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Abstract

Osteosarcoma is an aggressive bone malignancy with a high propensity for drug resistance and metastasis, leading
to poor clinical outcomes. This study investigates the role of core 1 B1,3-galactosyltransferase 1 (C1GALT1) in
osteosarcoma, focusing on its implications in chemoresistance. Our findings reveal that high expression of C1GALT1
is associated with advanced stages, adverse overall survival, and increased recurrence rates. Elevated levels of
C1GALT1 were observed in doxorubicin-selected osteosarcoma cells, where its suppression significantly promoted
doxorubicin-induced apoptosis and reduced drug efflux. Pharmacological inhibition of C1GALT1 using itraconazole
replicated these effects, suggesting a potential therapeutic strategy to overcome chemoresistance. Additionally, we
identified the involvement of the ATP-binding cassette (ABC) transporter ABCC1 in the drug-resistance phenotype
mediated by C1GALT1. C1GALT1-mediated O-glycan changes were found to influence the cell-surface targeting and
lysosomal degradation of ABCC1, thereby modulating its efflux capacity. In vitro and in vivo studies confirmed that
C1GALT1 impacts ABCC1 expression and function, further supporting its role in osteosarcoma chemoresistance.
These results highlight the clinical relevance of C1GALT1 as a biomarker for prognosis and a potential therapeutic
target for osteosarcoma.
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Introduction

Osteosarcoma (OS) is a primary malignant bone tumor
characterized by osteoid and immature bone production,
leading to local pain and swelling [1]. In the USA,
annual cases range from 750 to 900, while in Taiwan,
there are typically 65 to 75 reported cases annually [2,3].
Although relatively rare, it is the most prevalent bone
malignancy in children and adolescents, particularly
those aged 10-24 years [4], underscoring its clinical
importance. Initial treatment typically involves the so-called
MAP regimen (doxorubicin, cisplatin, and high-dose meth-
otrexate) combined with limb-sparing surgery, achieving

a 60%—80% 5-year survival rate for localized disease
(662/1,106 and 510/630 patients), while its effective-
ness is approximately halved in metastatic cases [5—8].
OS frequently develops resistance to standard thera-
pies, necessitating improved treatment strategies and
the discovery of new therapeutic targets.

Drug resistance poses a significant hurdle in treating
OS, driven by genetic mutations, altered drug transport
mechanisms, and activated survival pathways in cancer
cells [9,10]. Among these mechanisms, the overexpression
of ATP-binding cassette (ABC) transporters plays a pivotal
role by actively expelling chemotherapy drugs from cancer
cells, thereby reducing treatment efficacy. Key examples
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include P-glycoprotein (P-gp/ABCB1), multidrug resistance
(MDR)-associated protein 1 (MRPI/ABCCI), and breast
cancer resistance protein (BCRP/ABCG2), all of which
have been extensively studied in various cancers, including
OS [11-13]. Efforts to develop inhibitors of ABC trans-
porters as chemosensitizers have shown limited clinical
success [11]. Here, we propose targeting O-glycosylation
as a novel approach to modulating ABC transporter
activity, offering a promising strategy to overcome drug
resistance in OS.

Glycosylation, a common posttranslational modifica-
tion in mammalian cells, plays a crucial role in cancer
progression by altering glycosylation patterns [14].
Among various forms of O-glycosylation, GalNAc-type
O-glycosylation is predominant, governing numerous
functions in both membrane-bound and secreted
proteins [15]. During the synthesis of the GalNAc-O-
Ser/Thr structure, GALNT family enzymes initiate the
transfer of N-acetylgalactosamine (GalNAc) from UDP-
GalNAc onto serine (Ser) or threonine (Thr) residues.
Subsequently, core 1 $1,3-galactosyltransferase (CIGALT1),
the primary core 1 synthase in mammalian cells, catalyzes
the transfer of galactose (Gal) from UDP-Gal to form the
Gal-GalNAc-O-Ser/Thr structure, known as the T-antigen
(core 1 structure). This structure serves as the basis for
more complex O-glycans, including the core 2 structure.
C1GALT]1 is crucial in various biological functions, and
its deletion has been linked to developmental defects,
spontaneous colitis, and thrombocytopenia in mice [16].
Truncated O-glycans on cancer cell surfaces are associated
with poor outcomes and prognosis in cancer patients.
Elevated CIGALT]1 levels have been observed in vari-
ous cancers, including hepatocellular carcinoma, colorectal
cancer, breast cancer, head and neck squamous cell carci-
noma, prostate cancer, and gastric cancer. This elevation
correlates with higher grades, increased recurrence, and
reduced survival rates [17]. Given the association between
truncated O-glycans and poor cancer prognosis, we
screened for differentially expressed genes (DEGs) in OS
and identified the elevated expression of CIGALT1 in
poor survival cases and in patients with metastasis within
5 years [18-20]. However, the role of CIGALT1 in OS
remains unclear in clinical studies. At the molecular level,
CI1GALT1 expression regulates O-glycosylation of recep-
tors and pathways such as MET in hepatocellular carci-
noma, FGFR?2 in colorectal cancer, Mucin 1 and CD44 in
breast cancer, EGFR and PD-1 in head and neck squamous
cell carcinoma, and EPHA?2 in gastric cancer [21-24],
significantly influencing cancer behaviors. This study is
the first to explore the mechanism of C1IGALT1-mediated
ABC transporter activity in OS drug resistance.

