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RNA interference (RNAi) is a natural biological pathway that inhibits gene expression

by targeted degradation or translational inhibition of cytoplasmic mRNA by the RNA

induced silencing complex. RNAi has long been exploited in laboratory research to

study the biological consequences of the reduced expression of a gene of interest.

More recently RNAi has been demonstrated as a therapeutic avenue for rare meta-

bolic diseases. This review presents an overview of the cellular RNAi machinery as

well as therapeutic RNAi design and delivery. As a clinical example we present

primary hyperoxaluria, an ultrarare inherited disease of increased hepatic oxalate pro-

duction which leads to recurrent calcium oxalate kidney stones. In the most common

form of the disease (Type 1), end-stage kidney disease occurs in childhood or young

adulthood, often necessitating combined kidney and liver transplantation. In this con-

text we discuss nedosiran (Dicerna Pharmaceuticals, Inc.) and lumasiran (Alnylam

Pharmaceuticals), which are both novel RNAi therapies for primary hyperoxaluria that

selectively reduce hepatic expression of lactate dehydrogenase and glycolate oxidase

respectively, reducing hepatic oxalate production and urinary oxalate levels. Finally,

we consider future optimizations advances in RNAi therapies.

K E YWORD S

calcium oxalate, end-stage renal disease, glycolate oxidase, hyperoxaluria, kidney stones, lactate
dehydrogenase, micro-RNA, primary hyperoxaluria, RNA interference, small interfering RNAs

1 | BACKGROUND

There is a paucity of disease-modifying therapies for rare and ultrarare

diseases. This has been attributable to a poor understanding of the

molecular disease mechanisms and the challenge of recruiting suffi-

cient numbers of patients to perform adequately powered trials of

novel therapies. Advances in genomic sequencing have increased the

rate of discovery for novel, disease-associated genotypes and this

increases the understanding of disease pathobiology, opening avenues

to novel therapeutic targets and mechanisms.

RNA interference (RNAi) describes an innate biological pathway

found in almost all eukaryotic cells. This pathway enables

homology-dependent, post-transcriptional gene silencing by a

micro-RNA (miRNA) or small interfering RNA (siRNA) oligonucleo-

tide complexed with a group of proteins called the RNA-induced

silencing complex (RISC). RNAi has established roles in

development,1 differentiation,2,3 cancer biology4,5 and cellular ant-

iviral defences.6,7

RNAi represents an attractive biological pathway to exploit in

human disease therapeutics where the protein product of the gene

cannot be easily targeted by small molecules. Indeed, synthetic siRNA

molecules have been available for in vitro and in vivo animal model

research for many years, reproducibly demonstrating potency for

knockdown of gene expression.
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The siRNA sequence and structural design critically influence

engagement of the administered compound with the endogenous

RNAi machinery. Another major challenge of translating RNAi into a

clinically viable therapeutic product lies in the targeted delivery of

oligonucleotides to the desired cell type, tissue or organ relevant to

the disease in question, in doing so minimising off-target effects.

Despite these challenges, several RNAi-based therapies for rare

inherited diseases are now Food and Drug Administration (FDA)

approved and/or in later clinical trials.8

This review serves as a beginner's guide to RNAi therapeutics.

We provide an overview of the biology of RNAi as well as the princi-

ples of therapeutic siRNA design and pharmacokinetics. We present a

summary of primary hyperoxaluria, an ultrarare, inherited enzyme

deficiency that can lead to overwhelming oxalate production,

recurrent kidney stones, early end-stage kidney disease (ESKD) and

fulminant systemic oxalosis. In this context we discuss two novel

RNAi therapies that selectively reduce hepatic expression of key

enzymes involved in oxalate metabolism. RNAi therapies stand to sig-

nificantly alter clinical outcomes in this debilitating disease.

2 | BIOLOGY OF RNA SILENCING

First described in 1998,9 RNAi is an endogenous, highly conserved

cellular pathway whereby short strands of RNA guide the RISC to

downregulate targeted gene expression, either by direct

translational repression, by homology-dependent mRNA cleavage or

deadenylation.8,10–12

There are two types of double-stranded (ds)RNA molecules that

serve as a guide for the RISC (depicted in Figure 1): miRNA or siRNA,

which are broadly classified according to their precursor source and

mechanism of transcriptional silencing.13 Primary miRNA transcripts

are transcribed from miRNA genes and form large single-strand RNA

molecules with multiple hairpin loops housing the bone fide miRNA

within their double-strand stems.13 Within the nucleus, a hetero-

trimeric microprocessor composed of DROSHA (a class 2 ribonuclease

III enzyme) and 2 cofactor DGCR8 (also known as Pasha) proteins,

binds and cleaves short hairpin loops (called pre-miRNA).14–16

Cytoplasmic transfer of pre-miRNA occurs by binding to

EXPORTIN-5, a RanGTP dependent dsRNA-binding protein.17 Within

the cytoplasm, pre-miRNA binds to TAR RNA binding protein (TRBP)

