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Abstract
Cancer is underlined by genetic changes. In an unprecedented international effort, the Pan-Cancer Analysis of Whole Genomes
(PCAWG) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) sequenced the
tumors of over two thousand five hundred patients across 38 different cancer types, as well as the corresponding healthy tissue,
with the aim of identifying genome-wide mutations exclusively found in cancer and uncovering new genetic changes that drive
tumor formation. What set this project apart from earlier efforts is the use of whole genome sequencing (WGS) that enabled to
explore alterations beyond the coding DNA, into cancer’s non-coding genome. WGS of the entire cohort allowed to tease apart
driving mutations that initiate and support carcinogenesis from passenger mutations that do not play an overt role in the disease.
At least one causative mutation was found in 95% of all cancers, with many tumors showing an average of 5 driver mutations.
The PCAWG Project also assessed the transcriptional output altered in cancer and rebuilt the evolutionary history of each tumor
showing that initial driver mutations can occur years if not decades prior to a diagnosis. Here, I provide a concise review of
the Pan-Cancer Project papers published on February 2020, along with key computational tools and the digital framework
generated as part of the project. This represents an historic effort by hundreds of international collaborators, which provides a
comprehensive understanding of cancer genetics, with publicly available data and resources representing a treasure trove of
information to advance cancer research for years to come.
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1 Introduction

Cancer is the second most frequent cause of death worldwide.
A “cure” for cancer has long been sought, yet cancer repre-
sents a very heterogeneous group of diseases sharing a few
defining phenotypic characteristics at the cellular level, such
as unregulated proliferation. Cancer genomes encapsulate
multiple genetic complexities that are often deeply
intertwined, including (1) heterogeneity across populations
and individuals, (2) cancer evolution that promotes genetic
diversity, and (2) age-related increase in mutational burden.

The PCAWGProject sampled patients between 1 and 90 years
old in its large cohort, estimating ~ 190 single nucleotide
changes suffered by the genome on a daily basis.

Mutations can be inherited, called germline mutations, or
somatic – which are randomly acquired during a person’s
lifetime. The PCAWGProject investigated both types of these
variations in cancer cells and identified the genetic changes
that have a causal role in cancer.

The finding, detailed in an impressive collection of 23 pa-
pers published in Nature and affiliated journals accessible on
the Nature Pan-Cancer Analysis of Whole Genomes page
(nature.com/collections/afdejfafdb), builds upon earlier
efforts by TCGA established by the NIH (USA) and the
ICGC. The complete set of samples from over 2,600 patients
across 38 different types of cancers of the PCAWG
Project represents the most comprehensive study of whole
cancer genomes to date (Fig. 1).

Here, I offer a concise review of key findings that have
emerged from this seminal work (Table 1), with each chapter
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proving a snapshot for each of the main studies. I also review
the methodologies and computational tools, datasets, and dig-
ital framework generated by the PCAWG consortium
(Table 2), with a description of the publications dedicated to
software development and computational advances available
as Supplemental Material. Readers are encouraged to read the
original publications and refer to original and official sources
cited throughout this review, especially cancer research scien-
tists and clinicians, as aspects of these pivotal studies are
hereby omitted due to space constraints.

2 PCAWG cohort description
and methodologies

The PCAWG collected WGS data with a mean read coverage
of 39× from 2605 primary tumors and 173 metastatic lesions,
as well as healthy tissue control. All the sequences obtained
within the framework of the PCAWG Project belong to 38
different histological cancer subtypes. RNA-sequencing data
were available for 1222 donors. The gender distribution of the
final cohort is 55%male and 45% female donors, with a mean
age of 56 years yet a wide demographic range from 1 to
90 years old individuals. More information on the cohort,
storage, and handling of the data can be found in the
Supplemental Text Chapter 1. To identify somatic mutations,
computational pipelines were used across all 6835 samples to
call: (1) somatic single-nucleotide variations (SNVs), (2)
small insertions and deletions (indels), and (3) copy number
alterations (CNAs) and structural variations (SVs). Other
characterized features include somatic retrotransposition
events, mitochondrial DNA mutations, and telomere length.
RNA-sequencing data were uniformly processed to call
transcriptomic alterations. Germline variants identified by
the three separate pipelines included single-nucleotide

polymorphisms, indels, SVs, and mobile-element insertions.
More details on the pipelines are available on Pan-Cancer
Analysis of Whole Genomes page (https://dcc.icgc.org/
pcawg) and on ICGC DCC DOCS page ( http://docs.icgc.
org/pcawg/data/) and can be found in Table 2, with
description of each computational tool, methodology, and
software generated detailed in the supplemental text. For a
user guide to the visualization and exploration of the
PCAWG dataset, please refer to ICGC DCC DOCS page
(http://docs.icgc.org/pcawg/data/) and reference [1].

3 Review of PCAWG findings in the major
publications

The articles published on the 5th of February 2020 in Nature
and partner journals as part of the PCAWG project report the
most comprehensive evaluation of cancer mutations using
WGS to date. The original articles published in the context
of the PCAWG project can be accessed on the Nature website
PCAWG landing page (www.nature.com/collections/
afdejfafdb). Open-access pre-prints, which are non-peer-
reviewed earlier versions of these publications, were deposit-
ed on bioRxiv and are widely accessible.

3.1 Main paper: genetic changes in cancer by Pan-
Cancer Analysis of Whole Genomes

“Pan-Cancer Analysis of Whole Genomes” is the key publi-
cation of the PCAWG project that mapped cancer-specific
genetic changes across the WGS cohort teasing out driving
mutations from passenger mutations that do not play an overt
role in cancer [2]. To accomplish this task, a new software
package, DriverPower, combines two state-of-the-art
methods, mutational burden and functional impact evidence,

Fig. 1 Key advances in understanding cancer genomes. A timeline of key technological advances in sequencing, seminal milestones and large-cohort
studies published in the last 50 years (not to scale) that have contributed to our current understanding of mutations driving cancer.
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Table 1 PCAWG Project major findings reviewed here. The published collection of papers can be accessed on the Nature website landing page for the
PCAWG Consortium (www.nature.com/collections/afdejfafdb).

Publication Brief description Chapter Reference

Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein
LD, et al. Pan-cancer analysis of whole genomes.
Nature. 2020

10.1038/s41586-020-1969-6

Identified driver mutations across cancer genomes 3.1 [2]
Preprint

[75]

Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O, Tiao
G, et al. Analyses of non-coding somatic drivers in 2,658
cancer whole genomes. Nature. 2020

10.1038/s41586-020-1965-x

Analysis of the 13% of tumor samples that have non-coding
mutations that drive cancer

3.2 [10]
Preprint

[76]

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng
AW, Wu Y, et al. The repertoire of mutational signatures in
human cancer. Nature. 2020

10.1038/s41586-020-1943-3

Identified new signatures of mutational processes that cause
base substitutions, small insertions and deletions, and
structural variation in cancer

3.3 [15]
Preprint

[77]

Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, Kumar
K, et al. Patterns of somatic structural variation in human
cancer genomes. Nature. 2020

10.1038/s41586-019-1913-9

Identified new signatures of mutational processes that cause
larger-scale structural variations associated with cancer

3.3 [16]
Preprint

[78]

Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez S,
Rosebrock D, et al. The evolutionary history of 2,658 cancers.
Nature. 2020