Materials and methods

Patients and treatments

This study included tumor biopsy samples from 29 of the
initial 92 OS patients, with follow-up records from 1993
to 2021. Tumor diagnoses were validated histologically
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from primary tumor specimens before surgery. Data were
obtained from National Taiwan University Hospital
(NTUH), including clinical parameters such as age,
gender, tumor site, and histology. The study was
approved by the Institutional Review Board of National
Taiwan University Hospital (No. 202401026RINC).

Immunohistochemistry

Paraffin-embedded tumor biopsy specimens from 29 NTUH
OS patients were used for immunohistochemical (IHC)
analysis. To strengthen our findings, we included two
additional tissue array cohorts from TissueArray.Com
LLC (Derwood, MD, USA): a microarray of 50 patients
with survival data (OSCHS801MSur) and a microarray of
63 samples with tumor, node, and metastasis (TNM)
staging system and clinical data (OS208a). IHC staining
used anti-C1GALT1 (1:100; clone F-31, Santa Cruz
Biotechnology, Dallas, TX, USA) and anti-ABCC1
(1:100; clone 1G4A2, Proteintech, Rosemont, IL, USA)
antibodies, detected with the Super Sensitive System
(BioGenex, Fremont, CA, USA), DAB, and hematoxylin
counterstain (Sigma-Aldrich, St. Louis, MO, USA). IHC
results were analyzed using QuPath version 0.4.2 [25],
with manual confirmation.

Accessing the Public Dataset

Gene expression levels of GALNTI, GALNT2, CIGALTI,
GCNTI, GCNT3, and GCNT4 were evaluated using the R2
Genomics Analysis and Visualization Platform (Amsterdam,
North Holland, The Netherlands). This analysis compared
expression levels of these O-linked glycosyltransferases
in OS patients with and without metastasis at diagnosis,
utilizing data from the Osteosarcoma-Buddingh-53-vst-
ilmnhwg6v2 dataset available in the R2 platform [18].

Cell lines and cell culture

Sa0S-2, HOS, and G292 cell lines were obtained from the
Bioresource Collection and Research Centre (Hsinchu,
Taiwan), authenticated via short tandem repeat (STR) pro-
filing. These cells were cultured in Alpha Modification of
Eagle’s Medium («MEM, Thermo Fisher Scientific,
Waltham, MA, USA) with 10% FBS, penicillin, and
streptomycin in a humidified incubator at 37 °C with
5% CO,. Mycoplasma contamination screening was
conducted regularly using the MycoSEQ™ Mycoplasma
Detection Kit (Thermo Fisher Scientific). For specific inhi-
bition of CIGALTI, itraconazole (ITZ) (Sigma-Aldrich)
was added at 2.5 um and incubated for 3 days, based on
preliminary dose-response studies showing effective
C1GALT]1 inhibition at this concentration (supplemen-
tary material, Figure S1). Lentivirus-based shRNA was
used for stable knockdown of CIGALTI and ABC
transporters (ABCA3, ABCB6, ABCC1, ABCF1, ABCF2)
and CIGALTI in pCDH-EF1-MCS-T2A-Puro for stable
overexpression in G292 cells, with clones maintained in
I pg/ml  puromycin (MedchemExpress, Monmouth
Junction, NJ, USA). The target sequences of shRNA are
listed in supplementary material, Table S1.
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Preparation of doxorubicin-resistant OS cells

The doxorubicin-resistant phenotype was induced by
gradually exposing cells to increasing concentrations of
doxorubicin, up to 512 nm, over approximately 20 weeks.
Resistance was confirmed by the absence of cell death and
no further resistance increase at higher drug concentrations,
alongside the expression of drug resistance-associated
genes (supplementary material, Figure S2).

ABC transporter expression low-density array

A custom low-density array (LDA) was designed to
profile the expression of a panel of ABC transporters
(Applied Biosystems, Foster City, CA, USA). The LDA
plates were preloaded with specific primers and probes
for each gene of interest and reference genes (GAPDH)
for normalization. Reverse transcription and real-time
gPCR was performed using the TagMan Universal
PCR Master Mix (Applied Biosystems) on an Applied
Biosystems 7900HT Fast Real-Time PCR System.

Quantitative reverse transcription PCR (RT-qPCR)

Total RNA was extracted with NucleoZOL (MACHEREY -
NAGEL, Diiren, North Rhine-Westphalia, Germany), and
1 pg was used for cDNA synthesis with a Moloney
murine leukemia virus reverse transcription kit (Protech
Technology Enterprise, Taipei, Taiwan). Gene expression
was quantified using SYBR Green qPCR (Protech
Technology Enterprise). The primers used are listed
in supplementary material, Table S1.

