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Abstract: Differential diagnosis of thyrotoxicosis is essential because therapeutic approaches differ
based on disease etiology. We aimed to perform differential diagnosis of thyrotoxicosis using machine
learning algorithms with initial laboratory findings. This is a retrospective study through medical
records. Patients who visited a single hospital for thyrotoxicosis from June 2016 to December
2021 were enrolled. In total, 230 subjects were analyzed: 124 (52.6%) patients had Graves’ disease,
65 (28.3%) suffered from painless thyroiditis, and 41 (17.8%) were diagnosed with subacute thyroiditis.
In consideration that results for the thyroid autoantibody test cannot be immediately confirmed, two
different models were devised: Model 1 included triiodothyronine (T3), free thyroxine (FT4), T3 to
FT4 ratio, erythrocyte sediment rate, and C-reactive protein (CRP); and Model 2 included all Model
1 variables as well as thyroid autoantibody test results, including thyrotropin binding inhibitory
immunoglobulin (TBII), thyroid-stimulating immunoglobulin, anti-thyroid peroxidase antibody, and
anti-thyroglobulin antibody (TgAb). Differential diagnosis accuracy was calculated using seven
machine learning algorithms. In the initial blood test, Graves’ disease was characterized by increased
thyroid hormone levels and subacute thyroiditis showing elevated inflammatory markers. The
diagnostic accuracy of Model 1 was 65–70%, and Model 2 accuracy was 78–90%. The random forest
model had the highest classification accuracy. The significant variables were CRP and T3 in Model
1 and TBII, CRP, and TgAb in Model 2. We suggest monitoring the initial T3 and CRP levels with
subsequent confirmation of TBII and TgAb in the differential diagnosis of thyrotoxicosis.

Keywords: thyrotoxicosis; hyperthyroidism; differential diagnosis; machine learning

1. Introduction

Differential diagnosis of thyrotoxicosis is essential because therapeutic approaches
differ based on disease etiology [1]. The most common cause of thyrotoxicosis is Graves’
disease, an autoimmune disease characterized by increased thyroid hormone synthesis. The
standard treatment for Graves’ disease is thioamide-based drugs, a group of anti-thyroid
drugs (ATD) that concentrates in the thyroid gland and inhibits hormone synthesis [2].
Other common causes include painless thyroiditis due to autoimmune lymphocytic infiltra-
tion [3], and subacute thyroiditis due to viral infection [4]. In these cases, thyrotoxicosis
caused by thyroid tissue destruction is transient and management is symptomatic therapy
with cautionary observation.

Finding the etiology of thyrotoxicosis can be challenging in patients experiencing
their first presentation of thyrotoxicosis, and the etiology of thyrotoxicosis is sometimes
revealed after considerable clinical progression. For Graves’ disease, the diagnostic accuracy
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of thyroid stimulating hormone (TSH) receptor antibodies has been improved [5], but
autoantibody tests require several days to obtain results and can have inconsistent or low
accuracy depending on type and generation [6]. Thyroid scintigraphy and sonography may
be used as adjuncts, but there are several pitfalls. Thyroid scans have the disadvantage
of not being accessible in primary care clinics, yielding false negative results in patients
on a high iodine diet or taking ATD [7]. It is also contraindicated in pregnant or lactating
women. Doppler ultrasonography can show hyper-vascularization of the thyroid that is
similar to Graves’ disease even in hypothyroidism, which can make diagnosis difficult [8].

Therefore, we aimed to perform differential diagnoses of thyrotoxicosis using a ma-
chine learning algorithm with initial laboratory findings, including triiodothyronine (T3),
free thyroxine (FT4), T3 to FT4 ratio, erythrocyte sediment rate (ESR), C-reactive pro-
tein (CRP), and the results of thyroid autoantibodies-thyrotropin binding inhibitory im-
munoglobulin (TBII), thyroid-stimulating immunoglobulin (TSI), anti-thyroid peroxidase
antibody (TPOAb), and anti-thyroglobulin antibody (TgAb).

2. Materials and Methods
2.1. Patients

Patients who visited endocrinology clinics at a single hospital for thyrotoxicosis—
defined as high free thyroxine (FT4) and low thyroid stimulating hormone (TSH) levels
beyond the reference ranges—from June 2016 to December 2021 were enrolled. The final
diagnosis was confirmed with retrospective review of the clinical course over at least six
months by two physicians (K.-H.B.; 20 years of experience in endocrinology, and J.K.;
3 years of experience in endocrinology). Patients with a previous history of thyroid disease
(n = 70), hyper-functioning nodule (n = 5), and insufficient test results (n = 12) were
excluded. The protocol of this study was approved by the Institutional Review Board of
Yeouido St. Mary’s Hospital (SC21OISI0070). Consent from each patient was waived as this
clinical study is a retrospective review of medical records produced during the patient’s
treatment process.