and the terminal loop of the hairpin is cleaved by riboendonuclease

DICER leaving approximately 21–23 base pairs of double stranded

miRNA. DROSHA processing optimises pre-miRNA molecules for effi-

cient interaction with DICER's PAZ domain by leaving a 2-nucleotide

30overhang and a mono-phosphorylated 50 at the end of the hairpin

stem.18–20

An alternative pathway of RNAi more relevant to the field of

therapeutic development is initiated when extracellular dsRNA is

taken up by endocytosis or from complementary strands of tran-

scribed endogenous mRNA (Figure 1). This dsRNA is cleaved by cyto-

solic DICER/TRBP in a DROSHA-independent pathway.

F IGURE 1 Molecular mechanisms of
endogenous cellular RNAi. In the nucleus,
pre-micro RNA (pre-miRNA) are trimmed

from large primary micro-RNA transcripts
(pri-miRNA) by DROSHA/DGCR8
complexes (1). Pre-miRNA is exported to
the cytoplasm associated with
EXPORTIN-5 (2). Exogenous dsRNA
molecules enter the cell by endocytosis
and cytoplasmic escape (3). dsRNA in the
cytoplasm is further processed by
DICER/TRBP complexes (4) before
recruitment of Argonaut (AGO) and other
proteins to form the RISC (5). The RISC
unwinds the dsRNA and incorporates the
antisense (or guide) strand, releasing the
passenger strand for degradation (6). The
antisense strand serves as a guide,
selecting mRNA targets according to
sequence homology, affecting either
target mRNA cleavage and degradation
(7) or translational repression (8). dsRNA:
double-stranded RNA; DGCR8: DiGeorge
syndrome chromosomal region 8; TRBP:
TAR RNA-binding protein; RISC: RNA-
induced silencing complex, AGO:
Argonaut protein
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Once the miRNA/siRNA has been processed by DICER, it recruits

1 of 4 Argonaut proteins (AGO1–4), which bind the antisense strand

of the miRNA, unwind the dsRNA and release the passenger strand for

degradation.8,21 Antisense strand selection is independent of

DROSHA and/or DICER cleavage polarity and tends to favour the

strand where the 50 end has a less stable complement pairing.22,23

Whilst AGO1–4 proteins are all capable of loading miRNA/siRNA, only

AGO2 retains endonuclease function capable of cleaving mRNA tar-

gets directly.12 DICER-independent miRNA processing pathways have

also been identified for certain miRNA gene products whereby AGO2

performs the cleavage step canonically performed by DICER.24,25

AGO proteins also recruit GW182, which enables translational

repression and/or deadenylation of mRNA targets with homology to

the 30 untranslated region of the loaded guide RNA strand.11 Micro-

RNA-guided RISCs more often affect gene silencing by translational

repression or mRNA degradation and siRNA-guided RISCs more often

affect mRNA cleavage, although crossover is observed. Whilst the

efficiency of gene silencing is related to the degree of homology

between the guide antisense miRNA/siRNA strand and target

mRNA,26 there may be as few as 7 complementary base pairs with

the guide to affect silencing.27

As more is learned about the components of the RNAi pathways,

a more diverse range of functions is being discovered including roles

in chromatin modification, chromosome arrangement during the cell

cycle and DNA damage responses. These mechanisms are beyond the

scope of this review but are discussed in detail in previous reviews.28,29

3 | THERAPEUTIC RNAI

The ability of the cell to endocytose RNA from the extracellular

environment offers the opportunity to use RNAi as a therapeutic

avenue to treat human disease, through the use of specifically

designed RNA oligonucleotides targeting genes implicated in human

disease pathogenesis. The major design challenges to overcome have

included gene-target specificity and methods for targeting organ- or

tissue-specific delivery.