Flow cytometry analysis of lectin binding and cellular
apoptosis

Cells (1 x 10°) were suspended in 100 pl PBS with 0.5%
BSA, treated with neuraminidase (Sigma-Aldrich), and
incubated with Vicia villosa agglutinin (VVA) lectin-
FITC (Vector Laboratories, Newark, CA, USA) to detect
O-glycan changes and Annexin V-FITC (Bio Pioneer
Tech Co., New Taipei City, Taiwan) to assess apoptosis.
After washing, the fluorescence intensity of 10,000 cells
was analyzed using flow cytometry (BD Pharmingen,
Franklin Lakes, NJ, USA). Negative controls included
samples without staining. Data represent three indepen-
dent experiments.

Western blot analysis and lectin pull-down assay

Cell lysates were prepared in lysis buffer (Thermo Fisher
Scientific), and proteins were separated on 10% SDS-
PAGE gels and transferred onto PVDF membranes.
Membranes were blocked with 5% BSA (Bio-Rad,
Hercules, CA, USA) in Tris-buffered saline with
Tween 20 and probed with antibodies against
C1IGALTI (1:1,000; Santa Cruz Biotechnology),
ABCC1 (1:1,000; Proteintech), and GAPDH
(1:1,000; Santa Cruz Biotechnology). Detection used
HRP-conjugated secondary antibodies and ECL
reagents (GE Healthcare, Chicago, IL, USA). For lectin
pull-down assays, 500 pg of lysate proteins were incubated
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with VVA lectin-conjugated beads (Vector Laboratories)
and analyzed by SDS-PAGE for western blotting.

Immunofluorescence staining

Cells were cultured on chamber slides (SPL Life Sciences,
Pocheon-si, South Korea), fixed with 4% paraformalde-
hyde, permeabilized with 0.25% Triton X100, and blocked
with 2% BSA (Bio-Rad). They were incubated with pri-
mary antibodies for ABCC1 (1:200; Proteintech) and
GM130 (1:500; GTX130351GeneTex, Irvine, CA,
USA), followed by Alexa Fluor secondary antibodies
(Thermo Fisher Scientific). Nuclei were counterstained
with DAPI (Santa Cruz Biotechnology). Images were
captured on a Carl Zeiss LSM880 confocal micro-
scope (Oberkochen, Baden-Wiirttemberg, Germany)
as single planes.

Time-lapse doxorubicin efflux assay

To ensure doxorubicin entry, cells on coverslips were
treated with 10 pm doxorubicin (MedchemExpress) for
2 h, then washed with PBS. Doxorubicin autofluorescence
(Ex/Em = 488/600 nm) was monitored using total internal
reflection fluorescence (TIRF)/spinning disk confocal
microscopy (Carl Zeiss, TIRF 3/Cell Observer SD;
Imaging Core, First Core Labs, NTU College of Medicine).
FIJI (ImageJ; NIH, Bethesda, MD, USA) was used to
quantify fluorescence intensity in regions of interest.

Animals

Female NOD-SCID mice (six per group), from the
National Laboratory Animal Center, Taipei, were housed
in a pathogen-free facility with controlled conditions under
Institutional Animal Care and Use Committee approval
(No.: 20230361, NTU College of Medicine). G292 and
HOS cells with different transfectants (5 x 106) were
injected bilaterally into tibiae to study drug resistance and
tumor growth. Ten days after injection, doxorubicin
(in DMSO) was administered every 3 days at 10 mg/kg i.p.,
with tumor growth monitored using In Vivo Imaging
System (IVIS), (PerkinElmer Taiwan Corporation, Taipei,
Taiwan) and calipers. Mice were euthanized on day 30 for
evaluation.

Statistical analyses

Statistical analyses were conducted using SAS enter-
prise guide 8.3 for Windows software. Associations
between pairs of categorical variables were assessed
using Pearson’s y” test. Survival probabilities in var-
ious subgroups were estimated using the Kaplan—
Meier method and analyzed using log-rank tests. The
influence of each variable on survival was assessed
using the univariate and multivariate Cox proportional
hazard model. The significance of the variations
between the data resulting from different experiments
was analyzed using Student’s ¢-test. All statistical tests
were two sided, and those with a p value <0.05 were
considered to be statistically significant.
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Results

High-level expression of C1GALT1 protein is
associated with poorly differentiated OS tumors,
signifying adverse survival and recurrence trends

In this study, we employed THC staining to examine
C1GALTI protein expression in a subset of 29 patients
with OS tumors obtained from NTUH. Positive
C1GALTI staining was observed in the Golgi appara-
tus of OS cells. Using QuPath version 4.2 with manual
confirmation [25], cells were classified based on CIGALT1
expression (<50% or 250%), grouping patients accordingly
(Figure 1A). Table 1 shows no notable differences in most
clinicopathological characteristics such as sex, age at
diagnosis, or serum alkaline phosphatase (ALP) or lactate
dehydrogenase (LDH) levels between the groups with
high and low C1GALT1 expression. However, the high-
expression group showed significantly higher rates of
recurrence and mortality. Kaplan—Meier analysis further
highlighted that patients with high CIGALT1 expression
experienced markedly worse overall survival and pro-
gression-free survival (PFS) outcomes compared to those
with low CI1GALT1 expression (Figure 1B,C and
Table 2).

