specific cell

surface proteins, and it was reported to promote glioma cell prolifer-

ation and migration under the regulation of Fox Q1 (Sun et al., 2013).

Our results not only verified the relationship between NRXN3 and

GBM but also demonstrated the effectiveness of using NRXN3 as an

important indicator for prognosis prediction in GBM patients. OSMR

is a member of the interleukin-6 receptor family, and a previous study

reported that it regulates GBM tumor growth through orchestrating

a feed-forward signaling mechanism with EGFRvIII and STAT3 to

promote tumorigenesis (Jahani-Asl et al., 2016). Furthermore, another

study showed that OSMR conferred resistance to ionizing radiation

via regulation of oxidative phosphorylation and that loss of OSMR

sensitized GBM tumors to ionizing radiation therapy (Sharanek et al.,

2020). However, the function of RUFY2 remains unknown.

In the validation dataset GSE43378, the AUCs for 12-, 15-, and 18-

month OS were 0.645, 0.701, and 0.733, respectively. MRNAseq_693

downloaded from CGGA, whose all GBM samples were Chinese

patients, was selected as the other validation dataset. The AUCs

for 12-, 15-, and 18-month OS were 0.616, 0.634, and 0.622 in

mRNAseq_693, respectively. In addition, the survival curve suggested

that the high-risk group exhibited a worse prognosis than the low-risk

group (p < .001). These results indicate the predictive capability of the

risk score prognostic model. Unlike the previous prognostic signature,

our risk score prognostic model was constructed by integrating the

scRNA-seq dataset and bulk RNA-seq dataset. This finding could

reflect the effect of these genes on GBM patient prognosis. Based

on the risk score, the survival probabilities of an individual can be

queried based on the level of the five genes (LITAF, MTHFD2, NRXN3,

OSMR, and RUFY2). For patients with high risk of progression to severe

conditions, it is important for them to receive adequate attention and

care during treatments; therefore, our model will be a valuable tool to

provide a good reference for clinicians.

In summary, we constructed a novel prognosticmodel to predict the

survival in GBM patients though integrative analysis of a scRNA-seq

dataset and a bulk RNA-seq dataset. Our findings have the potential

to advance the development of new therapeutics for the treatment of

GBM and improve the clinical outcomes for GBM patients. However,

there are some limitations in our study. First, clinical characteristics
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were not taken into account in ourmodel. In the future,we can improve

our model by integrating clinical characteristics from the analysis of

patients with more comprehensive clinical information. In addition,

our model was constructed and validated using public databases, and

it would also be helpful to validate the model with private clinical or

experimental datasets in the further.

Figure S1: GO functional and KEGG pathway analysis. (a) Summary

of thedifferentially expressedgenes andGOpathwayenrichment. Red,

blue, and green bars represent the biological process, cellular compo-

nent, andmolecular function categories, respectively. The height of the

bar represents the number of differentially expressed genes observed

in each category. (b) The top 10 pathways involving the differentially

expressed genes.
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