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Abstract: Background: Hyaluronic acid-based filler injections are now well-established aesthetic
procedures for the correction of skin tissue defects and volume loss. Filler injections are becoming
increasingly popular, with a growing number of injections performed each year. Although classified
as a minimally invasive procedure, the introduction of a needle or a canula may remain painful
for the patient. A major improvement was achieved with the incorporation of local anesthetics
into the formulation for pain relief. Methods: In this study, two well-known anesthetics, lidocaine
and mepivacaine, were systematically compared to assess their influence on filler mechanical and
biological features. The impact of each anesthetic was monitored in terms of gel rheological properties,
stability, durability, and degradation. The release profiles of each anesthetic were also recorded.
Finally, the pharmacokinetics of each anesthetic in rats were assessed. Results: For all the rheological
and biological experiments performed, lidocaine and mepivacaine influences were comparable. The
addition of either anesthetic into a soft-tissue filler showed no significant modifications of the stability,
durability, and degradability of the gel, with similar release profiles and pharmacokinetics at an
equivalent concentration. Conclusions: Substituting lidocaine with mepivacaine does not impact the
properties of the gels, and thus both can be equally incorporated as anesthetics in soft-tissue fillers.

Keywords: hyaluronic acid; anesthetics; soft-tissue fillers; lidocaine; mepivacaine; release;
pharmacokinetics

1. Introduction

Nowadays, popular rejuvenation treatments of skin depressions and wrinkles in
aesthetic practice involves injections of soft-tissue fillers, including mostly crosslinked
hyaluronic acid (HA)-based gels, within different skin tissue layers and at different lo-
cations via the aid of needles or cannulas. Even though this nonsurgical procedure is
characterized as minimally invasive, the injection may nevertheless remain painful for
the patient, particularly in certain indications such as lips remodeling, due to facial tissue
disruption generating nerve responses. Pain management is therefore a key point for
clinicians to satisfy their patients during the procedure [1,2]. A substantial evolution of
HA fillers came in the 2000s with the introduction of anesthetics in the gel formulations to
minimize discomfort to the patient [2].

Among the library of local anesthetics, amino ester local anesthetics were first synthe-
sized between 1891 and 1930, such as tropocaine, eucaine, holocaine, orthoform, benzocaine,
and tetracaine [3], but these local anesthetics were often associated with poor stability due
to the hydrolysis of the ester linkage [4]. Later, the amino–amide family of anesthetics,
including lidocaine, articaine, mepivacaine, bupivacaine, and ropivacaine, emerged with
enhanced chemical stability [4] and are still commonly used for pain management during
minor surgery or more invasive procedures.

Amino–amide anesthetics are classically composed of a lipophilic aromatic ring and
a hydrophilic tertiary amine linked together with an amide bond [5,6]. Lidocaine, the
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first amino–amide-type local anesthetic, was first synthesized under the name ‘xylocaine’
by Swedish chemist Nils Löfgren in 1943. Later, in 1957, af Ekenstam et al. synthesized
mepivacaine and bupivacaine, both very similar in structure and associated with longer
anesthetic durations than lidocaine [7]. With the exception of articaine, each amino–amide
anesthetic preserved the 2,6-xylidine aromatic ring and varied in the tertiary amine with a
diethylamino moiety for lidocaine and an alkyl-piperidine ring with, respectively, a methyl
for mepivacaine, a propyl for ropivacaine, and a butyl moiety for bupivacaine. Novel local
anesthetics, such as liposomal preparations, animal toxins, vanilloids, or polymers, are
currently in development [8].

The mechanism of action of these local anesthetics lies in the reversible and concentration-
dependent inhibition of sensory neuronconduction via the inactivation of voltage-gated
sodium channels in the neuronal membrane [9,10]. By this process, nociceptive fibers’
depolarization is inhibited, which in consequence prevents the afferent transmission of
pain impulses [8]. Topical anesthetic mixtures or nerve blocks may be used prior to soft-
tissue filler injection procedures to further improve pain management, but to date, there
are no clear guidelines [11]. Since 2005, lidocaine has been successfully introduced at 0.3%
in weight into HA fillers and is now commercially used worldwide. A recent meta-analysis
compiled the pain, effectiveness, and safety outcomes for the treatment of nasolabial
folds (NLF) with HA fillers in presence or absence of 0.3% w/w lidocaine extracted from
12 randomized clinical trials. The pain, assessed using the visual analogue scale (VAS),
was lower in the lidocaine group whereas the clinical effectiveness of the NLF treatment,
assessed using the wrinkle severity rating scale (WSRS), or the safety of the procedure
reported in frequency of mild and transient adverse events such as injection site swelling,
erythema, bruising, itching, or induration, did not exhibit any statistical differences [12].
Similarly, other amino–amide anesthetics, such as articaine, mepivacaine, and bupivacaine,
have already been tested for dental anesthesia [13–15] and could be envisaged into HA
fillers as local anesthetics.