10.1038/s41586-019-1907-7

Analysis of the timings and mutational patterns in the evolution
of tumors to map the progression and occurrence of each
driver

3.4 [29]
Preprint

[79]

Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y,
Kahles A, et al. Genomic basis for RNA alterations in cancer.
Nature. 2020

10.1038/s41586-020-1970-0

Describes the diverse transcriptional consequences of somatic
mutation on splicing, expression levels, fusion genes, and
promoter activity

3.5.1 [22]
Preprint

[80]

Zhang Y, Chen F, Fonseca NA, He Y, Fujita M, Nakagawa H,
et al. High-coverage whole-genome analysis of 1220 cancers
reveals hundreds of genes deregulated by
rearrangement-mediated cis-regulatory alterations.
Nature Communications. 2020

10.1038/s41467-019-13885-w

Analysis of the diverse transcriptional consequences of gene
deregulation by non-coding regions in cancer

3.5.2 [33]
Preprint

[81]

Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J,
Supek F, Demeulemeester J, et al. Pan-cancer analysis of
whole genomes identifies driver rearrangements promoted by
LINE-1 retrotransposition. Nature Genetics. 2020

https://doi. org/10.1038/s41588-019-0562-0

Evaluates “jumping” of retrotransposable elements as a driver
of cancer-associated mutagenesis

3.6 [24]
Preprint

[82]

Sieverling L, Hong C, Koser SD, Ginsbach P, Kleinheinz K,
Hutter B, et al. Genomic footprints of activated telomere
maintenance mechanisms in cancer.
Nature communications

10.1038/s41467-019-13824-9

Explores different known and still unknown pathways used by
cancer to maintain their telomeres

3.7 [5]
Preprint

[83]

Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, et al.
Comprehensive molecular characterization of mitochondrial
genomes in human cancers. Nature Genetics. 2020

10.1038/s41588-019-0557-x

Mutational analysis of mitochondrial DNA in cancer 3.8 [49]
Preprint

[84]

Akdemir KC, Le VT, Sahaana C, Li Y, Group P-SVW, Verhaak
RG, et al. Chromatin Folding Domains Disruptions by
Somatic Genomic Rearrangements in Human Cancers. Nat
Genet. 2019

10.1038/s41588-019- 0564-y

Alterations of 3D genome architecture in cancer 3.9 [23]
Preprint

[85]

Reyna MA, Haan D, PaczkowskaM, Verbeke LPC, VazquezM,
Kahraman A, et al. Pathway and network analysis of more
than 2500 whole cancer genomes.
Nature Communications. 2020

10.1038/s41467-020-14351-8

Establishes the most commonly mutated pathways and
molecular processes in driving cancer formation and
progression

3.10 [52]
Preprint

[86]

Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, et al.
Comprehensive analysis of chromothripsis in 2,658 human
cancers using whole-genome sequencing.
Nature Genetics. 2020

10.1038/s41588-019-0576-7

Analysis of chromothripsis, a mutational process found to
occur early in a high proportion of all cancers and to drive
tumor genetic heterogeneity

3.11 [25]
Preprint

[87]
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to identify a cancer driver [3]. DriverPower’s innovative ap-
proach takes into consideration increased frequency over tu-
mor background mutation rate as well as predicted impact on
genomic functions [3]. This blended method addresses the
issues of finding both recurrent and rare driving events, as
well as those that occur in poorly understood or annotated
regions. Nonetheless, all methods designed to date including
DriverPower operate on the premises of neutral selection of
genomic elements during model training. Instead, it is ex-
tremely likely that mutations reflect a balance between posi-
tive and negative selection, and accounting for a neutral selec-
tion and failure in correcting for cross-selective pressures re-
duce the overall sensitivity of existing methods. Furthermore,
the assumption of functional relevance based on our still lim-
ited current knowledge should also be considered.
DriverPower detailed review can be found in Supplemental
Chap. 2.2, with more information available at the Github
DriverPower page (https://github.com/smshuai/DriverPower)
and in the original publication [3].

Over 95% of tumors contained at least one and on average
4–5 identifiable driver mutations, indicating that generally
no single cellular program directs cancer’s behavior.
Instead, several changes impinging on multiple pathways
enable each individual cancer to form [3]. Yet, each tumor
differs considerably in the number of driver mutations need-
ed to promote carcinogenesis (Fig. 2). The number of driver
mutations is largely associated with the tissue’s proliferative
status and surrounding micro-environment of the cell [4].
Intuitively, the number of drivers varies not only across tu-
mors but also along the cancer timeline, with more advanced
stages generally showing a higher burden of driving muta-
tions [4]. The study found several common biological path-
ways involved in cancer: (1) chromothripsis, whose muta-
tional signature of clustered structural variants seems to arise
early in cancer; (2) telomere maintenance, with the majority
of cancer mutations impinging on the TERT gene and its
promoter region but also affecting the alternative lengthen-
ing of telomeres (ALT) pathway and other yet unidentified
pathways to regulate telomere length in cancer [5]; (3)
germline variants that genetically predispose individuals to
an increased mutational burden, often due to malfunctioning
DNA repair factors – with important preventive
implications.

Germline variants were identified by three separate pipe-
lines and included single-nucleotide polymorphisms (SNPs),
indels, SVs, and mobile-element insertions [2]. 17% of pa-
tients had germline protein-truncating variants (PTVs), with
biallelic inactivation happening in ~4% of these patiences due
to further somatic alteration on top of a germline PTV affect-
ing known cancer-predisposition genes (such as BRCA1,
BRCA2, and ATM). The study also highlighted the comple-
mentarity between germline mutations in their influence on
somatic mutation rate and pattern. Several examples were
identified, including germline APOBEC3B-inducedmutagen-
esis across all cancer types. BRCA2 and BRCA1 PTVs were
associated with an increased burden of small somatic dele-
tions, tandem duplications, and templated insertions in breast
and ovarian cancers as well as other tumors like adenocarci-
nomas of the prostate and pancreas. MBD4, a DNA repair
gene that deals with mismatches within methylated CpG sites,
showed rare germline PTVswith an expected increased rate of
somatic C to T mutations at the pan-cancer level. Finally, the
PCAWG analysis uncovered 114 germline source L1 ele-
ments capable of active somatic retrotransposition, where
some events caused deletion of the tumor suppressor gene
CDKN2A [2].

For tumor suppressor genes, including P53 – the single
highest mutated gene across all cancers – the Knudson two-
hit hypothesis [6] has been further substantiated, where both
alleles were found mutated or inactivated. Notably, most driv-
er mutations were mapped within the coding genome, with
only ~ 13% of tumor-specific driving changes present within
non-coding DNA. This is especially surprising in light of the
recently established genome regulation through SNPs in en-
hancers and ncRNAs, topologically associating domains
(TADs), and spatial organization of non-coding loci that can
affect gene expression [7]. Despite the depth and quality of the
work, the PCAWG Consortium failed to identify any driver
mutation in 5% of all cancers, raising the tantalizing possibil-
ity that these tumors may have a yet-unknown genetic etiolo-
gy, potentially involving new molecular pathways or un-
mapped regions of the genome. The approach used to distin-
guish passenger from driver mutations ranked the observed
mutations based on recurrence, estimated functional conse-
quence, and expected pattern of drivers in that element [2].
The reliance on the basis of prior knowledge of cancer-

Table 1 (continued)

Publication Brief description Chapter Reference

ZapatkaM, Borozan I, Brewer DS, Iskar M, Grundhoff A, Alawi
M, et al. The landscape of viral associations in human cancers.
Nature Genetics. 2020

10.1038/s41588-019-0558-9

HPV integration and impaired antiviral defense drive cervical,
bladder, and head-and-neck carcinomas

3.12 [67]
Preprint

[88]

912 Cancer Metastasis Rev (2021) 40:909–924

https://github.com/smshuai/DriverPower


Table 2 Recap of selected datasets and computational tools generated as part of the PCAWG project.