2.2. Measurements

We collected the results of initial laboratory findings including T3, FT4, TSH, ESR,
CRP, TBII, TSI, TPOAb, and TgAb at the first visit. For thyroid function, TSH, T3, and FT4
levels were performed using the Elecsys Cobas kit (Roche Diagnostics International Ltd.,
Rotkreuz, Switzerland), and the normal ranges were 0.27−4.2 µIU/mL, 0.8−2.0 ng/mL,
and 0.93−1.7 ng/dL, respectively. For quantitative evaluation of TSH-receptor antibodies in
study subjects, TBII and TSI were measured with a commercial kit using second generation
methods. TBII was measured using TRAK human radioimmunoassay (Thermo Scientific,
Waltham, MA, USA), and 1 IU/L was used as the cut-off according to the manual. TSI was
measured using the Thyretain TSI Reporter Bioassay (Diagnostic Hybrids, Athens, OH,
USA), and 140% was the cut-off. TPOAb and TgAb titers were measured with the Elecsys
Cobas kit (Roche Diagnostics). For quantitative CRP measurements, the Tina-Quant kit
(Roche Diagnostics) was used with a cut-off of 5.0 mg/L, and ESR was measured with the
Test 1 automated analyzer (Alere Healthcare, Seoul, Korea), with a cut-off of 20 mm/h.

2.3. Clinical Validation

To compare between the standard diagnostic approach and machine learning algo-
rithms, we collect the results of thyroid scans and the prescriptions of ATD by the patients’
clinicians during the initial presentation through a retrospective review. These results were
compared with the diagnostic accuracy of Graves’ disease of our machine learning models.

2.4. Statistical Analyses

For descriptive statistics, continuous variables were expressed as mean (standard
deviation), and categorical variables were expressed as number (percentage), and analysis
of variance and chi-square tests were used for comparison between groups. In consideration
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that thyroid autoantibody test results cannot be immediately confirmed, two major analyses
were performed: Model 1 analyzed patient T3, FT4, FT4 to T3 ratio, ESR, and CRP; and
Model 2 added TBII, TSI, TPOAb, and TgAb to the Model 1 variables. Differential diagnosis
accuracy was calculated using seven machine learning algorithms—classification and
regression tree, random forest, linear discriminant analysis, support vector machine, k-
nearest neighbor, naive Bayesian, and neural network. Before the analysis was performed,
all data were randomly divided into 7:3 ratio and 30% of subjects were used as the test set.

Statistical analyses were performed in R version 4.0.5. For the classification and regres-
sion tree analysis (CART), the ‘ctree’ function of the ‘party’ package was used. Random
forest analysis (RF) was performed using the ‘randomForest’ function of ‘randomForest’
package, and ‘varlmpPlot’ functions were used to estimate the prediction significance of
each variable. For linear discriminant analysis (LDA), the ‘lda’ function of the ‘MASS’
package was used, and for the support vector machine (SVM), the ‘svm’ function of the
‘e1071′ package was used. To calculate k-nearest neighbor (kNN), the ‘knn’ function of the
‘class’ package was used, and the ‘e1071′ package with the ‘naiveBayes’ function was used
to evaluate the naive Bayesian (NB). For the neural network (NN), the ‘nnet’ function of
the ‘nnet’ package was used.

3. Results and Discussion
3.1. Baseline Characteristics of the Study Cohort

A total of 230 subjects with thyrotoxicosis was classified into three categories: Graves’
disease (n = 124), painless thyroiditis (n = 65), and subacute thyroiditis (n = 41) (Table 1).
The median age of the study cohort was 47 years, and there was no difference in average
age by disease. In all three disease categories, women had a higher prevalence than men. T3
and FT4 levels were significantly higher in Graves’ disease, ESR and CRP were significantly
higher in subacute thyroiditis, and TBII and TSI were higher in Graves’ disease. TPOAb and
TgAb were positive in 41.5% and 80.0%, respectively, of subjects with painless thyroiditis,
but they were also elevated in about half of patients with Graves’ disease (59.7% and 50.4%).
Clinical characteristics of the study cohort were described in Figure 1.

Table 1. Baseline characteristics of the study cohort.