In this study, mepivacaine was investigated as a potential new local anesthetic agent to
be used in HA fillers to replace lidocaine. The choice of mepivacaine is notably encouraged
by its lower vasodilatory activity compared to lidocaine, with mepivacaine tending to
either preserve or decrease peripheral blood flow, keeping a lower systemic concentration
of mepivacaine over time, which would turn out to be an additional safety aspect [16–18].
The influence of this anesthetic agent was then compared to the gold standard lidocaine
in terms of filler mechanical properties, stability, degradability, release profiles, and phar-
macokinetics. Such data are especially useful for a better evaluation of the safety and the
performance of mepivacaine-loaded fillers compared to their lidocaine counterparts and,
as such, are relevant for the registration of the device.

2. Materials and Methods
2.1. Hyaluronic Acid-Based Fillers

HA-based fillers PNT-1, intended to correct superficial fine lines, and PNT-4, used
subcutaneously or in deep fat compartments as a volumizer, were chosen among the Teosyal
RHA® collection manufactured by Teoxane SA, Switzerland. Teosyal RHA® fillers are
manufactured using the Preserved Network Technology (PNT) aimed to ensure mild HA
crosslinking conditions to lower their degradation compared to conventional crosslinking
processes and enable low amounts of crosslinker to be used [19,20]. The characteristics
and the intended use of PNT-1 and PNT-4 are presented in Table 1. Lidocaine HCl or
mepivacaine HCl were added to each formulation at the concentration of 0.3% wt/wt for
comparison purpose. The gels were manufactured following identical processes and steam
sterilized prior to further use.
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Table 1. Intended use and composition of the investigated gels.

Product
Abbreviation

Indications
(May Differ Depending on the

Country and Local Market
Approvals; You Can Refer to the

IFU for Further Details)

(HA) (mg/mL) Degree of
Modification (%)

Anesthetic Content
(% w/w)

PNT-1 Superficial dynamic filler 15 2.0 0.3
PNT-4 Dynamic volumizer 23 4.0 0.3

The rheological characteristics of the fillers were assessed using a DHR-2 rheometer
(TA Instruments, New Castle, DE, USA). The elastic modulus and the phase angle were
measured with a cone–plate geometry (1◦, stainless steel, 40 mm diameter, 24 µm gap) at
1 Hz and a stress of 5 Pa at 25 ◦C using 0.5 g of gel. The Stretch score was determined using
a creep test and measured with a rough parallel plate geometry (stainless steel, 25 mm,
500 µm gap) under a constant stress of 5 Pa at 25 ◦C over 15 min. The injection force was
measured using a force tester MultiTest-dV (Mecmesin, Slinfold, UK,) using 30 G 1/2 ’ and
27 G 1/2 ’ needles for PNT-1 and PNT-4, respectively, at a constant speed of 12.5 mm/s.
Every measurement was performed three times in the same batch.

2.2. Shelf-Life Stability Studies of HA-Based Fillers in Presence of Lidocaine or Mepivacaine

The shelf-life stability of sterilized PNT-1 and PNT-4 formulated either with lidocaine
or mepivacaine was assessed in a controlled-atmosphere chamber at 25 ◦C and 60% relative
humidity. As a product specification, the phase angle, δ, was monitored over 36 months. At
each timepoint, 3 syringes from different batches were collected and rheologically assessed
using a DHR-2 rheometer (TA Instruments, New Castle, USA) equipped with a cone–plate
geometry (1◦, stainless steel, 40 mm diameter, 24 µm gap). The phase angle δ was measured
at 1 Hz and a stress of 5 Pa at 25 ◦C.