Given the limitation of a relatively small number of
available tumor biopsy samples (29 out of the initial
92 patients), we confirmed that this biopsy cohort was
representative of the original patient pool, with no
significant differences in most clinical characteristics
(supplementary material, Table S2). To further strengthen
our findings, we included two additional tissue array
cohorts: one comprising 50 OS patients with survival data
(OSCHS801MSur, supplementary material, Figure S3),
which produced results consistent with those observed in
the NTUH cohort, confirming the link between high
C1GALT]1 expression and poor survival. The second
cohort included 63 OS patients with TNM staging and
clinical stage data (OS208a), which allowed us to ana-
lyze the association between CIGALT1 expression and
tumor grade. Greater CIGALT1 expression (75% of
cells stained) was notably observed in high-stage tumors
(Figure 1D). Statistical analysis revealed that elevated
CI1GALTI1 expression was present in 60.3% (38/63) of
high-grade OS tumors (Figure 1E), indicating a significant
association between high CIGALT1 expression and
aggressive OS tumors. To validate our findings on
CIGALT1 expression in OS tumors, we utilized the
ilmnhwg6v2 dataset from R2, ‘Genomics Analysis and
Visualization Platform’, as independent cohorts [18]. The
analysis showed a significant increase in GALNT! (poly-
peptide  N-acetylgalactosaminyltransferase 1) and
CIGALTI expression in 5-year metastatic OS patients
compared to nonmetastatic patients (p = 0.036 and
0.033, respectively). However, GCNT3 and GCNT4
(glucosaminyl (N-acetyl) transferase), which encode the
core 2 O-glycan branching enzyme, were downregulated
in 5-year metastatic OS patients (Figure 1F). The relative
functions of O-glycosyltransferases, influencing the main
O-glycan structures, are visually depicted in Figure 1G.
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These results suggest that CIGALT1 plays a pivotal role in
shaping the O-glycosylation pattern in OS, highlighting
its clinical significance in predicting adverse survival out-
comes in patients.

C1GALT1 expression is elevated in doxorubicin-
selected OS cells, and its suppression promotes

doxorubicin-induced apoptosis while hampering
doxorubicin efflux

To investigate the role of CIGALT1 in OS drug resis-
tance, we analyzed doxorubicin-induced apoptosis and
drug efflux assays using a variety of cell lines with dif-
ferent malignant phenotypes [26]. Specifically, western
blot analysis initially showed elevated CIGALT1 protein
levels in highly aggressive cell lines HOS and SaOS-2
compared to the less aggressive G292 cell line (Figure 2A).
Additionally, both mRNA and protein expression levels of
CIGALT1 were elevated in doxorubicin-selected cells
(Figure 2B). To assess the impact of CIGALT1 on OS
doxorubicin resistance, we stably transfected HOS and
Sa0S-2 cells with shCIGALT1 or control lentivirus.
Western blotting confirmed the efficiency of silencing, as
shown in Figure 2C. Flow cytometry demonstrated
that the knockdown of CIGALT]I resulted in a 33%
increase in apoptotic cells upon doxorubicin challenge
(Figure 2D). Moreover, chemotherapy resistance is
significantly influenced by multidrug efflux pumps.
Traditional methods, such as endpoint fluorescent analysis
through flow cytometry, employed to monitor transporter
efflux activity may have limitations, particularly in provid-
ing real-time evidence. In this investigation, we explored
the use of TIRF/spinning disk confocal microscopy to
observe drug efflux mediated by a multidrug transporter.
Representative images illustrated that C1IGALT1-silenced
cells exhibited a reduction in doxorubicin efflux compared
to the control group, manifested as losses of fluorescence
intensity occurring at different time points after doxorubi-
cin stimulation. The quantification of changes in fluores-
cent intensity is presented in the accompanying panel
(Figure 2E). These findings indicate that the suppression
of C1GALT1 enhances doxorubicin-induced apoptosis
while impeding doxorubicin efflux.

Itraconazole-mediated inhibition of C1GALT1
mirrors the effects of enhancing doxorubicin-
induced apoptosis and impairing doxorubicin efflux

Repurposing old drugs for oncological purposes offers a
cost-effective approach to cancer treatment. ITZ, a triazole
antifungal, has shown clinical activity in oncology, with
trials demonstrating efficacy in prostate, lung, and basal
cell carcinoma treatment combinations. Reports also
suggest potential activity against leukemia, ovarian,
breast, and pancreatic cancers [27]. Azole antifungals
like ITZ are known to inhibit drug resistance through
P-glycoprotein (P-gp/ABCB1) and BCRP [28,29]. However,
ITZ’s specific anticancer impact in OS remains unclear,
including its role in P-gp and BCRP-mediated efflux mech-
anisms. Lin et al discovered a new role for ITZ in inhibiting
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Table 1. C1GALT1 expression and clinicopathological and biological characteristics of osteosarcoma (0S) patients.