Name of datasets and
tools

Description Accession link

PCAWG landing page This is the recommended starting point for users wishing to access the PCAWG
datasets via a single uniform web interface and a high-performance data download
client. It provides browsing,
download, and usage information for frozen PCAWG data files

(Most of the data is open access with some controlled access requiring approval from
the ICGC)

https://dcc.icgc.org/pcawg

Cancer Genome
Collaboratory cloud
portal

Cancer Collaboratory is an academic cloud-based access to the PCAWG dataset,
excepting the TCGA-originated portion of the controlled data tier (see Bionimbus)

(Open and controlled access)

https://cancercollaboratory.org/

The Bionimbus Bionimbus is a cloud portal of protected data for cloud-based access to the TCGA
-originated portion of the controlled data tier

(Controlled access)

https://bionimbus-pdc.
opensciencedatacloud.org

UCSC Xena data portal UCSC Xena is a data portal for visualizations and analyses to integrate omics data
generated by the PCAWG Consortium, including copy number, gene expression,
gene fusion, promoter usage, simple somatic mutations, large somatic structural
variation, mutational signatures, and phenotypic data

https://pcawg.xenahubs.net

Expression Atlas Expression Atlas is an open science resource to find information about gene and
protein expression. It enables queries across different tissues, cell types,
developmental stages, and experimental conditions, across thousands of publicly
available RNA-seq, microarray, and proteomics datasets

https://www.ebi.ac.
uk/gxa/experiments?
experimentSet=Pan-Cancer

PCAWG-Scout PCAWG-Scout is a data portal that provides a framework to make on-demand,
in-depth analyses over the open access PCAWG data

http://pcawgscout.bsc.es/

Chromothripsis
Explorer

The Chromothripsis Explorer portal enables exploration of patterns of chromothripsis
in the PCAWG dataset

http://compbio.med.harvard.
edu/chromothripsis/

Cancer LncRNA
Census

The Cancer LncRNA Census is an ongoing effort to identify and catalogue lncRNA
genes which have been causally implicated in cancer

https://www.gold-lab.org/clc

PCAWG Core Pipelines This Dockstore site contains binaries, source code, and documentation for the open
source software tool for all core alignment, QC, and variation-calling pipelines
used by PCAWG packaged as portable binaries using Docker and described using
workflow description languages

https://dockstore.org/organizations
/PCAWG/collections/PCAWG

Overture suite software
tool

Overture comprises a set of open source tools for efficiently managing large genomic
datasets and transferring them efficiently and reliably across the Internet

https://www.overture.bio/

Butler software tool Butler is a workflow framework that facilitates large-scale genomic analyses on
public and academic clouds while offering comprehensive error detection and
self-healing capabilities (reviewed in Suppl. Text Chap. 2.1)

https://github.com/llevar/butlerl

SVclone software tool SVclone is a computational method for inferring the cancer cell fraction of structural
variant (SV) breakpoints from whole genome sequencing data

https://github.com/mcmero/SVclone

DriverPower software
tool

DriverPower is a tool used to discover potential coding and non-coding cancer driver
elements from tumor whole genome or whole exome somatic mutation sets

https://github.
com/smshuai/DriverPower

TrackSig software tool TrackSig is a computational framework to infer changes in somatic mutational
signatures over time

https://github.
com/morrislab/TrackSig

ActivePathways tool ActivePathways is a tool for multivariate pathway enrichment analysis that identifies
gene sets, such as pathways or Gene Ontology terms, prioritizes genes based on the
significance of signals from the omics datasets, and performs pathway enrichment
analysis of these prioritized genes

https://github.
com/reimandlab/ActivePathways

All resources described are open accesses, unless otherwise stated in this table
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causing pathways may have biased the identification of driver
mutations within functionally annotated loci over unmapped
regions or genes that lack functional characterization. Further
and more unbiased exploration may fill in the 5% gap in
finding at least one driving mutations for every tumor. A re-
cent report using the PCAWG data found that passenger mu-
tations may cumulatively have an impact as cancer drivers [8],
thereby partially explaining the unmapped 5% (Chap. 4).
While much more remains to be established, this seminal pub-
lication furthers our understanding of cancer genetic and pro-
vides an important and lasting resource for all cancer re-
searchers, with profound implications to advancing diagnosis,
treatment, and overall management of cancer.

3.2 Hidden in the genome: non-coding driving muta-
tions in cancer

For a long time, we wondered if we were missing a key side of
the picture in cancer genetic. Cancer sequencing was limited to
whole exome sequencing (WES), which is less than 2% of the
genome, potentially leaving a large blind spot open for important
cancer-related changes. It was expensive, and overly complicat-
ed, to sequence and analyze the remaining 98%, especially for
large cohorts of tumor samples and corresponding healthy-
matched tissues. Yet, the discovery of driver mutations in the
non-coding TERT gene across many cancer types [9] raised the
possibility that there may be numerous other non-coding driver
mutations. Surprisingly, however, the PCAWG Project found
that mutations in non-coding genome are relatively infrequent
drivers of cancer. Only 13% of all tumor samples were found
to have non-coding mutations involved in cancer formation –
beyond those in the TERT promoter, which I will discuss

separately in Sect. 3.7 [10]. Notably, even mutations in the reg-
ulatory sequences surrounding cancer genes are relatively rare,
except those involving TP53 gene 5′ untranslated region (UTR)
or the TERT gene [11–13], suggesting that there may be a selec-
tion bias to directly target cancer genes. One non-coding driving
mutation was found to occur every 100 tumors, compared to one
or more protein-coding mutation found in every tumor sample.
Interestingly, certain non-coding drivers found in previous stud-
ies were shown not to be bona fide cancer-causing mutations but
the outcome of less stringent methodologies or by-products of
hyper-mutation processes without a driving power in cancer for-
mation [10]. For instance, the previously reported non-coding
RNA NEAT1 [14] may not be a bona fide driver but may get
picked up as subjected to localized mutational processes. The
unexpected fact that the vast majority of cancer drivers occur in
coding regions with few driver mutations found outside protein-
coding genes [10] is a very important piece of information to
encourage rapid, inexpensive, and less complicated WES as a
routine practice in cancer management, with WGS being readily
available when no driver is found by exome sequencing or if
clinically warranted.