Graves’ Disease
(n = 124)

Painless Thyroiditis
(n = 65)

Subacute Thyroiditis
(n = 41) p

Age years, mean (SD) 46.89 (14.81) 47.05 (11.30) 51.71 (13.46) 0.132
Female, number (%) 85 (67.7) 53 (81.5) 33 (80.5) 0.070
Thyroid function test

TSH µIU/mL, mean (SD) 0.011 (0.033) 0.040 (0.159) 0.038 (0.091) 0.081
T3 ng/mL, mean (SD) 3.45 (1.75) 1.96 (0.83) 2.08 (0.70) <0.001
FT4 ng/dL, mean (SD) 4.09 (2.15) 2.72 (1.09) 3.12 (1.58) <0.001

Thyroid auto-antibodies
TBII positive, number (%) 116 (93.5) 0 (0.0) 6 (14.6) <0.001
TSI positive, number (%) 111 (89.5) 1 (1.5) 2 (4.7) <0.001
TPOAb positive, number (%) 74 (59.7) 27 (41.5) 5 (11.6) <0.001
TgAb positive, number (%) 62 (50.4) 52 (80.0) 5 (12.2) <0.001

Inflammatory markers
ESR mm/h, mean (SD) 13.39 (11.34) 14.61 (12.26) 66.08 (35.42) <0.001
CRP mg/L, mean (SD) 1.36 (1.80) 1.93 (3.67) 35.46 (58.16) <0.001

SD, standard deviation; TSH, thyroid stimulating hormone; T3, triiodothyronine; FT4, free thyroxine; TBII, TSH
binding inhibitory immunoglobulin; TSI, thyroid stimulating immunoglobulin; TPOAb, anti-thyroid microsomal
antibody; TgAb, anti-thyroglobulin antibody; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein.
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Figure 1. Flow chart of enrolled study subjects.

3.2. Predictive Values of Disease Specific Biomarkers

TBII and TSI yield high accuracy for diagnosing Graves’ disease. ESR had high
sensitivity for subacute thyroiditis, but specificity was low because of high false positive
results. The values of sensitivity, specificity, and accuracy for each biomarker were shown
in Figure 2.
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Figure 2. Accuracy, sensitivity, and specificity of biomarkers (%) for each disease are indicated by bar
graphs. TBII, thyrotropin binding inhibitor immunoglobulin; TSI, thyroid stimulating immunoglobu-
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sedimentation rate; CRP, C-reactive protein * Available only in 149 patients.

3.3. Comparisons of Machine Learning Algorithms

Diagnostic accuracy of seven machine learning algorithms constructed through dif-
ferent statistical methods were evaluated and described in Table 2. The algorithm with
the highest accuracy for both Model 1 and Model 2 was RF. The significant variables were
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CRP and T3 in the decision tree of Model 1 and TBII, CRP, and TgAb in Model 2 (Figure 3),
which were also the most significant variables in RF (Figure 4).

Table 2. Predicted value according to machine learning algorithm using initial blood test results
(Model 1) and including thyroid antibody test results (Model 2).

Accuracy
Classifier

Training Set (n = 161) Test Set (n = 69)

Overall G P S Overall G P S

Model 1

CART 0.74 0.89 0.72 0.87 0.70 0.75 0.62 0.85
RF 0.80 0.82 0.77 0.87 0.70 0.69 0.58 0.85

LDA 0.74 0.79 0.72 0.87 0.70 0.74 0.60 0.85
SVM 0.76 0.80 0.73 0.87 0.65 0.69 0.51 0.85
kNN 0.75 0.73 0.65 0.81 0.67 0.78 0.63 0.70
NB 0.64 0.66 0.54 0.82 0.70 0.67 0.54 0.77
NN 0.74 0.79 0.71 0.87 0.68 0.69 0.58 0.80

Model 2

CART 0.90 0.95 0.93 0.83 0.86 0.91 0.88 0.82
RF 0.98 0.98 0.99 0.97 0.90 0.96 0.90 0.86

LDA 0.91 0.96 0.93 0.86 0.87 0.93 0.88 0.86
SVM 0.92 0.97 0.93 0.87 0.87 0.93 0.88 0.86
kNN 0.82 0.86 0.80 0.89 0.78 0.79 0.75 0.89
NB 0.88 0.94 0.89 0.84 0.84 0.90 0.88 0.81
NN 0.91 0.95 0.95 0.84 0.88 0.92 0.95 0.86

G, Graves’ disease; P, painless thyroiditis; S, subacute thyroiditis; CART, classification and regression tree analysis;
RF, random forest analysis; LDA, linear discriminant analysis; SVM, support vector machine; kNN, k-nearest
neighbor; NB, naive Bayesian; NN, neural network.
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3.4. Clinical Validation Based on the Review of Medical Records

We compared the results of the RF algorithm with the standard diagnostic approach
methods listed in Table 3. When Graves’ disease was diagnosed at the T3 level alone with a
cut-off of 2.01 ng/mL, calculated from the CART model, and the accuracy was 75%. TBII
showed higher accuracy than thyroid scan (94% vs. 82%). Model 2 with comprehensive
information showed the highest accuracy, based on which we proposed that machine
learning can be applied to differential diagnosis of thyrotoxicosis.