Characteristics All patients (N = 29) C1GALT1 low C1GALT1 high p value
expression expression
(N =16) (N=13)
Age at diagnosis (years) 13.03 + 2.72 (6.00-17.10) 13.13 £ 2.34 1292 + 3.14 0.8395
Sex 0.3787
Male 16 (55.17%) 10 6
Female 13 (44.83%) 6 7
Primary location 0.8202
Femur 18 (62.07%) 10 8
Tibia 6 (20.69%) 4 2
Humerus 3 (10.34%) 1 2
Others 2 (6.90%) 1 1
Location within long bone 0.4503
Distal 18 (62.07%) 11 7
Proximal 10 (34.48%) 5 5
Serum ALP at diagnosis 681.31 + 580.82 (106.00-2,266.00) 639.50 * 242.87 732.77 £ 671.19 0.6842
Serum LDH at diagnosis 513.71 £ 252.15 (173.00-1,173.00) 482.56 + 242.87 555.25 + 268.93 0.4685
Histological type 0.8153
Osteoblastic 21 (72.41%) 11 10
Chondroblastic 2 (6.90%) 1 1
Others 6 (20.69%) 4 2
Operation type 0.2589
Amputation 28 (96.55%) 16 12
Limb-sparing surgery 1 (3.45%) 0 1
Recurrent after therapy 0.0061"
Yes 12 (41.38%) 3 9
No 17 (58.62%) 13 4
Overall survival (until last follow-up) 0.0043™
Survive 21 (72.41%) 15
Expired 8 (27.59%) 1 7
Note: Bold indicates statistically significant *p < 0.01, **p < 0.005.
Table 2. Clinicopathological and biological factors affecting survival rate and recurrent rate in OS patients.
Variable Univariable OS analysis Univariable PFS analysis
RR 95% Cl p RR 950 Cl p
Age at diagnosis (years) 1.364 0.923-2.017 0.1192 1.131 0.845-1.515 0.4082
Serum ALP at diagnosis 1.001 1.000-1.002 0.1549 1.001 0.999-1.002 0.3425
Serum LDH at diagnosis 1.001 0.998-1.004 0.4895 1.000 0.996-1.003 0.7540
C1GALT1 expression level (>50%) 17.499 1.756-174.405 0.0147* 9.750 1.743-54.523 0.0095"

Note: Bold indicates statistically significant; *p < 0.05, *p < 0.01.

CIGALTI1 by promoting proteasome degradation [30].
In the subsequent investigation, our aim was to assess the
effects of ITZ on doxorubicin-induced apoptosis and drug
efflux in OS cells. Western blotting confirmed a reduction
in C1GALT!] protein expression levels in ITZ-treated cells
(Figure 2C). Flow cytometry demonstrated a similar trend
to CIGALTI knockdown, indicating that ITZ-mediated

inhibition of CIGALT]1 resulted in an increase in apoptotic
cells upon doxorubicin challenge (Figure 3A). Representative
images from TIRF/spinning disk confocal microscopy
illustrated that ITZ-treated cells exhibited a reduction in
doxorubicin efflux compared to the control group
(Figure 3B,C). The quantification of changes in fluo-
rescence intensity is presented in the accompanying

Figure 1. C1GALT1 expression predicts poor prognosis in OS patients. (A) Representative IHC images showing C1GALT1 protein staining in 0S
tumors. Brown color indicates positive staining. Scale bars, 100 um; high-magnification images of marked area are shown in lower right
corner. (B and C) Kaplan-Meier curves depicting overall survival and PFS according to C1GALT1 expression in 29 OS patients (p = 0.0059 and
0.0052, respectively, log-rank test). (D) Representative IHC images showing C1GALT1 protein staining in low-grade and high-grade 0S
tumors from the tissue array (0S208a). Scale bars, 100 um; high-magnification images of marked area. (E) Scatter plot with bars representing
C1GALT1 expression percentages among 63 OS samples from tissue array (0S208a). Student's t-test was used to compare expression levels
between low- and high-grade tumors (***p < 0.0001). (F) Violin plots illustrating RNA-level expressions of related 0-glycosyltransferase
genes in patients with or without 5-year metastasis, using the ilmnhwg6v2 dataset from R2. Log2: gene expression transformed into
logarithm with base 2. (G) Visualization of relative functions of O-glycosyltransferases influencing major O-glycan structures, based on
dataset. This figure was created with BioRender.com.
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Figure 2. Targeting C1GALT1 promotes doxorubicin-induced apoptosis while impairing doxorubicin efflux. (A) Immunoblotting analysis for
C1GALT1 expression in various OS cell lines, using GAPDH as an internal control. (B) RT-qPCR analysis showing mRNA expression levels of
C1GALT1 in Sa0S-2 and HOS cells stimulated with 50 nm doxorubicin for 48 h, using ACTB as an internal control. Inmunoblotting analysis
for C1GALT1 and GAPDH protein expression levels in the same treated cells. (C) Immunoblotting analysis of C1GALT1 expression in Sa0S-2
and HOS 0S cell lines transfected with C1GALT1 shRNA or treated with itraconazole (2.5 pwm), using GAPDH as an internal control.
(D) Representative flow cytometry plots showing percentages of apoptotic cells in doxorubicin-treated cells transfected with C1GALT1
shRNA or scramble control. Overlay histogram plots are shown on the right-hand side of the panel. (E) Representative fluorescence images
taken by TIRF/confocal microscope display residual intensity of doxorubicin (red) in cells over 1 h. Scale bar, 50 um.*p < 0.05, ***p < 0.0001.