2.3. Release Profiles of Lidocaine and Mepivacaine from HA-Based Fillers

The release test was performed using a method developed in accordance with USP
1724—semisolid drug products—performance test. Immersion cells (model B) placed in
150 mL vessels and assembled with USP apparatus 2 (Dissolutest Hanson Vision Elite 8,
Teledyne Instruments, Chatsworth, CA, USA) were filled with 600 mg of gel (1.8 mg of
anesthetic in each cell). Gel surface was covered with a hydrophilic 0.45 µm polyethersul-
fone membrane (Supor® 450, Pall, Basel, Switzerland). Vessels were filled at 150 mL with
phosphate buffer at pH 7.3 to ensure sink conditions and the set up was thermostatically
controlled at 37 ◦C and stirred at 100 rpm. An amount of 1.5 mL of release medium were
retrieved after 15, 60, 120,180, 240, 300, and 360 min and released lidocaine or mepivacaine
were quantified by HPLC-UV at 230 nm. The HPLC setup (Hitachi, Tokyo, Japan) was
composed of an XBridge Shield RP18 column (Waters, Milford, CO, USA) and a phos-
phate buffer/acetonitrile 50/50 mobile phase set a flow rate of 1.0 mL/min. Each test was
performed in triplicate.

2.4. Degradation of Gels in Presence of High and Low Doses of Hyaluronidase

The gel in vitro kinetics of degradation were monitored over time using a DHR-2
rheometer (TA Instruments, New Castle, DE, USA) and in the presence of hyaluronidase.
The loss of the viscoelastic properties of the gels, for instance the elastic modulus, G′,
were followed until complete degradation of the gels. By varying the number of units
of hyaluronidase, it was possible to either investigate the gel capacity to readily degrade
in case of an adverse event (fast degradation test with high doses of enzyme) or the gel
persistence (persistence test with low doses of enzyme). For the fast degradation test, 1 g of
PNT-1 or 0.5 g of PNT-4 was homogenized with 50 µL of hyaluronidase (Hyaluronidase
1500 I.E., Wockhardt UK Ltd., Wrexham, UK, 70 U/g for PNT-1 and 140 U/g for PNT-4)
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through 20 successive extrusions in syringes interconnected with a luer-lock. The gel was
then equilibrated at 37 ◦C between a cone–plate geometry (anodized aluminum, 1◦, 40 mm,
24 µm gap) for 1 min before the measurement of G′ over time at a stress of 5 Pa and a
frequency of 1 Hz. Every 5 min, the hyaluronidase solution was refreshed with a new
50 µL aliquot added on top of the gel until complete degradation. The same protocol was
implemented for the persistence test except that a lower activity of enzyme was introduced
every 5 min (Hylase “Dessau” 150 I.E., Riemser Pharma GmbH, Greifswald, Germany,
7 U/g of gel) to observe any difference in the gel’s mechanical performances over time. The
gels were considered as fully degraded once their G′ dropped under 30 Pa. Below this limit,
the gels were liquefied and not properly assessed in the conditions of the measurement.
Each test was performed in triplicate.

2.5. In Vivo Investigations
2.5.1. Animals

PNT-4 gels with either lidocaine hydrochloride or mepivacaine hydrochloride were
injected once intradermally in 9–11-week-old male and healthy Sprague–Dawley rats
(n = 24, 355–430 g, Charles River, Sulzfeld, Germany) at a concentration of 1 g/kg and
at 6 different locations on their back. The experiment was performed in an AAALAC-
accredited laboratory and in accordance with German animal protection law, subjected
to Ethical Review Process, accepted by local authority, and authorized by the Bavarian
animal welfare administration. The animals were housed in groups of 3 in a humidity,
temperature-controlled, and air-conditioned individually ventilated cages under artificial
light, with a 12/12 h light/dark cycle. The animals were acclimated at least for 5 days
under laboratory conditions and had free access to standard food and water. During the
course of the experiment, animals were daily checked for any clinical sign of toxicity.