3.3 The genetic fingerprints of human cancer

Alexandrov et al. [15] and Li et al. [16] focused on under-
standing the patterns of genomic aberrations that are cancer
specific and the molecular processes underlying these muta-
tional signatures. A total of 97 patterns of mutations, some of
which are new, were uncovered using non-negative matrix
factorization (NMF) of context-specific mutation frequencies
[15]. Mutations ranged from a single base pair variant to long
stretches of DNA alterations, including loss or gain [15] as
well as structural variations (SV), where large amount of DNA
is rearranged, reorganized, and altered in sequence and in
order. This analysis, a first of its kind, included complex mu-
tational patterns associated with cancer [16]. In both publica-
tions [15, 16], the analyses are limited to somatic mutations,
excluding germline mutations –which were looked at sepa-
rately [2]. The starting point for the study was to sieve through
the entire collection of almost 85 million of cancer-specific
mutations derived from 4645 whole genomes and 19,184
exomes encompassing most cancer types. Alexandrov et al.
[15] mapped the overall mutational catalogues for each indi-
vidual cancer genome and assigned signatures due to (1) ex-
ogenous agents, for example, tobacco smoking or ultraviolet
(UV) light; (2) endogenous sources, including replication and
repair of DNA double-strand breaks (DSBs) through non-
homologous end-joining – an error-prone pathway that re-
ligates broken ends of DNAwithout filling in the gaps causing
loss of genetic information; and (3) defective DNA repair
mechanisms, such congenital as mutations in BRCA1 or
BRCA2 that increase base substitutions and deletions [17]. In
alignment with previous reports [18, 19], mutational rate

Fig. 2 Number of mutations that drive each cancer. At least one driver
mutation was found for 95% of all cancers, with an average of 4-5 driver
mutations for each type of cancer [3]. Depicted are examples of cancers
that have different amount of driver mutations promoting carcinogenesis.
Depending on the type of cancer, anywhere from one to ten driver muta-
tions are required for the tumor to develop.

914 Cancer Metastasis Rev (2021) 40:909–924



increases with cellular and organismal age and depending on
the tissue proliferative activity. These are events that occur in
parallel to carcinogenesis and were taken into account to faith-
fully tease out cancer-associated signatures from background
mutagenesis. Notably, about half of the signatures identified
by this study remain of unknown causes. This implies that
there are still major gaps in our knowledge of cancer-
specific mutagenesis, including chemicals, environmental
agents, as well as molecular pathways that can cause cancer.

In Li et al. [16], they exclusively focused on the mutational
process of structural variations (SVs), during which rearrange-
ments delete, amplify, or reorder genomic segments ranging
from single genes to entire chromosomes. SVclone, a new
computational method for inferring SVs in WGS data, also
provided the clonality of balanced rearrangements and SVs.
The Svclone package is shared on Github SVclone page
(https://github.com/mcmero/SVclone) (Supplementary Chap.
2.3). Through a series of mutation-subgrouping steps, they
found 16 signatures of SVs. Aligning the cancer genomes to
a reference-build hs37d5 human genome, they called each
breakpoint demarcating SVs. From the annotated SVs, they
backtracked to infer the pathways responsible to generate
these clusters, including replication- and recombination-
based processes. Interestingly, and in agreement with previous
literature [20, 21], late replicating regions displayed SVs in the
form of deletions and ensuing inversions. On the other hand,
early replicating regions are more prone to unbalanced trans-
locations and tandem duplications indicating differential rep-
lication dynamics and repair options – for instance, homolo-
gous recombination only becoming available for repair after
the sequence is replicated. One prominent SV was a template
insertion within one locus resulting in tandem duplication. For
instance, in liver cancer, template insertions enable activation
of the telomerase gene TERT, while in ovarian cancer, tandem
duplication acts to disrupt CDK12. Other papers produced by
the PCAWG addressed complementary aspects of SVs, in-
cluding inference of positive selection acting on recurrently
rearranged regions of the genome [10], how structural variants
affect the transcriptome [22] and chromosome topology [23],
patterns of somatic retrotransposition [24], and distribution of
chromothripsis across cancer types [25], as described below.

3.4 Carbon-dating tumors: the evolutionary history of
a cancer

One of the most remarkable and informative analysis of the
PCAWG was undertaken by Gerstung et al. [26] to map the
evolutionary lifetime of each cancer in the cohort. To recon-
struct mutational signatures and build a timeline for the evo-
lution of cells within a tumor, a new method was developed
called TrackSig [27] and subsequently improved as
TrackSeqFreq – based on allele frequencies [28]. TrackSig
was able to determine the occurrence and recurrence of

mutations, even in absence of any difference in mutational
signature activity, thereby inferring an approximate order in
which the somatic mutations accumulate over time (in depth
description of TrackSig, in Supplementary Text 2.4). The
software is available on Github TrackSig page (https://
github.com/morrislab/TrackSig). The first mutagenic driver
event often happened years or even decades before cancer
diagnosis, opening up important avenues for early detection
and possibly prediction of cancer growth. This temporal
pattern was built using clonal variants, where early
mutations are contained more widely in the sample while
late mutations are present only in tumor subclones. Notably
however, immune clearance can influence the survival of
clones, while competition shapes the overall representation
of subclonal populations within the tumor mass, and these
represent potential caveats in building a reliable timeline.
Reconstruction of a hierarchical timeline of mutations
showed that the earliest mutations relate to a small subset
of recurrent drivers, including TP53 gene – often enabled
by early loss of chromosome 17 petite arm, telomerase gene
TERT, CDKN2A, and KRAS. The small number of initial
changes in cancer evolution suggests an epistatic fitness
landscape constraining those first steps in cancer evolution.
After this initial selection, the set of mutations and affected
genes broadens throughout cancer development. Late-stage
cancers follow increasingly diverse paths driven by rarer and
tissue-specific driver mutations, as well as more extensive
alterations, implying acquired tolerance to mutagenic burden
over time. Interestingly, pancreatic neuroendocrine tumors
are outliers, showing entire losses of chromosomes 2, 6,
11, and 16 as early events indicating a separate mechanism
of mutagenesis. Some mutational signatures span the entire
timeline of cancer evolution, from early to late stages. An
example of that is the distinctive pattern of DNA alterations
caused by APOBEC mutagenesis. The APOBEC family of
cytosine deaminases leads to cytosine substitution to uracil
on single-stranded DNA, and subsequent abasic site, and
break or substitution to thymine or guanine [29]. Dramatic
mutagenic events like whole genome duplications (WGD)
were also seen in several tumors. Interestingly, however,
the timeline of their occurrence varies widely, with ovarian
cancer showing a latency of up to 30 years after WGD, sug-
gesting that this event may happen throughout the entire
female reproductive lifecycle and becomes a cancer driver
only in synergism with other changes. WGD in cervical can-
cers, on the other hand, has the shortest latency, about 2 years
before diagnosis with higher solo driving potential.
Altogether this study presents the first large-scale genome-
wide reconstruction of evolutionary timelines, from early
and pre-cancerous lesions to late-stage tumors. The finding
of common genetic events occurring many years before
tumor diagnosis opens up potential clinical avenues for
prevention.
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3.5 Beyond DNA: RNA alterations associated with
cancer