Bars represent mean fluorescence intensity changes of randomly selected cells (n = 30).

panel. These results indicate that the pharmacological
inhibition of C1IGALT1 enhances doxorubicin-induced
apoptosis while impeding doxorubicin efflux, empha-
sizing ITZ’s potential in treating OS drug resistance.

[dentification of ABCC1 in doxorubicin resistance
and efflux and its clinical correlation to
C1GALT1 in OS

MDR poses a significant challenge in cancer treatment
by reducing the effectiveness of chemotherapeutic
agents like doxorubicin. ATP-binding cassette (ABC)
transporters, which actively pump drugs out of cancer cells,
contribute significantly to this resistance [31]. Our study
aimed to explore the relationship between C1GALT1 and
ABC transporters in doxorubicin-selected OS cells, offer-
ing potential insights for novel therapeutic strategies. To
assess this, we analyzed samples from doxorubicin-
selected HOS and SaOS-2 cell lines using a human
ABC transporter array, which included probes for
50 genes across seven ABC families. Seventeen genes
were consistently detected in both cell lines, with ABCA3,
ABCB6, ABCCI, ABCF1, and ABCF?2 exhibiting the
highest expression levels (mean Ct<30) (Figure 4A).
Subsequently, we evaluated the role of these ABC
transporters in doxorubicin drug resistance and efflux.

© 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

RT-gPCR confirmed a reduction in mRNA expression
levels for ABC transporters in cells transfected with
shRNA targeting ABCA3, ABCB6, ABCC1, ABCF1I, and
ABCF2 (supplementary material, Figure S4). Flow
cytometry revealed that knockdown of ABCC1 signif-
icantly increased the sensitivity of OS cells with 48%
to doxorubicin treatment (Figure 4B). TIRF confocal
microscopy and quantitative analysis confirmed a
more than 50% increase in fluorescence intensity
accumulation upon ABCCI silencing compared to
controls, indicating minimal reduction in doxorubicin
accumulation across all groups (Figure 4C,D).

To further validate our findings, we examined ABCC1
protein expression in a subset of 29 OS patients using tumor
samples obtained from NTUH, employing IHC staining
(Figure 4E). Kaplan—Meier analysis revealed that patients
with high ABCC1 expression experienced significantly
worse overall survival and PFS compared to those with
low ABCCI expression (Figure 4F). Additionally, we ana-
lyzed the correlation between CIGALT1 and ABCC1 pro-
tein expression in the same subset of patients. Pearson
correlation analysis showed that C1GALT1 expression
was positively correlated with ABCC1 protein expression
(r =045, p <0.05) (Figure 4G). These results prompted
us to investigate whether ABCCI is involved in drug
resistance mediated by C1GALT].
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Figure 3. ITZ mimics the effects of boosting doxorubicin-induced apoptosis and reducing doxorubicin efflux. (A) Representative flow
cytometry plots showing percentages of apoptotic cells in doxorubicin (50 nm) or ITZ) (2.5 pwv)-treated OS cells. (B and C) Representative
fluorescence images taken by TIRF/confocal microscope display residual intensity of doxorubicin (red) in cells over 1 h. Scale bar, 50 pm.
***p < 0.0001. Bars represent the mean fluorescence intensity changes of randomly selected cells (n = 30).