2.5.2. Pharmacokinetics of Lidocaine and Mepivacaine in Rats after Intradermal
Filler Injection

Two groups (n = 12 for each group) of rats were injected with the 2 PNT-4 formulations
containing either lidocaine or mepivacaine. Each group was divided into 4 subgroups
(n = 3 for each subgroup) for the different blood sampling timepoints (3 timepoints for each
subgroup). Each subgroup was used for 3 blood sampling timepoints from the sublingual
vein under slight anesthesia (isoflurane) right before injection and at 5, 30 min, 1, 2, 4,
6, 12, 24, and 48 h. An amount of 500 µL of blood were sampled in K2-EDTA-coated
tubes, centrifuged for 10 min at 4 ◦C and 1000× g. After centrifugation, 140 µL of plasma
was retrieved and plasma concentrations of lidocaine and mepivacaine were analyzed
using a validated LC (Acquity UPLC I-Class, Waters, Milford, CO, USA) MS/MS (Xevo
TQ-S, Waters, Milford, CO, USA) method. Pharmacokinetic parameters, including time to
reach max concentration (Tmax) and elimination half-life (t1/2), were calculated using a
noncompartmental analysis for extravascular administration and obtained using Phoenix
WinNonLin® software (version 8.0, Certara, Princeton, NJ, USA).

3. Results
3.1. HA Fillers

The mechanical properties of the studied fillers were assessed as a first readout after
final packaging and sterilization within syringes. The elastic modulus, G′, characterizing
the elastic behavior of the gel in nearly static conditions and the phase angle, δ, probing the
ratio of the viscous and the elastic behaviors of the gels (viscous/elastic ratio) are reported in
Table 2, as well as the Strength and the Stretch scores [19]. The Strength is a two-dimension
parameter which probes the elastic modulus G′ and the range of deformations or stresses
the gel can withstand without losing its structure and fully recover, namely, the Linear
Viscoelastic Region (LVER). Meanwhile, the Stretch scores the rate of the deformation of a
gel submitted to a stress, i.e., the higher the Stretch is, the more the gel may accommodate
more naturally and rapidly to facial expressiveness. The Strength score as well as the
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G′ were higher for PNT-4 than PNT-1, meaning that PNT-4 presented a higher elastic
behavior, suitable for deeper indications to lift tissues. PNT-1, on the other hand, presented
a higher Stretch score compared to PNT-4, which confirmed that PNT-1 is well adapted to
the superficial dynamic areas of the skin. Upon comparison of lidocaine and mepivacaine,
no statistical variations were observed between both formulations for either PNT-1 or
PNT-4, and, moreover, they remained well within the products’ specifications, meaning
that the addition of 0.3% lidocaine or mepivacaine within the commercial fillers PNT-1 and
PNT-4 did not impact the rheological properties of each product. Thus, the addition of
either anesthetic does not impair their balanced mechanical characteristics (softness and
stretchability for PNT-1, stiffness and cohesivity with a large LVER for PNT-4), making
them adapted for dynamic areas of the face. In addition, both gels exhibited low extrusion
forces independently of the use of lidocaine or mepivacaine, which should make them easy
to inject by the healthcare practitioners.

Table 2. Mechanical properties of the investigated gels.

Product Name Anesthetic
Strength

(Elastic Modulus G′;
LVER) (Pa; Pa)

Measured Phase
Angle, δ (◦) Extrusion Force (n) Stretch (10−6 s−1)

PNT-1
Lidocaine 69 ± 5; 76 ± 6 21.0 ± 0.9 13.9 ± 0.9 952 ± 206

Mepivacaine 76 ± 2; 80 ± 1 21.3 ± 0.5 15.7 ± 0.9 1080 ± 29

PNT-4
Lidocaine 262 ± 11; 306 ± 9 7.3 ± 0.5 9.5 ± 0.2 49 ± 3

Mepivacaine 259 ± 3; 300 ± 2 6.9 ± 0.0 9.6 ± 0.3 48 ± 9

3.2. Shelf-Life Stability Studies of HA-Based Fillers in Presence of Lidocaine or Mepivacaine

The shelf-life stability of the products in presence of lidocaine or mepivacaine showed
identical trends over a storage period of 3 years (Figure 1). The key rheological parameter
phase angle, δ, did not show any significant differences between both the lidocaine and
mepivacaine groups. Moreover, the phase angles remained well within the product specifi-
cations of each filler over three years, which guarantee to the practitioner and the patient
the same clinical outcomes within the use-by date.
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each timepoint, 3 syringes were evaluated for each group. Results are expressed as means ± SD.
No significant variations were observed when comparing the products with either anesthetic, since
the difference remained centered around 0. In each case, both groups maintained their rheological
properties within their specifications over 3 years of storage, which makes these fillers deliver their
optimal clinical outcomes within the use-by date.