3.5.1 Genomic basis of RNA alterations in cancer

RNA can hold important information not only on the cellular
proteinacious output but also on its transcriptome, including
non-coding transcripts and regulatory RNAs, which have
been found to play diverse roles in cancer [30]. The
PCAWG Transcriptome Core Group harnessed the
PCAWG/ICGC/TCGA cohort of whole genomes jointly with
information on tumors transcriptomes. RNA sequencing in-
formation were not available for all cancers, largely due to
different inclusion criteria, but the PCAWG Project still
yielded 1188 donors that enabled a simultaneous characteri-
zation of RNA changes specific to cancer and their association
to underlying DNA changes – thereby inferring mechanistic
bases for transcriptional alterations in cancer [22]. Various
forms of RNA disruptions had been previously described in
cancer, including overexpression [31] and fusions [32]. The
authors found that transcriptome changes in cancer were
caused by somatic copy number alterations (SCNAs) as the
major driver of variation in both total gene and allele-specific
expressions, accounting for 17% of all gene expression varia-
tion, followed by somatic single-nucleotide variants (SNVs)
found in gene flanking regions (1.8%) and finally germline
variants in 1.3% of all tumors [22]. Using 28 mutational sig-
natures derived by Alexandrov et al. [15] (Chap. 3.3) part of
the PCAWG Project for context-specific mutation frequen-
cies, they were able to draw associations between most
RNA changes and the underlying DNA mutational signatures
for each specific tumor. It’s interesting that over the total 649
associations of somatic SNVs with gene expression in cis,
68.4% involved associations with flanking non-coding re-
gions of the gene instead of direct SNVs in exons or introns
within the gene, suggesting these more “direct” changes may
not be tolerated and that flanking non-coding regions have
important regulatory roles exploited during carcinogenesis.
Furthermore, somatic mutations led to ~1900 splicing alter-
ations. Depending on position and orientation, Alu sequences
could readily generate splice sites, causing exonization. The
authors also found a new “bridged-fusion” mechanism where
a third genomic location bridges two genes resulting in a fused
RNA product. For instance, new CTBP2-CTNNB1 fusion was
found to drive RNA alteration in a gastric tumor sample.
Notably, while 82% of all gene fusions identified could be
matched with specific genomic rearrangements, the remaining
may directly occur at the RNA level, as trans-splicing, dis-
continuous transcription, frameshifts, or read-through events.
This study uncovered cancer-associated alterations that would
have been undetectable via DNA-only approaches,
underscoring the importance of integrating transcriptome with
WGS analysis for cancer studies [22].

3.5.2 Impact of cancer-associated SVs in altered gene
expression

SVs can directly alter gene expression through fusion, gene
rearrangements, or copy number alternations, as described in
3.5.1. Zhang et al.’s [33] work addresses the impact of somatic
SVs on gene expression in cancer looking exclusively at
events where the breakpoint occurs outside of the gene yet
drives changes in expression through modulation of regulato-
ry elements. Using high-coverage whole-genome analysis of
1220 cancers for which transcriptomes were also available,
the authors found pervasive misregulation of gene expression
due to cancer-specific cis-regulatory alterations. SV
breakpoints that are present within 100 kb of a gene were
sufficient to impact its expression and regulation. Notably,
the mechanism of cis regulatory disruption using SV-
induced breakpoints led to an increase, rather than decrease,
in gene expression. In addition to copy number amplification,
SVs induced changes in the amount or spatial positioning of
enhancers and other regulatory elements. Repressor elements
were found to be directly inactivated by SV breakpoints.
Accumulation of DNA methylation in the proximity of the
promoter region due to SV was also found. Cancer-
associated genes that were upregulated via these mechanisms
include TERT, CDK4, CD274, ERBB2, IGF2, MDM2, and
PDCD1LG2. The authors found melanoma, stomach, sarco-
ma liver biliary, and kidney cancers to rely on breakpoint for
telomerase activation, largely through DNA methylation that
juxtaposes the locus to strong enhancer elements. ForMDM2,
on the other hand, increased DNA methylation did not aug-
ment enhancer contacts, begging the questions as to the mul-
tiple ways in which DNAmethylation – perhaps through large
scale chromatin remodeling – leads to increased transcription.
Altogether, the PCAWG repository represents a valuable re-
source to gain further insights into the global impact of non-
exomic alterations with special attention to SVs as a wide-
spread mechanism for enhancer hijacking and altered DNA
methylation to drive cancer [33].

3.6 Endogenous jumping elements’ role in cancer
mutagenesis

Integration of retrotransposons has long been associated with
cancer. Using the PCAWG cohort, 35% of all cancer samples
showed evidence of having acquired at least one
retrotransposition event, with a total of 19,166 somatically
acquired retrotransposition causing diverse types of mutagen-
esis [24]. Long interspersed nuclear element (LINE-1) inser-
tions emerged as the most frequent type of somatic SV in
esophageal adenocarcinoma and the second most frequent in
head-and-neck and colorectal cancers. Aberrant LINE-1 inte-
grations can induce deletion of megabase-scale regions within
a chromosome [34, 35], which can lead to the loss of tumor
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suppressor genes and can induce complex translocations and
large-scale duplications. Somatic retrotranspositions can also
initiate breakage-fusion-bridge cycles, leading to high-level
oncogene amplification and possibly chromothripsis
[36] (Chap. 3.11). LINE-1 elements capable of active somatic
retrotransposition showed evidence of insertions as well as
single-nucleotide polymorphisms in strong linkage disequilib-
rium. The mutagenic potential of these “hot” L1 elements was
termed Strombolian and Plinian in analogy to patterns of vol-
canic activity, the former showing frequent small-to-modest
eruptions in cancer samples while the latter, Plinian, with rare
yet aggressive somatic activity. Each PCAWG donor bears
between 5 and 7 elements with hot activity, but only 38%
(1075 out of 2814) of PCAWG donors shows a Plinian ele-
ment. The new evidence calls for a deeper understanding of
population-based polymorphism in both Strombolian and
Plinian elements, with WGS being a valuable option for at-
risk population. Yet, we need to fully understand other syner-
gistic features that, together with retrotransposable activity,
can drive carcinogenesis. L1 retrotransposition can be a key
factor in remodeling the cancer genome and should be taken
into consideration through the development of human tumors
[24].

3.7 Key role for telomere maintenance mechanisms in
cancer

One of the hallmarks of cancer is the ability to achieve rep-
licative immortality and avoid telomere shortening with en-
suing cellular senescence and proliferative arrest. This is ac-
complished through mutagenesis associated with telome-
rase, which is upregulated in ~85% of all human cancers
by different genetic mechanisms [5]. The remaining 15%
of cancers use a different way to maintain telomere se-
quences, called alternative lengthening of telomeres (ALT)
pathway. ALT is a highly mutagenic process that promotes
continuous non-allelic recombination to generate telomeric
sequences of heterogeneous lengths and containing diverse
telomere variant repeats (TVRs) [37]. Loss-of-function mu-
tations in the chromatin remodeling genes ATRX (α-thalas-
semia/mental retardation syndrome X-linked) and DAXX
(death domain-associated protein) [38] inhibit the ALT path-
way, indicating their contribution to ALT. Using WGS data,
the PCAWG study (1) determined telomere content, (2)
searched for mutations associated with different telomere
maintenance mechanisms, (3) systematically detected 2683
somatic telomere insertions, (4) found previously
undescribed singleton TVRs, and (5) identified enrichment
of TVRs through different telomere maintenance mecha-
nisms [5]. Using a relatively simple method, the authors
counted all the 100 bp reads containing at least six telomere
repeats representing approximately half of the read (inevita-
bly missing some reads which were only partially