3.1 | Design and development

With current technology, short oligonucleotide complexes (21–27

nucleotides) with specific chemical modifications can be synthesized,

delivered and evaluated for their activities and drug properties in both

in vitro and in vivo models.30–36 Therapeutic drug discovery usually

starts with a large-scale screen to identify candidates based on potency

of target mRNA or protein inhibition, while computer-based algorithms

developed from cumulative and empirical screening data can be applied

to effectively predict potency based on the sequence information in an

effort to improve screening efficiency.33,36 Several structural design

features have been identified that affect DICER engagement and RNAi

potency. Antisense strand selection can be favoured by removing the

2–3-base overhang from the sense strand.37 Longer dsRNA molecules

are more likely to be cleaved by DICER, appropriately select the

antisense strand for RISC integration and ultimately provide a more

potent downregulation.38 Shorter molecules can trigger RNAi with

less potency via DICER independent pathways25,39 but this allows

greater flexibility in the incorporation of chemical modifications

designed to maximize the stability of the molecule.40

Off-target effects may include silencing of the target gene in

unwanted tissues or silencing of nontarget genes through sequence

homology.41,42 This most commonly occurs due to even partial homol-

ogy between the 30 untranslated region of the mRNA transcript and the

50 end of the siRNA guide.42,43 In silico homology analysis of candidate

siRNA sequences using human transcriptome libraries is a potential

method to predict such effects. Interspecies variation in off-target

transcriptional effects has been observed between mouse and human

primary cell cultures; however, there was greater consistency between

in vivo mouse liver (delivered by lipid nanoparticles) and in vitro mouse

liver tumour cells (delivered by transfection).44 Intuitively, these data

advocate the use of in vitro, organ-specific human or non-human

primatemodels as screens for off target effects in human disease.

The innate immune system is capable of responding to foreign

RNA, often presented the form of RNA viruses. Immune stimulation

by either the siRNA itself or the delivery vehicle can lead to

proinflammatory cytokine production (interlekin-6, tumour necrosis

factor-α) and immune cell activation.41 Indeed, 1 of the first

RNAi-based therapies aimed at solid tumours (MRX34) closed its early

human trials due to immune-stimulation related adverse events.45 The

downstream effect of immune stimulation can alter transcriptional

activity, potentially confounding the therapeutic objectives of the

RNAi treatment. Various studies have demonstrated the effect of

siRNA length, structure (i.e. single, double strand or hairpin),

composition, uridine richness and delivery vehicle (especially cationic

liposomes) as factors associated with immune system stimulation.46–48

Chemical modifications have been widely applied to improve the

stability needed for RNA duplexes to escape degradation in RNAse-

rich extracellular or intracellular environments, while simultaneously

reducing immunogenicity, improving potency, target-specificity and

enhancing drug-like properties.49–55 These modifications have been

extensively applied to all parts of the RNA duplex molecules, including

the backbone, the sugars, and the bases on both sense and antisense

strands to understand the structure activity relationship and drug sta-

bility.49–52,56 For example, removing the 2–3-base overhang from

both ends of the dsRNA molecule confers increased nuclease resis-

tance and RNAi potency.57 The 20 position of the sugar moiety of

each nucleoside is often modified from 20-hydroxyl into 20-deoxy,

20-o-methyl, 20-fluoro, 20-o-methoxyethyl and locked nucleic acid to

protect the oligonucleotides from RNAse degradation. Chemical

modification of guide strand of siRNAs, in particular the 20-OMe sub-

stitution of position 2 of guide strand, has been demonstrated to sig-

nificantly reduce off-target effects.58 Other backbone modifications

include methylphosphonate, phosphorothioate, phosphorodithioate,

thioester and other phosphate mimics.40,59–61 The effect of any modi-

fication on enhancement or efficiency of RISC loading and AGO2 slic-

ing activities must be validated. Unfortunately, the precise molecular
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mechanism of how siRNA molecules dynamically load and achieve tar-

get silencing is not completely understood even with the availability

of crystal structures of complex of siRNA, target mRNA and

AGO2.59,62–64 The measurement of in vivo activity in rodents and

non-human primates remains a gold standard to empirically guide the

evaluation of structure and activity relationships.

3.2 | Advantages and disadvantages of siRNAs

A major advantage of siRNA vs. other antisense-based approaches

for therapeutic application is that its use of an innate cellular

machinery allows for highly efficient targeting of complementary

transcripts.9,65–67 This reduces production costs and patient doses of

siRNA and excipients while achieving sufficient target suppression

and reducing toxicity.68,69 Theoretically, siRNAs can be designed for

targeting any gene based on its target mRNA sequence alone. RNAi is

therefore an appealing therapeutic option for diseases mitigated by

pathological gain of gene function or where substrate reduction can

be safely implemented without redundancy to alternative metabolic

pathways. siRNA is also an option for so-called undruggable targets,

which may not be easily inhibited using conventional small molecule

and monoclonal antibody-based approaches. Additionally, the siRNA

drug discovery process can be relatively short compared to conven-

tional small molecule drug approaches.70 Chemical modifications and

oligonucleotide compositions, which provide the main pharmacody-

namic properties of siRNA therapeutics, can be readily applied to new

sequences to achieve similar effects, whilst inhibiting different gene

targets. Chemical modules for tissue-specific delivery and modifica-

tions for activity and stability can be reutilized and applied to other

sequences of interest, readying them for in vivo confirmation and sub-

sequent clinical testing.