Table 3. Clinical validation comparing the standard diagnostic approach and machine learning
algorithms.

Diagnosed as Graves’
Disease

Graves’ Disease
(n = 124)

Painless Thyroiditis
(n = 65)

Subacute Thyroiditis
(n = 41)

Accuracy for Graves’
Disease

T3 † 101 18 17 0.75
TBII 116 0 6 0.94

Thyroid scan * 48/73 1/48 2/32 0.82
Initial ATD Prescription 79 11 3 0.74

RF Model 2 122 0 1 0.96

TBII, Thyrotropin binding inhibitor immunoglobulin; ATD, anti-thyroid drug; RF, random forest. † The cut-
off level was 2.01 ng/mL, and it was defined by classification and decision tree models. * Available only in
153 patients.

4. Discussion

We aimed to improve clinical practice by introducing a machine learning algorithm
as an extension of statistical analysis for differential diagnosis. In our classifiers, accuracy
ranged from 65–70% in Model 1 using only thyroid function test and inflammatory markers,
and it ranged from 78–90% in Model 2 which also included thyroid autoantibody test results.
Among various algorithms, RF showed the highest accuracy (Table 2).

Previous studies analyzed thyroid function test results according to age, sex, and
etiology [9,10]. It has been suggested that T3, T4, and ratio of T3 to total thyroxine (T4) are
high during early-onset Graves’ disease [11,12], which is characterized by an increase in
thyroid hormone production [13]. In the results of this study, T3 level is the most significant
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variable among T3, FT4, and T3 to FT4 ratio in our classification models (Figures 3 and 4).
T3 has been suggested as a parameter to differentiate Graves’ disease from destruction-
induced thyrotoxicosis by previous researchers [14], and it is recommended that T3 levels
be monitored during initial treatment to observe the recovery speed during treatment [15].
The T3 cut-off to discriminate Graves’ disease was 2.01 ng/mL in this study, but when
Graves’ disease was differentiated by T3 alone, the accuracy was as low as 75% (Table 3).

When thyroid antibody tests were added to the classification, TBII and TSI were high-
accuracy tests for diagnosing Graves’ disease, and TBII was the most significant factor for
classifying thyrotoxicosis. The second-generation TBII used in this study measures both
stimulatory and inhibitory antibodies, and TSI could quantify the degree of stimulation
by measuring intracellular cyclic adenosine monophosphate (cAMP) production [16], and
the sensitivity of TSH is generally higher than that of TBII (Figure 2). Therefore, it was
thought that TSI would be more useful in the evaluation of Graves’ disease, and there
are studies showing that the association with eye symptoms [17] and predictive power
of recurrence are higher than that of TBII [18]. However, TSI increases in proportion to
TBII [19], and immunoglobulins that have a blocking role rather than stimulation may also
affect thyroid function [20]. In addition, TSI is complex testing that takes a longer time
to confirm the results, and the accuracy of TSI may vary depending on the methods and
laboratory techniques [21,22]. There is also a controversy over high rates of false negative
results for the pediatric patients [23] and uncertain diagnostic cut-off level in iodine-replete
area [24]. TSI may be helpful in the diagnosis of Graves’ disease with false negative TBII
results (Figure 3), but the variable importance of TBII was higher than that of TSI in the
classification model (Figure 4). Therefore, we suggest that two assays are complementary
to each other in the diagnosis of GD [25].

ESR has been widely used for diagnostic evaluation of subacute thyroiditis [26].
However, CRP performed better than ESR in this study (Figure 2). Although CRP is
not used routinely to diagnose thyroid disease, previous studies have reported that CRP
was positive in patients with subacute thyroiditis compared with those having other
thyroid disorders [27]. Theoretically, CRP increases more rapidly than ESR in early-stage
inflammatory disease, and it is often measured to evaluate inflammatory status in clinical
situations. It might be more appropriate to use CRP rather than ESR to diagnose subacute
thyroiditis, because ESR is a non-specific marker that is affected by patient age, sex, and
renal function [28].