overlapping, likely positioned proximal to telomeric loci).
Bait sequences used were the canonical telomere repeat
TTAGGG and the three most common TVRs: TCAGGG,
TGAGGG, and TTGGGG. They found that only 16% of
tumors exhibited somatic mutations in at least one of
ATRX, DAXX, and TERT. This striking finding implies that
many players contributing to mechanisms of telomere’s
maintenance, and especially those associated with cancer,
are still unknown. Buried in the supplemental information
of this publication [5] can be found the long-standing evi-
dence of telomere attrition during organismal aging, with
telomere content from healthy control sequences significant-
ly anti-correlating with age. Because the cohort spans 1 to
90 years old individuals, the authors noted that the age effect
is accounted for and bears little contribution to the strong
correlation between the altered telomere content in the tumor
versus control samples. Almost all tumor samples show a
lower telomere content than the matched control regardless
of age. The highest telomere content increase was seen in
osteosarcomas and leiomyosarcomas, while particularly
low telomere content was found in colorectal adenocarcino-
ma and medulloblastoma, indicating heterogeneity across
tumors, which is likely derived by the telomere maintenance
mechanism operating within the sample. Indeed, on average,
ALT mutants gained telomere content, while telomere se-
quences were generally lost in telomerase cancers.
Focusing on the samples with no clear underlying mecha-
nism, there is a wide distribution of TERT expression. Some
tumors show higher telomerase expression than TERT mu-
tated samples but no obvious telomerase mutations, imply-
ing other ways to regulate telomerase that have not been
uncovered yet. Further, a subset of cancers shows extremely
low TERT expression, possibly suggesting they belong to
ALT through mutations outside ATRX or DAXX or to
completely unknown telomere maintenance pathways.
Telomere insertions found in a third of all samples were
mutagenic with 44% of interstitial telomeres associated with
coding sequences including tumor suppressor genes and 8%
of these directly disrupting exons. In addition to ATRX and
DAXX, other genes were found co-mutated in association
with telomere maintenance pathways [39–45] (details in
Supplemental Table 1). The study also investigated
TERRA, long non-coding telomeric repeat-containing
RNA, which is elevated in ALT-positive tumors and aber-
rantly transcribed from telomere insertions [5, 46]. Finally,
they looked at TVR across all tumor samples, including
TGAGGG, TCAGGG, and TTGGGG, which are known to
be enriched in proximal telomeric regions where the canon-
ical TTAGGG starts to diverge. They also found novel ab-
errant TVRs with significantly higher counts in ALT sam-
ples. However, the majority of telomere insertions may be
passenger mutations frequently located at copy number–
neutral sites and found in late subclones. This work confirms
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regulation of telomeres as an important tumor-suppression
mechanism, particularly in tissues with low steady-state cel-
lular proliferation in which a clone must overcome this con-
straint to achieve replicative immortality.

3.8 Mitochondrial DNA in cancer

Cancer requires huge amount of energy for its sustained pro-
liferative capacity. Mitochondria are thus very important for
cancer progression. Within the human nuclear genome, muta-
tions vary across tissues. In mitochondrial DNA (mtDNA),
the mutation burden is more homogenous, with cytosine to
thymine being the most abundant signature which derives
from powerful endogenous mutational processes intrinsic to
mitochondria oxidative metabolism and unique mechanisms
of DNA repair [47, 48]. In the context of aging, mutations in
mitochondrial genomes, similarly to the nuclear genome, are
increasing over time. Although not highlighted by the authors,
the paper presents a dramatic spike in mutational burden in the
mitochondrial genomes after 40 years of age, of unknown
etiology [49]. While the cohort has less “under 40s” WGS
overall, the age distribution [50] is unlikely to account for this
striking, sudden, and synchronous appearance in mitochondri-
al mutations which remains unexplained. In each tissue and
across different types of cancer, Yuan et al. calculated the
number of mutations in the nuclear DNA and correlated this
with that of the mitochondrial genome [49]. In addition to the
unified C to Tmutational signature, truncating mutations were
found to be remarkably enriched in kidney, colorectal, and
thyroid cancers and associated with the activation of critical
signaling pathways. Interestingly, they also found different
patterns of mtDNA mutations, for instance, between two dif-
ferent types of breast cancer, underscoring that tumors from
the same tissue of origin could be genetically widely different
in spite of having often similar, potentially unspecific, thera-
peutic interventions. Investigation into novel hypermutated
cases revealed that fragmented mtDNA leaks into the cyto-
plasm and subsequently finds its way into the main nucleus in
a chromothripsis-like event called NUMT (nuclear mitochon-
drial DNA sequences), which is seen in 2% of all cancers.
Skin and lung cancers showed large number of integrations
of mitochondrial DNA in the nuclear genome. Once the mi-
tochondrial DNA integrates, they found that deletion, trunca-
tion, or other SVs were generated in the nuclear genome,
including direct disruption of genes such as ERBB2 – which
is also a therapeutic target providing avenues for chemo-resis-
tance. The authors also looked at RNA sequencing data from
entire cohorts comparing co-expression pattern analysis to
determine the highest changes correlated to mtDNA disrup-
tion by GO-term gene pathways. Perhaps unsurprisingly, ox-
idative phosphorylation, electron transport in mitochondrial
membrane, DNA repair, and cell cycle genes were all upreg-
ulated in mitochondrial cancers [49]. To date, this study [49]

represents the broadest mutational landscape of mitochondrial
genomes whose contribution to carcinogenesis should not be
underestimated.

3.9 Architectural changes in cancer genomes

DNA inside the nucleus is spatially organized into topologi-
cally associating domains (TADs) that dictate a concerted pat-
tern of expression and chromatin modifications, with cohesin
and CTCF boundaries separating different domains [51].
While TAD disruptions in human cancers can lead to
misregulation of gene expression, their frequency was found
to be rather low, with only certain cancer subtypes showing
SVs to span TADs [23]. This is surprising in spite of the great
effort using WGS and our current understanding of genome
regulation through chromatin folding. In the cases of TAD
disruption, they found that SVs can lead to complex rear-
rangements that can result in the fusion of discrete TADs.
Deletions were found to occur within the same TAD, while
duplications tended to span regions across different TADs.
These results suggest that mechanistic differences may under-
lie the generation of SVs, thereby associating different types
of SVs with specific location within or outside the TADs. Hi-
C data also showed that complex rearrangements lead to over-
all disruption of chromatin architecture, yet these events re-
main relatively rare across cancers. This may be due to the fact
that only 14% of these boundary deletions resulted in a strong
change in expression in nearby genes, making TAD disruption
an inefficient way to carcinogenesis. Altogether, this study
shows that TAD disruption happens in specific tumors and
only subtly influences gene expression in the context of
cancer.