3.3. Release Study of Lidocaine and Mepivacaine from HA-Based Fillers

The in vitro release profiles of lidocaine and mepivacaine from PNT-1 and PNT-4
were monitored over time in phosphate buffer (Figure 2). All curves presented similar
shapes, with all mepivacaine curves trending slightly steeper than lidocaine’s, suggesting a
potential clinical benefit of mepivacaine-containing gels of a faster access to the anesthetic
effects. Nevertheless, each datapoint was proven to be not significantly different from each
other using a Fisher test F2, meaning that the lidocaine and mepivacaine release profiles
were considered equivalent. All formulations almost reached complete release after 6 h in
the conditions of the test.
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Figure 2. Release profiles of lidocaine and mepivacaine from PNT-1 and PNT-4. For each time point,
and for each formulation, 3 gels were evaluated. Results are expressed as means ± SD. Complete
release is almost reached after 6 h in the conditions of the test. Lidocaine and mepivacaine release
profiles showed very similar trends and were considered equivalent, since no significance was
observed between the different formulations at each time point. The significance was evaluated with
a Fisher test F2.

3.4. Degradation of Gels in Presence of High and Low Doses of Hyaluronidase

Two experiments were conducted in parallel: a fast degradation test in the presence of
high doses of enzyme and a gel persistence test in the presence of low doses of enzyme.
The purpose of the fast degradation study was to observe any impact of lidocaine or
mepivacaine on the propensity of the gels to readily degrade in the presence of high doses of
hyaluronidase, mimicking a potential need to dissolve the gel in the case of serious adverse
events such as vascular occlusion, in case of overcorrection, or in case of undesired aesthetic
results. The fast degradation data are presented in Figure 3A. Both PNT-1 and PNT-4
exhibited fast degradation within 5 min in the presence of a saturated dose of hyaluronidase,
and no differences were observed between the lidocaine and mepivacaine formulations. It
is noteworthy that the G′ values of each gel started well below their initial G′ values due to
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the fast degradation occurring during the incorporation of the enzyme and the temperature
equilibration time of the rheometer. The persistence test was subsequently carried out in
the presence of low, repeat doses of hyaluronidase (Figure 3B). This test might mimic the
long-term degradation of gels in presence of endogenous hyaluronidase, but in an in vitro
accelerated manner, to distinguish potential differences. As expected, PNT-4 presented
a slower degradation than PNT-1 consistently with its higher HA concentration, degree
of modification, and, as a consequence, higher clinical duration [19,21–23]. Once again,
the use of lidocaine or mepivacaine did not influence the persistence of the investigated
gels. Under the same conditions of degradation, even though they started from separated
production batches, PNT-4 with lidocaine fully degraded after 37.7 ± 3.2 min, whereas
PNT-4 with mepivacaine degraded after 36.3 ± 1.4 min. Similarly, PNT-1 with lidocaine
lasted 11.2 ± 1.4 min, whereas PNT-1 with mepivacaine lasted 10.7 ± 0.7 min.
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Figure 3. Enzymatic degradation test of PNT-1 and PNT-4 in presence of lidocaine or mepivacaine.
(A) Fast degradation test with a high enzyme dose. The test highlighted the rapidness of degradation
(5 min) of PNT-1 and PNT-4 with no influence of the anesthetic, which is mandatory for these kinds
of medical devices in case of adverse events. (B) Persistence test with multiple low enzyme doses.
This test showed similar behaviors of the gels either with lidocaine or mepivacaine, suggesting a
similar clinical duration for each formulation either with lidocaine or mepivacaine. Each test was
performed on 3 different HA gels for each formulation (n = 3). No significance was noticed between
lidocaine and mepivacaine formulations.