One major impediment in the development of siRNA therapeutics

is focusing the delivery of oligonucleotide duplex to the specific cell

types implicated in the disease. The high molecular weight, poly-

anionic and hydrophobic properties restrict the free diffusion of siRNA

across cell membranes to reach cytoplasmic RNAi machinery.8,71,72

The development of tissue-specific delivery vehicles focusing siRNA

delivery to the target organ of interest is one strategy to overcome

off-target effects. The development of nano-carriers (lipid nanoparti-

cle, liposome and polymer-based) and conjugate-based delivery has

proven fruitful in both preclinical animal models and clinical investiga-

tion.68,73–75 However, clinical validation of RNAi is currently only

limited to hepatocytes and cancer cells.8,72 Conjugate-based delivery

of siRNA to hepatocytes, utilizing N-acetylgalactosamine (GalNAc)

ligands that bind to the highly abundant hepatocyte cell surface

asialoglycoprotein receptor (ASGPR), has revolutionized the therapeu-

tic oligonucleotide field. GalNAc-conjugated oligonucleotides bind to

ASGPR and undergo endocytosis.74,76 By unknown mechanisms, they

subsequently escape from endosomes and enter the cytoplasm where

they interact with RNAi machinery. In preclinical research, there are

reports of delivery using different strategies to hepatic stellate cells,

endothelial cells, neurons and other cell types.77–82

Also, unlike small molecules which can be crudely identified to act

either as agonists or antagonists, siRNA can only inhibit targets of

interest with currently available technology, although this may change

(see below). Finally, the materials and synthetic processes required for

oligonucleotide manufacture is higher than for small molecules,

representing a greater end-product cost.

3.3 | Predictable pharmacokinetic properties and
tolerability profiles

siRNA therapies are currently delivered by subcutaneous or

intravenous delivery, and oral delivery of siRNA is yet to be clinically

demonstrated. siRNA's long duration of activity has been established in

both preclinical and clinical investigation, which make its characteristic

short plasma exposure uninformative for predicting duration of action.

Nonetheless, investigators are trying to understand the relationship of

maximum plasma concentration and direct pharmacodynamics or

surrogate markers.83–85 This long therapeutic effect is partially due to

the stable integration of siRNA within RNAi machinery, forming a

durable RISC-capable of catalytic degradation of target mRNA through

multiple cycles within targeted cells, even when majority of free siRNA

drugs have been removed from metabolism or excretion.86,87 The use

of similar siRNA design principles and fixed delivery modules permits a

predictability with respect to the pharmacokinetic properties and

adverse effects for oligonucleotide duplexes as a therapeutic class,

which stands to streamline the development and approval of new

siRNA therapeutics, compared to small molecule therapies.

The long duration of siRNA activity has prompted concern from

some investigators as to the long period for recovery should any

acute toxicity occur. However, conjugate-based siRNA therapeutics

have shown high efficacy and favourable tolerability during clinical

development with most common adverse effect as low frequency of

mild to moderate injection site reactions, which usually resolve

spontaneously.68,69,88 Furthermore, concerns of off-target effect due

to sequence-based complementarity on unrelated genes is yet to be

demonstrated in clinical studies.

3.4 | Current clinical application of RNAi
therapeutics

The strategies described above have led to the advancement of more

than two dozen therapeutics in early or late stages of clinical

development in cancer, metabolic and chronic viral disease

(summarised in8,89). Patisiran (ALN-TTR02 or Onpattro; Alnylam

Pharmaeuticals) was the first RNAi therapy to gain FDA approval

in August 2018, as a treatment for hereditary transthyretin

amyloidosis (OMIM 105210),85 an autosomal dominant disease where

accumulation of misfolded TTR protein throughout the body results in

progressive neuropathy, cardiomyopathy and ophthalmic disease

among other end-organ effects. The siRNA in patisiran is packaged in

liver specific lipid nanoparticles and silences both wild type and
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mutant transthyretin genes reducing systemic TTR load.84,85,90

Givosiran (Givlaari; Alnylam Pharmaceuticals), an RNAi therapy silenc-

ing δ-aminolevulinic acid synthase 1 for treatment of acute hepatic

porphyria, received FDA approval in 2019.91 Phase 3 trials of

givosiran demonstrated significantly lower rates of porphyria attacks,

improved pain scores and lower levels of urinary δ-aminolevulinic acid

and porphobilinogen.92 Many other RNAi based therapeutics are in

early phase clinical trials, heralding a new class of therapies with

increasing impact on clinical practice for a variety of diseases over the

coming decades.

Hypothetically, siRNA therapeutics are well suited for any disease

where undesirable disease-causing proteins can be downregulated at

a transcriptional level. It is, of course, imperative to ensure that silenc-

ing of the of any targeted gene will not be injurious to the recipient,

which may restrict the scope of diseases to which RNAi can be

applied. Genetic diseases with dominant negative mutations are

another class of diseases that are applicable for siRNA approaches.

Additionally, for some metabolic and genetic diseases, siRNA

approaches can be designed to remove or reduce substrates of toxic

metabolites to prevent or alleviate symptoms of those diseases.