Thyroglobulin (Tg) is produced in the follicular cells of the thyroid gland and is
synthesized as a precursor to thyroid hormone through the action of thyroid peroxidase
(TPO). Autoantibodies for each substance—called anti-Tg-antibody (TgAb) and anti-TPO-
antibody (TPOAb)—tend to be elevated in autoimmune thyroid disease, and are used
in diagnostics [29]. Previous study presumed that TPOAb can be useful for screening
because it has higher sensitivity than TgAb in thyroid dysfunction [30]. However, in
this study, TgAb had superior accuracy compared to TPOAb for painless thyroiditis,
and was confirmed a more significant classification factor (Figures 2–4). Most cases of
painless thyroiditis have a self-limiting course, but subsequent hypothyroidism or recurrent
thyrotoxicosis after the first episode of thyrotoxicosis have been reported [31]. Therefore, the
presence or absence of thyroid autoantibodies can help in diagnosing painless thyroiditis
and may predict prognosis. This study suggests that TgAb is useful in autoimmune thyroid
disease, which is consistent with the thoughts of previous researchers [32]. However,
these antibodies are also increased in Grave’s disease, so they are not specific to painless
thyroiditis [33]. In addition, the sensitivity and specificity of differential diagnoses can vary
depending on case series, and clinicians need to pay attention to their interpretation.

With new developments in computational science, machine learning algorithms are
being used as a way to implement artificial intelligence to support complex decision-making
in many fields of medicine. Algorithms based on existing clinical data that predict diagnoses
will facilitate clinical decision making and can be used for therapeutic interventions. Most
previous studies that used artificial intelligence in clinical thyroid disease research focused
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on thyroid imaging findings. This study is the first to use machine learning in the initial
diagnostic approach for patients with thyrotoxicosis. In thyrotoxicosis study, RF provided
the highest accuracy, similar to the algorithm that provided the best accuracy in RF models
of thyroid nodules in previous studies [34,35]. However, each algorithm may show different
results depending on the characteristics of the data used, adjustment of modeling, statistical
program, and detailed coding.

We employed seven well-known machine learning techniques for analysis. CART is the
most widely used algorithm, and it forms a tree-shaped decision-making plot by selecting
the variable with the lowest classification impurity and performing a binary split. RF is
the model originated from CART, and it is called ‘forest’ because it operates by outputting
average predictions from classifications determined by multiple decision trees formed in
the training process [36]. For kNNs, LDAs, and SVMs, we map the data into space and
then classify each entity. kNN works by grouping objects in order of the closest distance,
hence the name ‘nearest neighbor’. LDA performs classification by finding the optimally
classifiable line, and SVM by finding the hyperplane [37]. SVM using a multidimensional
space is more accurate than LDA because it can predict data outside a normal distribution,
but the algorithm is complex and may be time consuming. NB is a model using conditional
probability in relation to Bayes’ theorem. The probability of predicting classification can be
continuously improved by calculating changing probabilities by learning each individual
as a new event using conditional probability. However, this model relies on a rather
unrealistic assumption that each feature is probabilistically independent. This model
provides a simple and quick judgment and can be used in the diagnosis of diseases on
the assumption that the patient does not have more than one disease [38]. NN is a multi-
layered model resembling the network structure of neurons in the human brain. Such
a multi-layered structure requires adjustment and training of experienced technicians to
ensure sufficient model performance, but is necessary when classifying more complex data
such as audio or images [39].

A limitation of this study is that it was conducted with patients who live in an iodine-
replete environment. In particular, the prevalence of thyrotoxicosis due to toxic nodule
is high [40] and the false-negative rate of scan is low in the iodine-deficient region, and
inputting the results of thyroid scintigraphy to machine learning models can help to
increase the accuracy of the algorithm. Providing the patient’s symptoms—such as neck
pain—as additional information to machine learning can also help to increase the accuracy
of subacute thyroiditis diagnosis. Because this study analyzed a rather small number of
patients using a machine learning tool, there is a risk of overfitting. As this study was
conducted in a single center, the accuracy of our machine learning tool can be improved
with inclusion of additional patients in the model, and external validation is needed for
clinical application.

5. Conclusions

We investigated the laboratory findings of patients who presented with thyrotoxicosis
with machine learning algorithms to perform differential diagnoses. The results of this
study confirmed that early T3 level monitoring is useful for diagnosis of Graves’ disease at
the first manifestation. Additionally, we found that TgAb was elevated in patients with
autoimmune thyroid disease, which is consistent with previous studies; however, these are
the first data which have been presented for thyrotoxicosis patients as far as we know. We
suggest monitor the initial T3 and CRP levels with subsequent confirmation of TBII and
TgAb in the differential diagnosis of thyrotoxicosis.
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