3.5. Phamarcokinetics of Lidocaine and Mepivacaine after Intradermal Filler Injection in Rats

Prior to the in vivo assessment of the gels with the different anesthetics, PNT-1 and
PNT-4 gels with lidocaine or mepivacaine were tested on- L-929 Mouse Fibroblast cells
to determine their cytotoxicity via an MTS assay according to the ISO 10993-5 guidelines
(data not shown). None of the investigated gel formulations presented toxicity towards
fibroblasts, and importantly, no statistical differences were observed between both lidocaine
and mepivacaine groups.

The pharmacokinetic behavior of lidocaine and mepivacaine were assessed after
intradermal injection of the gels in rats. Neither mortality nor any clinical findings were
noticed throughout the period of the treatment in both groups. The mean body weights
of the animals remained stable, highlighting the tolerance of the treatments. The plasma
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concentrations of both anesthetics showed a rapid increase and decrease (Figure 4). The
calculated pharmacokinetic parameters related to the lidocaine and mepivacaine treatments
showed a slightly shorter absorption (Tmax) and a greater Cmax (Table 3) for lidocaine.
The maximal concentration was obtained at 30 min for lidocaine and 1 h for mepivacaine.
Oppositely, the AUC was slightly higher for mepivacaine than for lidocaine, demonstrating
a greater exposure to mepivacaine. After 24 h, the plasmatic concentrations of both groups
were below the lower levels of quantification set at 50 and 20 pg/mL for lidocaine and
mepivacaine, respectively. The apparent half-life was 1.4 h and 1.9 h for lidocaine and
mepivacaine, respectively, and the elimination of mepivacaine was thus slightly longer
than of lidocaine.
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Figure 4. Pharmacokinetics curves of lidocaine and mepivacaine in rat plasma from PNT-4. PNT-4
gels were injected intradermally into rats. After a quick release of anesthetic in the plasma in the
first hour, a rapid decrease of the plasma concentrations of both anesthetics was observed for 6 h.
Lidocaine appeared in the plasma first and reached a higher maximum concentration compared
to mepivacaine, while the mepivacaine plasma concentration was sustained for a longer duration
compared to lidocaine. However, no statistical differences were observed between formulations at
any timepoint. Three repeated measurements (n = 3) were carried out for each condition. Results are
expressed as means ± SD.

Table 3. Pharmacokinetic parameters for lidocaine and mepivacaine after intradermal injection of
PNT-4 with lidocaine and mepivacaine in rats.

Treatment T1/2 (h) TMAX (h) CMAX (ng/mL) AUC (ng. h/mL)

PNT-4 with lidocaine 1.4 0.50 291.7 430.2
PNT-4 with mepivacaine 1.9 1.00 259.3 475.4

4. Discussion

Local anesthetics in soft-tissue fillers typically represent 0.3% w/w of the composition
of a commercial filler and are of paramount importance for pain management during
and shortly after the injection procedure, and thus have an impact on patient satisfaction.
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Nowadays, almost all the manufacturers commercialize their products with an anesthetic,
lidocaine being the most frequently used. Moreover, the addition of lidocaine in fillers does
not impact the gel’s safety and effectiveness profiles [1,2], and the HA gel network does not
influence lidocaine’s pharmacokinetics [24]. Here, a series of comparative investigations
has been conducted on PNT-1 and PNT-4 fillers formulated with one of two different
anesthetics, lidocaine and mepivacaine. The rheology of the fillers, which is widely used
to characterize products and sort them into specific indications, was assessed in order to
evaluate any influence of each anesthetic on the mechanical performance of the finished
gels. In vitro and in vivo biological evaluations were also conducted to observe any impact
of the anesthetics on the degradation profiles of the gels.

PNT-1 and PNT-4 presented distinct rheological properties specifically adapted to
their respective intended clinical uses. In neither case did lidocaine nor mepivacaine
significantly change the properties of the finished gels: all the rheological parameters
of each gel remained well within their specifications and close to each other. The slight
variations were more likely inherent to the inter-batch variability of the gel manufacturing.
Before releasing a gel on the market, a series of different standardized testing must be
conducted to monitor three key attributes: stability, safety, and performance. In terms of
stability, the real-time shelf-life stability was assessed according to ICH guidelines. Soft-
tissue fillers are designed to be stable over 2 to 3 years. In other words, their specifications,
including mechanical properties, must remain within the specified values at least over the
shelf-life specified on the product’s packaging to guarantee optimal and consistent clinical
outcomes and safety. Despite the fact that it is well established that HA is highly sensitive
to chemical, biological, and physical stimulations (pH, temperature, oxidative stresses, UV
light, and enzymes), the properties can be stabilized through chemical crosslinking [25].