3.10 Common pathways and molecular networks
affected in cancer

Next, the PCAWG Project analyzed the impact of mutations
on cellular networks [52]. While non-coding cancer driver
mutations are less well characterized and represent a minor
proportion of the identified drivers, multi-faceted analyses
across 2583 whole cancer genomes allowed to interpret path-
way and network enrichment derived from these changes,
using prior knowledge of genes and biological processes
[53]. For this analysis, ActivePathways, a data fusion tech-
nique for multivariate analysis, was utilized for the discovery
of the pathways across multiple datasets that are significantly
enriched (more detailed description available in Supplemental
Chap. 2.5). The ActivePathways software is available on
Github’s ActivePathways page: https://github.com/
reimandlab/ActivePathways [54]. Similar to what was found
in the main PCAWG publication [3], the majority of cancer
driver mutations are protein coding, with 79% of the cohort
showing enrichments in pathways supported by protein
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coding genes [55]. Yet, this was integrated with non-coding
mutations in genes that also contributed to uncover frequently
mutated biological processes and pathways [52, 54–56]. The
few recurrent non-coding mutations were most notably found
within TERT promoter and 93 genes harboring non-coding
mutations that cluster into several modules of interacting pro-
teins. Noteworthy examples of the latter are promoter muta-
tions associated with reduced mRNA expression in TP53,
TLE4, and TCF4. This reinforces the notion that even non-
coding mutations, which are seemingly passenger mutations,
can collectively drive tumor formation [7]. Interestingly, key
cancer-associated processes had variable proportions of cod-
ing and non-coding mutations, with chromatin remodeling
and proliferation pathways altered primarily by coding muta-
tions, while developmental pathways, including Wnt and
Notch, altered by both coding and non-coding mutations.
RNA splicing, on the other hand, was primarily altered by
non-coding mutations. This indicates that different upstream
mutational pathways are specific to selected cancer-driving
pathways [56]. When non-coding driver mutations were ana-
lyzed separately for UTRs, promoters, or enhancers, over half
showed enriched pathways. This suggests that pathway anal-
ysis is an attractive strategy for bringing to light the contribu-
tion of the non-coding regions of the cancer genome [57–60].
This analysis also highlighted immune response and anti-
apoptotic signaling as potentially prognostic molecular path-
ways across breast cancers. Further integration of ChIP-seq
and RNA-seq data derived from healthy tissues on the
Hippo pathway identified processes related to stem cell regu-
lation and tissue regeneration [61].

Collectively, this work revealed that many coding and non-
coding mutations converge to affect or hijack selected path-
ways to drive carcinogenesis, with important therapeutic in-
terventions harnessing synthetic lethality and synergism found
between factors in specific tumors.

3.11 Chromothripsis: a single initial catastrophic
event to drive cancer

A key finding from the PCAWG Project was uncovering
chromothripsis as a key driver of cancer. Chromothripsis is a
mutational phenomenon characterized by fragmented DNA
intergration in the genome after leaking from the main nucle-
us. This phenomenon results in massive, clustered genomic
rearrangements that have been found in cancer and other dis-
eases. Early evidence from low-resolution copy number data
found chromothripsis as a rare event in cancer [62]. This was
corroborated by the facts that chromothripsis was only recent-
ly discovered in spite of its dramatic mutational signature;
furthermore, chromothripsis requires upstream cytotoxic
events for loss of DNA that, during mitosis or in cases of
nuclear envelop fragility, leaks out of the main nucleus to give
rise to micronuclei (MNi), cytoplasmic entities containing

nuclear DNA [63]. Failure to successfully replicate MNi re-
sults in fragmented DNA becoming available for reintegration
into the main nucleus in the following cell cycle, an event that
happens for about a third of all MNi. Thus, after a micronu-
cleus is formed, chromothripsis has a high chance to occur.
Chromothripsis was recently shown to be triggered by single
mitotic errors such as the breakage of an anaphase chromo-
some bridge during cell division [36], likely a relatively com-
mon occurrence in cycling cells and a widespread one in can-
cer. Indeed, as part of the PCAWG, chromothripsis was found
to be incredibly pervasive across cancers, with a frequency of
more than 50% in some cancer types. Patterns across 2658
tumors from 38 cancer types using WGS data show that
chromothripsis profiles display oscillations between localized
structural alterations in a high proportion of events [25].
Mutational signatures of chromothripsis are mainly associated
with non-homologous end joining (NHEJ) that works by en-
abling reintegration of DNA fragments by ligating them back
into the nuclear genome. Additional signatures associated
with chromothripsis are replication-associated processes and
templated insertions, suggesting other mechanistic modalities
for mutagenic reintegration of DNA into the genome, proba-
bly dictated by different cell cycle stages [64]. Chromothripsis
induces direct disruptions of genes, including inactivation of
mismatch repair–related genes, therefore setting in motion
additional mutagenesis [25]. Thus, chromothripsis likely rep-
resents a relatively early event in tumor formation and a major
driver of genome evolution in human cancer. Evidence of
chromothripsis through identification of more complex struc-
tural alterations was found to contribute to oncogene amplifi-
cation and translocations [65]. ShatterSeek allowed to identify
chromothripsis events from WGS data by initial detection of
intrachromosomal SVs to find clusters of interleaved rear-
rangements and then by taking both input copy number
(CN) and SV calls. These profiles can be visually inspected
for each candidate chromothriptic region found. All the
chromothripsis calls reported can be visualized on the
Chromothripsis Explorer page (http://compbio.med.harvard.
edu/chromothripsis/), while the original code can be
accessed on Github ShatterSeek page (https://github.com/
parklab/Shat te rSeek) . This f inding fur thers our
understanding of chromothripsis, both its etiology through
different cytotoxic mechanisms and its consequences upon
reintegration in the main nucleus, with profound
implications in further understanding the temporal profile of
cancer mutagenesis.

3.12 Viral integration as a driver for cancer

Viruses have long been associated with cancer. This historic
association has been at times misunderstood with theories
inferring that all cancers were due to a virus [66]. The
PCAWG project and uncountable earlier evidences have
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refuted this hypothesis, estimating less than 10% of all cancers
attributable to viruses. Yet, viruses remain important drivers
of a specific subset of human tumors, and viral integration
with subsequent disruption of genes remains of high preva-
lence in cancer overall, with epidemiological studies suggest-
ing that recurrent viral infections can be a major risk factor for
certain cancers. Zapatka et al. systematically investigated po-
tential viral pathogens using the integration of three indepen-
dent computational pipelines to call for viral signatures asso-
ciated with cancer [67]. Viruses were detected in 382 genome
and 68 transcriptome datasets, a relatively small proportion of
all two thousand five hundred cancer and over one thousand
RNA samples [67]. High prevalence of known tumor-
associated viruses such as Epstein-Barr virus (EBV) [68], hep-
atitis B virus (HBV) [69], and human papilloma virus (HPV;
e.g., HPV16 or HPV18) [70] was confirmed. Interestingly, the
author found that an impaired anti-viral defense may
synergize with viral infection to drive carcinogenesis. HPV
was found associated with APOBEC mutational signatures
in cervical, bladder, and head-and-neck carcinoma. For
HBV, HPV16, HPV18, and adeno-associated virus-2
(AAV2), viral integration was associated with local variations
in genomic copy numbers, driving cancer by local gene am-
plification. Viral integration at the TERT promoter hijacks
telomerase and increases its expression level. Finally, they
found high levels of endogenous retrovirus (ERV1) expres-
sion being linked to a worse survival outcome in patients with
kidney cancer, suggesting that viral infection initiates a cas-
cade of additional genetic changes or is preceded by a relative
weakness in the immune system that enables cancer to form
and/or fosters its resistance to therapeutics [67].
Understanding the consequences, the synergizing features,
and exact timeline between viral infection and cancer devel-
opment is an extremely important piece of the puzzle that
needs to be unveiled in order to prevent, and better handle,
the clinical management of infections by oncolytic viruses
[71].