4 | PRIMARY HYPEROXALURIA

Primary hyperoxaluria (PH) is an ultra-rare, autosomal recessive,

inherited metabolic condition that leads to an accumulation of

glyoxylate in the liver which is metabolised to oxalate by lactate dehy-

drogenase (LDH; Figure 2). Oxalate is readily filtered by the kidneys

and is highly insoluble in urine in the presence of calcium, precipitating

as calcium oxalate nephrolithiasis and nephrocalcinosis.93 In severe

cases nephrocalcinosis can progress to chronic kidney disease, at

which point the reduced oxalate clearance leads to overwhelming sys-

temic oxalosis affecting blood vessels, bones, retina, myocardium94,95

and skin with a high associated mortality.

PH is sub-classified into 3 groups based on genotype, each with a

distinct phenotype and prognosis (Table 1, Figure 2). The most com-

mon phenotype, PH type 1 (PH1, OMIM 259900), accounts for

approximately 80% of disease burden and has a population prevalence

between 1–3 per million population. PH1 is associated with recessive

mutations in alanine-glyoxylate aminotransferase (AGXT), encoding

the enzyme which catalyses the transamination of glyoxylate to

glycine within the hepatocyte peroxisome.96 Tissue expression is

specific to the liver. Many PH1 patients will have an elevated urinary

glycolate; however, this has also been reported in patients with

PH3.97,98 Whilst ESKD in infancy is not uncommon (around 25% of

cases), the median age of ESKD is reported at age 10–24 years.99,100

Genotype–phenotype correlations have been observed with

Gly170Arg variants demonstrating a median age of ESKD at 47 years

for homozygotes in a western European/North African cohort.99 How-

ever, there exists wide variation in severity of renal phenotype even

between members of the same family, suggesting that genetic modi-

fiers or potentially kidney-specific factors may alter phenotype.101

PH2 (OMIM 260000) accounts for roughly 10% of disease

burden and is caused by pathogenic variants in the gene encoding

glyoxylate reductase and hydroxypyruvate reductase (GRHPR) which

metabolises glyoxylate to glycolate and hydroxypyruvate to

D-glycerate (Figure 2).102 GRHPR is expressed throughout the

body but is highest in the liver.103 GRHPR deficiency leave both

substrates vulnerable to LDH metabolism, excreted as oxalate and

L-glycerate respectively, although presence of the either in the urine

is variable102,104 necessitating genomic sequencing as gold standard

for diagnosis. In the largest reported cohort from the OxalEurope

F IGURE 2 Hepatic metabolism of oxalate.
Metabolic pathways involved in oxalate
metabolism depicting the enzymes defective in
the 3 major types of primary hyperoxaluria (red
boxes and blue text). LDH catalyses the final step
in the production of oxalate from glyoxalate for
all PH types. The precise mechanisms by which
HOGA mutations lead to increased oxalate
production are not fully understood (depicted by
dotted lines). Hypotheses include inhibition of
GRHPR by accumulated HOG and metabolism of
HOG in the cytoplasm to glyoxylate by an
unidentified aldolase enzyme. 1P5C: 1-pyrroline-
3-hydroxy-5-carboxylate; E4HG:
erythrohydroxyglutamate; HOG: 4-hydroxy-
2-oxoglutarate; PH: primary hyperoxaluria; AGXT:
alanine glyoxylate aminotransferase; GRHPR:
glyoxylate reductase/hydroxypyruvate reductase;
HOGA1: hydroxyl-oxoglutarate aldolase 1; LDH:
lactate dehydrogenase
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Consortium, almost 10% of patients presented with normal spot urine

oxalate:creatinine ratio.102 Patients develop recurrent kidney stones

and nephrocalcinosis, generally progressing to chronic kidney disease

or ESKD in mid-adulthood.102

PH3 (OMIM 613616) is due to pathogenic variants in hydroxyl-

oxoglutarate aldolase 1 (HOGA1), a mitochondrial enzyme that takes

part in hydroxyproline metabolism.98 PH3 accounts for 10% of PH

cases although the population prevalence of the most common variant

(c.700 + 5G > T affecting a splice site in intron 597) is much higher

than anticipated for the documented disease frequency, suggesting

either incomplete penetrance or underdiagnosis.97 Given the limita-

tions in access to genomic testing in many settings for patients with

mild diseases, patients with PH3 suffering from recurrent but infre-

quent calcium-oxalate stones may well be underdiagnosed. The sec-

ond most common pathogenic variant is p.E315del effecting a 3-base

pair deletion in exon 7, representing 32% of alleles.97 Patients experi-

ence raised urine oxalate excretion with or without recurrent

nephrolithiasis and progression to chronic kidney disease is reported

but uncommon.105

Paradoxically, glyoxylate is a product of the HOGA enzyme rather

than a substrate and the biological mechanism of oxalate over-

production in PH3 is not well established.106 The increased oxalate

production in HOGA deficiency may be explained by the accumula-

tion of its precursor 4-hydroxy-2-oxoglutarate (HOG). HOG accumu-

lation may inhibit GRHPR; however, increased urinary L-glycerate is

rarely seen, which would argue against this mechanism.107,108 An

alternative explanation is the metabolism of HOG to glyoxylate by

an as yet uncharacterized cytosolic aldolase.109

4.1 | Current therapies for primary hyperoxaluria
are limited in their ability to prevent ESKD