ABCC1 is involved in phenotypic changes mediated
by C1GALT1 in OS cells both in vitro and in vivo

We investigated whether CIGALT1 contributed to drug
resistance and tumor growth in OS cells through the
ABCCI1 pathway. Western blotting confirmed the protein
levels of CIGALT1 and ABCCI1 in cells overexpressing
CIGALTI and in cells with CIGALTI overexpression
combined with ABCCI silencing (supplementary material,
Figure S5). We examined the impact of CIGALTI
overexpression on drug resistance by treating OS
cells with doxorubicin and assessing drug efflux and
apoptosis. Additionally, we evaluated whether ABCC/
silencing could reverse C/GALTI-mediated drug resis-
tance and related phenotypic changes. TIRF confocal
microscopy indicated that cells with ABCC1 silencing
reversed the reduction in doxorubicin efflux compared
to CIGALTI overexpressing groups (Figure 5A). The
quantification of changes in fluorescence intensity is
presented in the accompanying panel. Flow cytometry
confirmed that knocking down ABCCI increased the
sensitivity of CIGALTI overexpressing OS cells to
doxorubicin treatment by 26% (Figure 5B). We vali-
dated our findings using a xenograft mouse model of
human OS via paratibial injection. G292 cells with
either CIGALTI overexpression or ABCCI knockdown

© 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd
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were implanted in immunodeficient mice. Tumor growth
was monitored following doxorubicin treatment, assessed
by IVIS imaging, and confirmed with H&E staining.
ABCCI knockdown reversed CIGALTI-mediated tumor
growth by 36% in response to doxorubicin challenge
(Figure 5C.,D). By day 28, tumor volume analyzed by
calipers indicated a 46% increase in the CIGALTI
overexpression group compared to the control group, while
ABCCI knockdown reduced tumor growth by 38%,
aligning with the reduction observed in the IVIS analysis
(Figure 5E). Our findings indicated that CIGALT1 signif-
icantly enhanced drug resistance and tumor growth in OS
cells, primarily through the ABCC1 pathway.

0-glycosylation changes induced by silencing
C1GALT1 hinder ABCC1 cell-surface targeting and
promote its lysosomal degradation

Several studies have highlighted the crucial role
of C1IGALT1-mediated O-glycosylation in regulating
the surface localization and stability of transmembrane
glycoproteins such as MUC1, CD44, and IL-6 receptor,
thereby impacting tumor growth and metastasis [21,24].
However, its influence on ABC transporters, which are
involved in diverse cellular processes including drug
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patient cohort (r = 0.45, p < 0.05).

resistance, remains unclear in OS. We investigated
the impact of manipulating CIGALT1 expression on
O-glycosylation in OS cells. Flow cytometry revealed
enhanced VVA lectin binding to cell surfaces upon
reducing CIGALT1 through shRNA or ITZ treatment
(Figure 6A). Lectin pull-down and immunoblotting
assays confirmed increased ABCC1 binding to VVA lectin
beads upon CIGALT1 inhibition, suggesting the presence
of O-linked glycans on ABCC1 (Figure 6B). We conducted
western blotting and immunofluorescence staining to assess
ABCCI1 expression and localization in C1GALT 1-inhibited
cells. Western blot results demonstrated reduced ABCC1
expression in C1GALT1-inhibited OS cells. Treatment with
chloroquine, but not MG132, reversed ABCC1 expression,
indicating that CIGALT1 inhibition primarily reduced
ABCCI through the lysosomal degradation pathway
(Figure 6C). In addition, confocal microscopy revealed
that in CIGALT1-inhibited cells, ABCC1 was predom-
inantly localized in the Golgi apparatus, colocalizing with
the GM130 marker (Figure 6D). To confirm whether the
truncation of O-glycans by silencing CIGALT]1 affected
cell-surface targeting of ABCC1 in vivo, we injected

© 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

immunodeficient mice with mock or C/GALTI knock-
down OS cells via paratibial injection. The results demon-
strated that C/GALTI knockdown reduced tumor nodules
in the tibia region, consistent with tumor volume analysis
(Figure 6E). Furthermore, IHC staining revealed that
ABCC1 was predominantly localized in the Golgi appara-
tus of C/1GALTI knockdown tumor cells (Figure 6F), con-
sistent with our in vitro findings. In conclusion, this study
highlights the critical role of C1GALTI1-mediated
O-glycosylation in regulating the surface localization
and stability of ABCC1, suggesting potential implica-
tions for cancer drug resistance.

Discussion

This study explored how CIGALT1 drives chemore-
sistance in OS. Elevated C1GALTI levels are linked
to advanced stages, poor survival, and recurrence. In
doxorubicin-treated cells, C1GALT1 enhances resis-
tance by promoting efflux, which can be mitigated by
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Figure 5. ABCC1 is involved in the phenotypic changes mediated by C1GALT1 in OS cells both in vitro and in vivo. (A) Fluorescence images
captured using TIRF/confocal microscopy display the residual intensity of doxorubicin (red) in mock, C1GALT1-overexpressing, and
C1GALT1-overexpressing with ABCC1-silenced cells over 1 h. Scale bar, 50 pm. Bars represent mean fluorescence intensity changes of
randomly selected cells (n = 30). ***p < 0.0001. (B) Representative flow cytometry plots display percentages of apoptotic cells in
doxorubicin-treated samples. (C) IVIS images of representative mice taken at 2-week intervals, highlighting the regions of interest (ROIs,
marked by ovals) around tibial tumors in mice injected with either G292 mock-transfected cells (black bar and circles),
C1GALT1-overexpressing cells (ovC1GALT1, green bar and squares), or C1GALT1-overexpressing cells with ABCC1 knockdown (ovC1GALT1/
shABCC1, purple bar and triangles). H&E-stained sections of tibial tumors are shown on the right. (D) Bars represent mean bioluminescent
signal intensity within tumor ROIs (n = 6). *p < 0.01. Tumor growth curves show tumor volume (mm?3). (E) Tumor volumes were measured by
calipers at 0, 14, and 28 days after injection. p < 0.01 at 28 days, indicating significant differences between ovC1GALT1 group and both the

mock and ovC1GALT1/shABCC1 groups.