Via the comparative 36-month stability study, of which the results are presented
here, mepivacaine-containing gels exhibited no difference in behavior when compared to
lidocaine-containing gels, which confirms the compatibility of mepivacaine with long-term
storage at room temperature. The limited variation of the gel’s rheological properties over
the years remained well within the product specifications to ensure optimal outcomes what-
ever the date of use within the use-by date and is thoroughly monitored by manufacturers.

In terms of safety, the products were of course tested via a library of biocompatibility
preclinical tests with respect to ISO 10993 standards, and afterwards by clinical trials. Even
though possible but rare side effects can occur, a plethora of literature evidence demon-
strates that HA fillers have a favorable benefit/risk profile [23,26,27]. The incorporation of
lidocaine was also already proven to not adversely affect the safety profile of soft-tissue
fillers [1,12]. Here, we demonstrated that there was no influence of the anesthetics, lido-
caine or mepivacaine, in the preclinical susceptibility of the gels to be degraded by the
hyaluronidase, traditionally used by practitioners as the standard antidote to HA fillers in
case of adverse events, and which is the endogenous and predominant degrading enzyme
of hyaluronic acid [25,28]. Mepivacaine thus acts as a reliable candidate to be incorporated
in soft-tissue fillers for pain relief when considering these properties, as already demon-
strated in dentistry [16], along with the fact it confers a reduced risk of systemic toxic
reactions due to its lower lipid solubility (1.322 at pH = 7.4) compared to lidocaine (1.633 at
pH = 7.4) [29]. The larger risk related to the use of anesthetics in fillers actually concerns
patients suffering from allergic reactions in contact to amid-type anesthetics, which remains
extremely rare [30].

In terms of performance, there was no difference in the impact of mepivacaine on
the rheological properties of the gel compared to the lidocaine version. There was only a
nonsignificant trend in the pharmacokinetics of these anesthetics favoring mepivacaine.
It was notably observed that lidocaine reaches its maximum released concentration at a
slightly earlier time compared to mepivacaine, with no statistical differences. Furthermore,
mepivacaine presents a slightly longer half-life, meaning that the drug has to some extent
a longer duration of action, in line with the literature [31]. This might be due to the
consequence that mepivacaine exerts a less potent vasodilatory effect compared to lidocaine,
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thus resulting in less systemic absorption [5,16,17]. In addition, it is noteworthy that the
values of mean plasma concentration are somewhat lower compared to the administered
amount, in the order of 0.3 µg/mL for the maximum concentration observed. This is in
line with the role of these local anesthetics, which should act around the injection site and
not diffuse into the systemic circulation, before being naturally metabolized via several
biotransformations [32,33].

These preclinical data were further confirmed by two randomized, double-blinded
clinical trials proving the noninferiority of mepivacaine compared to lidocaine in terms of
pain reduction. The clinical gel performance and safety were proven to be unaffected by the
presence of lidocaine or mepivacaine [34]. Efforts were also being put forth to analyze the
stability of mepivacaine itself in gels, as well as its potential degradation products via the
development of analytical methods. These data will be the object of a separate publication.

5. Conclusions

Lidocaine and mepivacaine are two effective and helpful short-acting amide local
anesthetics commonly used for topical and local anesthesia. They allow for intraoperative
anesthesia and analgesia with a rapid onset and a convenient duration of action suitable
for pain management during and in the period after the injection of fillers. The use of
mepivacaine instead of lidocaine in the tested gels, adapted for intradermal and subcu-
taneous injection indications, did not impair their characteristics and properties in terms
of preclinical safety, stability, and performance. Furthermore, no meaningful differences
were detected when one anesthetic was used instead of the other, suggesting there were no
issues in the use of one of these drugs in hyaluronic acid soft-tissue filler such as the RHA
collection. Considering there is some evidence suggesting that mepivacaine has a lower
vasodilatory activity than lidocaine, there may be clinical benefits making it an appropriate
candidate to replace lidocaine in pain relief during hyaluronic acid filler injection.
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