The goals of early conservative therapy for all PH types involves maxi-

mizing the solubility of oxalate in the urine in an effort to prevent

stone formation and nephrocalcinosis. As for all causes of

nephrolithiasis, maintenance of a high intake of water is critical.110,111

Patients are often prescribed to drink up to 2.5 L/m2 water daily.

Periods of acute dehydration are avoided and managed aggressively

with enteral or parenteral fluid supplementation to avoid acute kidney

injury from which recovery can be limited.112,113 Dietary restriction of

oxalate rich foods is ineffective114; however, patients are advised to

avoid vitamin C supplements as ascorbic acid is metabolised

to oxalate.115,116

Supplementation with citrate and orthophosphate serves to

complex with urinary calcium preventing calcium-oxalate crystalliza-

tion in the urine.117–120 Although there is no evidence to support its

efficacy, magnesium supplementation is proposed to act via a similar

mechanism.

For up to 50% of patients with PH1, high-dose pyridoxine

supplementation has been established to improve enzyme function

and reduce urinary oxalate levels.119,121–123 Pyridoxine is metabolised

to pyridoxal phosphate, which is an essential catalytic cofactor for the

AGXT enzyme as well as being a necessary chaperone for peroxisomal

localization.124 Patients on pyridoxine must be monitored for

peripheral neuropathy which is reversible if ceased early.125 Variants

known to respond favourably to pyridoxine include Gly170Arg,

Phe152Ile, Ile244Thr and Gly41Arg.99,126,127 In particular, the

Gly170Arg variant, present in roughly 30% of PH1 cases, is known to

be mislocalised to mitochondria but shows both improved activity and

peroxisomal localization with pyridoxine treatment.124 PH1 patients

should be trialled on pyridoxine and continued if at least a 30%

reduction in urine oxalate can be achieved over 3 months.112,113

4.2 | Dialysis and transplantation

Whilst militant adherence to conservative treatments is associated

with improved outcomes, the eventual need for dialysis, kidney trans-

plantation and/or liver transplantation in patients with PH1 is almost

TABLE 1 Features of the 3 primary hyperoxaluria genotypes

Type 1 Type 2 Type 3

Gene AGXT GRHPR HOGA1

Chromosome 2q37.3 9p13.2 10q24.2

Tissue expression Liver Liver, kidney, brain, skin, cardiac

and skeletal muscle

Liver, kidney, brain

Proportion of disease burden �80% �10% �10%

Phenotype Calcium oxalate nephrolithiasis,

nephrocalcinosis, childhood CKD

Calcium oxalate nephrolithiasis,

nephrocalcinosis, adult CKD

Calcium oxalate nephrolithiasis,

nephrocalcinosis, adult CKD

Biomarker Urine glycolate (variable)97 Urine L-glyceric acid (variable)104 Dihydroxyglutamate (all patients)155

Treatment Hydration

Urinary alkalinisation

Pyridoxine (some variants only)

Liver +/� kidney transplant

Hydration

Urinary alkalinisation

Kidney transplantation

(liver transplantation controversial)

Hydration

Urinary alkalinisation

Transplantation not required

OMIM phenotype number 259 900 260 000 613 616

CKD, chronic kidney disease
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ubiquitous.128 Renal clearance is the only avenue to adequately

remove such substantial amounts of oxalate in PH, and as a result

serum oxalate levels increase exponentially with declining glomerular

filtration rate. Systemic deposition of oxalate subsequently accumu-

lates in the eyes, heart, bones, skin, nerves and joints, increasing mor-

bidity. Thus, dialysis is essential not only for renal replacement but for

oxalate clearance. Whilst haemodialysis is able to very quickly clear

oxalate from the circulating bloodstream, the oxalate production in

patients with PH1 is sufficiently high and tissue-sequestered that

patients remain net oxalate positive, even on intensified peritoneal

and haemodialysis.129 PH1 patients on haemodialysis have 2–3 times

the mortality rate of nonhyperoxaluria dialysis patients.130 In

undiagnosed PH1 patients and those with pyridoxine-unresponsive

disease, isolated kidney transplantation is associated with high rates

of disease recurrence in the graft.131 Liver transplantation is curative

and can be performed in isolation prior to the development of chronic

kidney disease or combined with a kidney transplant in ESKD.