3.13 Non-coding RNA census in Pan-Cancer
tumorigenesis

The ICGC/TCGA PCAWG Consortium focused on the iden-
tification of a specific type of non-coding RNAs, the long
non-coding RNAs (lncRNAs), which have been shown to be
dysregulated or mutated in tumor-specific manner with wide-
spread effects on gene expression [72]. The PCAWG Project
has identified a large number of unique cancer-associated
lncRNAs [73]. A full, updated list can be accessed at the
Cancer LncRNA Census (CLC) (https://www.gold-lab.org/
clc), detailing lncRNAs that have validated roles as cancer
drivers. This thorough compilation shows 122 GENCODE-
annotated lncRNA genes that have well-established roles in
cancer especially affacting gene expression. Of these, 77 were

found to hold oncogenic potentials, while 35 had a tumor
suppressive function. Interestingly, 10 lncRNAs exhibited
both activities. Across all human cancers, the most widely
observed lncRNAs were (1) HOX antisense intergenic RNA
(HOTAIR), a lncRNA encoded in the HOXC gene that inter-
acts with Polycomb Repressive Complex 2 (PRC2), a histone
methyltransferase, for methylating and silencing various tu-
mor suppressor genes; (2) MALAT1 (metastasis associated
lung adenocarcinoma transcript 1) also known as NEAT2
(noncoding nuclear-enriched abundant transcript 2),
a large lncRNA involved in alternative splicing, underscoring
the widespread role of splicing alterations in tumorigenesis;
(3) Maternally expressed gene 3 (MEG3) non-coding RNA
that regulates cell proliferation through p53-dependent and
p53-independent pathways, working as a putative tumor sup-
pressor; and (4) oncogenic H19 (H19 Imprinted Maternally
Expressed Transcript) is an evolutionarily conserved RNA
gene affiliated with the lncRNA class which is found to induce
cell survival pathways under specific stress conditions
(reviewed in [74]). Altogether, the Cancer LncRNA Census
by the PCAWG provides a comprehensive catalog and anno-
tation dataof the lncRNAs found to hold a driving functional
role in cancer development.

4 The aftermath: additional work leveraging
the PCAWG datasets

The work produced by the PCAWG Project represents a key
resource for the scientific community, which is set to drive
discoveries and to advance our understanding of cancer genet-
ics for years to come. A testimony of this is new papers
that have harnessed the access to the PCAWG sequences.
Work published in Cell [8] just a few weeks after the publi-
cation of the PCAWG studies (it is however noteworthy that
all PCAWG preprints hereby reviewed have been available
and accessible online for one year or more ahead of publica-
tions [75–88]) harnessed the power of the large cohort to look
at special types of mutations positioned in between clear driv-
ing mutations, with a functional role in cancer, and passenger
mutations that do not contribute to carcinogenesis. They put
forward the tantalizing hypothesis that a concerted collection
of seemingly passenger, low functional impact alterations may
collectively contribute to drive cancer. They found that the
aggregated effect of passenger mutations plays a role in tu-
morigenesis beyond standard drivers. This finding also im-
plies that the dichotomy passenger-driver when binning mu-
tations may be unsatisfactory or may bury additional com-
plexities associated with cancer-specific changes. They pro-
posed that our current model of “drivers” and “passengers,”
with only a few mutations in a tumor strongly affecting its
progression while the remaining ones are inconsequential,
may be misleading. While high- and low-impact variants
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clearly exist and can be determined, this new study highlights
a third group of medium-impact putative passengers. Because
the molecular impact on mutations correlates with the muta-
tional signature and subclonal architecture, with early muta-
tions being more likely to have a cumulative impact than later
ones, those factors must be taken into consideration in concert.
Through adapting an additive effects model from previous
complex trait analyses, the aggregated effect of putative pas-
sengers, including undetected weak drivers, provides signifi-
cant additional driving changes in cancer compared to the
ones identified from the PCAWG initial analysis. Notably,
this integrative framework found potential weak-driver muta-
tions in the 5% of PCAWG samples lacking any well-
characterized driver alterations, hyghlighting both the possi-
bilities and complexities in fully deciphering the genetic
changes that contribute to each cancer [3].

5 Conclusions

By combining sequencing of the whole genomes with a suite
of analysis tools (also see Supplemental Text), cancer’s genet-
ic changes were comprehensively mapped by the PCAWG
Consortium. The PCAWG Project identified the patterns of
mutations that drive cancer, from single base pair changes to
whole chromosomal rearrangements; the order in which they
emerge in the lifetime of a cancer; the processes that have
generated those mutations; and biological pathways altered
to enable cancer formation, establishment, and progression.
Using the knowledge of those mutations, which occur years,
or even decades, before the tumor appears opens a window of
opportunity for early cancer detection. Some countries are
moving toward WGS of every cancer patient to guide treat-
ment, yet this work also points to exome sequencing as a
suitable initial analysis of cancer genetic identity, possibly
complemented by RNA sequencing. The findings of the
PCAWG Project represent a big step toward cataloguing all
the major cancer-causing mutations with important implica-
tions for the future of precision cancer care. It also serves as a
key resource for many other Pan-Cancer studies that have
emerged analyzing the data from the original PCAWG cohort.
And yet, the fact that drivers in 5% of cancers continue to
remain mysterious comes as a reminder that there’s still more
work to do. The recent paper addressing this point [8] that
leveraged the PCAWG data is a prime example of how this
repertoire will propel cancer research forward and is bound to
generate more answers and questions.

The challenging next steps include connecting the cancer ge-
nome data to treatments and building meaningful predictors for
patient outcomes. Much more data, potentially in tens of thou-
sands of patients per tumor type, are needed to fully understand
each cancer type – this is why shared data and resources
(Table 2), like the PCAWGproject, are essential stepping-stones.

There is an urgency for international unified guidelines on med-
ical, patients, and data handling that will facilitate this kind of
work in the future [89]. The PCAWG adds promise to precision
and personalized medicine, with the implementation of targeted
therapies matched to the molecular and genomic profile of indi-
vidual patients’ tumors. Therapeutic targeting can draw directly
from the PCAWG key findings. First, the concept that tumor
clustering is primarily based on cell of origin can help design
therapeutic strategies based on molecular profiling of cancers
instead of just relying on anatomical location. Genomics can also
better define tumor clonal evolution and heterogeneity, and the
information can be better integrated into therapy. Information on
the immunogenicity of a tumor can also readily provide options
for broad-spectrum treatments including immunotherapy and
synergistic approaches. Liquid biopsies can harness the power
of WGS to open new windows for earlier and more targeted
interventions in cancer treatment but also opportunities for pre-
ventive screening. Similarly, comprehensive work like the one
done in the context of the PCAWGProject unlocks the option of
patient stratification based on genomic andmolecular profiling to
better select candidates for different trials of novel drugs or small
molecule inhibitors, thus providing a better understanding of the
response, resistance, and prognostic values of specific mutations
and biomarkers. Although these therapeutic avenues are still
largely speculative at this point, there is a sense of hope that these
findings and others will ultimately vanquish, or at least rein in,
The Emperor of All Maladies [90].
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