C1GALT]1 suppression or ITZ. ABCCI1 is identified as
a key mediator, with C1GALT]1 affecting its surface
targeting and degradation through O-glycan modifica-
tions. These findings highlight CIGALT1’s role in OS
chemoresistance via ABCC1 regulation.

C1GALT1 has garnered attention in oncology due to
its role in tumor development. Elevated C1GALTI1
expression is associated with poorer prognoses in can-
cers including those of the head and neck, breast, liver,
colon, ovarian, and pancreatic. However, in neuroblas-
toma, higher CIGALT]1 expression correlates with bet-
ter outcomes, highlighting the need to further investigate
its role in OS [30,32-34]. Watanabe et al also identified
CI1GALTI1 as one of the upregulated genes in poor
prognosis clusters from two independent OS cohorts in
the Gene Expression Omnibus (GEO) dataset [35].

Using these same datasets, we conducted an indepen-
dent analysis to validate and expand upon these findings.
Our analysis further confirmed elevated C1GALTI1
expression in poor survival cases and in patients who
developed metastasis within 5 years, thereby reinforcing

© 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd
on behalf of The Pathological Society of Great Britain and Ireland. www.pathsoc.org

the association between high CIGALT1 expression and
adverse outcomes in OS (supplementary material,
Figure S6). Our investigation is distinguished by its
in-depth analysis across a local NTUH cohort and two OS
tissue array cohorts, revealing significant C1IGALT1
overexpression in advanced-stage OS, associated with
poor survival, and tumor recurrence. Elevated C1GALT1
also emerged as an independent prognostic marker for poor
survival in OS patients.

Drug resistance is a major obstacle in treating cancer
recurrence. Initial successes with chemotherapeutics like
doxorubicin, cisplatin, and methotrexate have been
overshadowed by emerging resistance, leading to relapse [36].
Classical acquired MDR often involves reduced drug
accumulation mediated by ABC transporters such as
P-gp (ABCB1), BCRP (ABCG?2), and MRP1 (ABCC1)
from the ABC protein superfamily, recognized for con-
served sequences in their nucleotide-binding domain.
Our research highlights the critical role of ABCCI
in OS drug resistance, identified through ABC array
screening and validated by in vitro and in vivo experiments,

J Pathol 2025; 265: 289-301
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(C) Western blot demonstrating ABCC1 expression in HOS cells treated with CQ and MG132 inhibitors (10 um each).
(D) Immunofluorescence staining of mock, C1GALT1-silenced, and itraconazole-treated cells for ABCC1 (green) and GM130 (red).
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showing ABCC1’s significant impact on doxorubicin efflux ~ which IHC staining revealed perinuclear ABCCI in
and treatment sensitivity. Furthermore, this study is the first ~ C1GALT1-deficient OS cells.
to establish a clinical correlation between high ABCCl1 Our results align with studies indicating that ABCC1
expression in OS patients and poor survival outcomes. mislocalization increases chemotherapy sensitivity in
Among these pathways, considerable research  cisplatin- and venetoclax-resistant cancers [41,42].
has focused on N-glycan modifications linked to drug ~ Additionally, CIGALT1 has been shown to modify
resistance [37,38]. However, the impact of O-glycan ~ O-glycosylation of receptor tyrosine kinases, such as
modifications remains uncertain. For instance, GALNT 14 MET with the enhancement of HGF-induced activation
is essential for P-gp stability on the plasma membrane  in hepatocellular carcinoma [43]. Likewise, our find-
in breast cancer and is correlated with oxaliplatin  ings suggest CIGALT1 may impact OS progression by
resistance in colorectal cancer [39,40]. Building on  influencing key receptors like MET, contributing to
ABCC1’s role in drug resistance, our study shows  poor prognosis and treatment resistance [44,45]. Our
that disrupting CIGALT1-mediated O-glycosylation, findings provide the first experimental evidence that the
genetically or pharmacologically, leads to significant  presence of C1GALT1-mediated O-glycans on ABCC1
Golgi retention of ABCC1, impairing its cell-surface expres-  affects doxorubicin efflux and sensitivity in OS. This
sion and hindering doxorubicin efflux. Supporting this, study reveals the novel prognostic significance of
C1GALT]1 overexpression enhances ABCC1 plasmamem- ~ C1GALT1 in OS and offers insights into its role, along
brane localization (supplementary material, Figure S7). with ABCCI, in drug resistance. These findings may
These in vitro findings align with in vivo observations in aid in developing new therapeutic strategies for OS.
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