Sequential liver and kidney transplant can be pursued if there are con-

cerns about immediate risk to the kidney graft131,132; however, many

patients do well with intraoperative filtration and daily postoperative

haemodialysis.133 Isolated kidney transplant may be considered in

pyridoxine-responsive PH1 and remains the most common approach

in ESKD due to PH2 and PH3.

5 | NOVEL RNAI THERAPIES FOR
PRIMARY HYPEROXALURIA

Whilst the precise mechanisms underpinning the metabolic distur-

bances giving rise to oxalate overproduction are less well understood

in PH3 than for PH1/2, it may be that LDH represents a final

enzymatic pathway leading to hyperoxaluria (Figure 2). Hence, an

RNAi approach could serve as a potentially effective and safe way to

correct the overproduction of oxalate in the liver. In considering a

strategy to reduce oxalate production and treat PH, inhibition of

glycolate oxidase (GO) is sufficient to reduce the conversion of

glycolate to glyoxylate, the proposed main precursor to oxalate134,135

(Figure 2). Inhibition of expression of LDH, the key enzyme responsi-

ble for producing oxalate from glyoxylate, has been demonstrated to

be effective in treating PH1 and PH2 mice.136 Lai et al. provided the

first in vivo evidence in mammals to support the role of LDH for con-

verting glyoxylate to oxalate, where reduction of hepatic LDH by

RNAi achieves efficient reduction in serum oxalate and renal calcium

oxalate crystal deposition.136 Notably, when LDH and GO inhibition

was compared in PH1 mice, a disproportionate correlation between

GO protein suppression and urinary oxalate reduction was observed.

The authors further confirmed that suppression of LDH, but not GO,

causes the reduction of urinary oxalate levels in PH2 mouse

models.136 Repression of hepatic LDH in mice and non-human pri-

mates did not cause any acute elevation of circulating liver enzymes,

lactate acidosis, or exertional myopathy, suggesting further evaluation

of liver-specific inhibition of LDH as a potential approach for

treating PH1 and PH2 was warranted.136 Subsequently nedosiran

(DCR-PHXC, Dicerna Pharmaceuticals Inc, Table 2) was designed to

specially inhibit hepatic expression of LDHA, which encodes the M

subtype of LDH, the major isoform of LDH enzyme in the liver.136–138

Nedosiran is a double-strand siRNA molecule that is conjugated with

GalNAc, which takes advantage of the aforementioned unique ASGPR

delivery system in the liver. (Figure 3) Nedosiran is administered by

monthly subcutaneous injection. The initial data emerging from a mul-

tidose, open-label trial (PHYOX3, Dicerna Pharmaceuticals, Inc;

ClinicalTrials.gov Identifier: NCT0402402) demonstrated sustained,

long-term reduction in urinary oxalate levels as far as the normal

range (less than 0.46 mmol/1.73 m2 BSA/24 hours) or near-

normalization in patients with both PH1 and PH2139 (abstract only).

This study advocated that nedosiran was generally well tolerated,

which agrees with the observed absence of any liver-specific adverse

effects in natural, systemically LDHA-deficient patients.140–144 This

TABLE 2 Comparison of the 2 RNAi therapies in development for primary hyperoxaluria

Nedosiran Lumasiran

Company Dicerna Pharmaceuticals Inc. Alnylam Pharmaceuticals

Previous names DCR-PHXC ALN-GO1; Oxlumo

Gene product targeted

(protein name)

LDHA

(lactate dehydrogenase)

HAO1

(Glycolate oxidase)

Molecule dsRNA covalently linked to GalNAc residues dsRNA covalently linked to GalNAc residues

Primary hyperoxaluria

types targeted

PH1, PH2

(PH3 trials underway)

PH1

Administration Subcutaneous Subcutaneous

Dosing Monthly Loading: Monthly for 3 mo

Maintenance: 3 monthly

Human trials PHYOX3 early unpublished results: 6 of 7 patients

showed consistent normalization or near

normalization of urine oxalate levels after 3 doses

(≤0.6 mmol/24 h/1.73m2)139

ILLUMINATE-A:

53.5% decrease in 24-h urine oxalate excretion (95%

confidence interval 62.3–44.8%) compared to

placebo 11.8% reduction.156

Approvals FDA (Nov 2020)

EMA (Nov 2020)
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supports preclinical observations in wild type mice where GalNAc-

conjugated siRNAs designed for liver-specific knockdown of LDHA

had no significant effect on gene expression in muscle, skin or uterine

tissue, as well as maintained lactate production and exercise perfor-

mance.136 Whilst the definitive pathways by which oxalate production

occurs in PH3 are less well established, it is conceivable that LDH

silencing could also be of benefit in this disease. Accordingly, clinical

testing of nedosiran will soon expand to include PH3 patients

(PHYOX4: ClinicalTrials.gov Identifier: NCT04555486) and PH1/2

patients with ESKD (PHYOX7: ClinicalTrials.gov Identifier:

NCT04580420).

Lumasiran (Oxlumo or ALN-GO1, Alnylam Pharmaceuticals,

Table 2) is another RNAi therapy for the treatment of PH1, which

gained FDA approval in November 2020. Lumasiran targets GO,

reducing the production of glyoxylate, the main oxalate precursor,

from glycolate (Figure 2).145,146 Glycolate is excreted by the kidneys

but is highly soluble and not associated with a renal phenotype in

GO-deficient (Hao1 knockout) mouse models.147 Rare human cases

of biallelic loss of function variants in HAO1 have also been charac-

terized to have high serum and urine glycolate levels without a dis-

ease phenotype, endorsing the safety of an RNAi approach to

GO.148,149 In addition, double knockout mice for Agxt and Hao1

demonstrate low levels of urine oxalate excretion.147 A recently

published double-blind, multinational, placebo-controlled, random-

ized controlled trial recruited 39 adult and paediatric patients with

PH1 and an estimated glomerular filtration rate of >30 mL/

min/1.73 m2.146 Lumasiran effected a 53.5% reduction in 24 hour

urine oxalate levels (95% confidence interval 62.3–44.8%) com-

pared to placebo (mean reduction 11.8%) and 85% of patients

achieved a urine oxalate excretion within 150% of the upper limit

of the normal range.146 Furthermore, no serious adverse events

were reported.

6 | FUTURE PROSPECTS FOR RNAI
THERAPIES

Recent regulatory approvals of RNAi-based drugs include a complex

lipid nanoparticle formulation of 1 unconjugated siRNA product and

far simpler water-for-injection formulations of GalNAc-conjugated

siRNAs and many more are in clinical trials, ranging from first-in

human studies to registration trials.

Beyond synthetic siRNA, there is potential to manipulate RNAi

for therapeutic benefit in other ways. As well as gene silencing, dsRNA

molecules designed with homology to sequences near target gene

promotor regions have been observed to activate gene expression via

a non-endonuclease AGO2-mediated pathway.150,151 This strategy

has been recently applied to the treatment of hepatocellular

carcinoma.152 Anti-mirs (also known as antagomirs), are antisense

oligonucleotides targeting miRNA effectively blocking RISC activity on

the host cell transcriptome,153 a strategy that had been applied to the

treatment of hepatitis C (Mirversin, Santaris Pharma); however, this

has been superseded by highly efficacious and inexpensive small

molecule treatments.154 Finally, block-mirs, which anneal with target

mRNA, effectively protecting the target transcript from RISC-

mediated degradation, are yet to demonstrate a clinical application.

In principle, good siRNA sequence design to complement the tar-

get gene can achieve highly specific target knockdown while avoiding

cross-reactivity to functional protein molecules of same family, which

is a challenge for small molecule-based approaches. This high

F IGURE 3 Mechanism of action of nedosiran within hepatocytes. Nedosiran is a GalNAc-dsRNA conjugate. (A) Bound GalNac sugar residues
bind to ASGPR receptors prompting endocytosis of the dsRNA. Via an incompletely understood mechanism, the compound undergoes endocytic
escape and enters the cytoplasm. (B) Within the cytoplasm, the dsRNA first interacts with endonuclease DICER (orange). DICER then passes the
antisense RNA strand to AGO2 (purple). The dsRNA compound is designed to favour the loading of the antisense RNA strand into the RISC
complex. (C) RISC is guided to the target mRNA by homology to the RNA strand, cleaving the target RNA. GalNAc: N-acetylgalactosamine;
ASGPR: asialoglycoprotein receptor; RISC: RNA-induced silencing complex; dsRNA: double-stranded ribonucleic acid
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specificity of the RNAi approach may even allow targeting of disease-

specific alleles and spare the normal allele even when they differ only

by 1 or a few nucleotide substitutions. However, it might not be easy

to achieve the balance between the activity and specificity due to the

requirement of fixed and short length of oligonucleotide duplexes to

trigger RNAi activity. Multiple targets can be inhibited simultaneously

without changing the therapeutic principles and fundamental physical

composition of RNAi-based therapies, which represents another

advantage over small molecule therapeutics.

7 | CONCLUSIONS

RNAi involves the processing of endogenous miRNA or exogenous

siRNA molecules into RISCs which are capable of downregulating

gene expression by homology directed cleavage of target mRNA or

direct transcriptional inhibition.

As a platform, synthetic siRNAs are emerging as well tolerated

and effective drug candidates as well as approved drugs with high

safety margins. Chemical modifications can specify tissue specific

delivery of the compound to the tissue of interest. This bodes well for

the use of RNAi to treat primary hyperoxaluria with the potential for

adaptation of the system for the treatment of other inherited and

metabolic diseases.
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