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Abstract

Correspondence Building a covariate model is a crucial task in population pharmacokinetics and
Gémfldine Ayrell’ Lixoft, 8 rue de la pharmacodynamics in order to understand the determinants of the interindividual
renaissance, Bat D, 92160 Antony,

France. variability. Identifying a good covariate model usually requires many runs. Several
Email: geraldine.ayral @lixoft.com procedures have been proposed in the past to automatize this task. The most com-
monly used is Stepwise Covariate Modeling (SCM). Here, we present a novel step-
wise method based on statistical tests between individual parameters sampled from
their conditional distribution and the covariates. This strategy, called the COnditional
Sampling use for Stepwise Approach based on Correlation tests (COSSAC), makes
use of the information contained in the current model to choose which parameter-
covariate relationship to try next. This strategy greatly reduces the number of co-
variate models tested, while retaining on its search path the models improving the
log-likelihood (LL). In this article, we detail the COSSAC method and its implemen-
tation in Monolix, and evaluate its performance. The performance was assessed by
comparing COSSAC to the traditional SCM method on 17 representative data sets.
For the large majority of cases (15 out of 17), the final covariate model is identical
(11 cases) or very similar (4 cases with LL differences less than 3.84) with both pro-
cedures. Yet, COSSAC requires between 2 to 20 times fewer runs than SCM. This
represents a decisive speed up, especially for models that take long to run and would

not be tractable using the SCM method.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

Current covariate search methods are very costly in computational time, difficult to
implement, or rely on subjective preselection of covariates.

WHAT QUESTION DID THIS STUDY ADDRESS?

What are the principles of the COnditional Sampling use for Stepwise Approach
based on Correlation tests (COSSAC) covariate search method and how does it com-
pare to the standard Stepwise Covariate Modeling (SCM) method?
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ageable with SCM.

INTRODUCTION

The population pharmacokinetic/pharmacodynamic (PK/
PD) approach focuses on the characterization of the typical
shape of the observations and of its interindividual variabil-
ity. This variability can often be partly related to patient char-
acteristics, called covariates. Identifying and quantifying the
relationships between covariates and the model parameters
allows to better understand the drug behavior and improve
the accuracy of model predictions.

Typical data sets can have tens of covariates and PK/PD
models a couple of parameters, which makes it impossible to
test all possible covariate models. Thus, several procedures
have been developed over the years to explore the space of
covariate models.'?

The most common approach is Stepwise Covariate
Modeling (SCM).* SCM is a stepwise procedure, with a for-
ward selection followed by backward elimination. In the for-
ward selection, each possible covariate addition is tested in
turn, the one improving the likelihood the most is kept, and
the addition of a second covariate is tested, etc. Although the
simplicity of the method is appealing, it is computationally
expensive as it is prone to combinatorial explosion.

To reduce the number of tested models, several methods
have been proposed“"7 (Appendix S1). Among those, we find
the generalized additive model (GAM) method® particularly in-
teresting. It uses the empirical Bayes estimates (EBEs) obtained
in the base run to identify a candidate covariate model. A linear
regression is built iteratively between the EBEs and the covari-
ates. This linear regression does not require running the popula-
tion model and is computationally fast. The candidate model is
then implemented in the population PK/PD model and run. The
main drawback of GAM is that it relies on the EBEs. The in-
formativeness of the EBEs is poor when the individual data are
sparse, because the EBEs shrink toward the population value.’
In this situation, inferences based on EBEs can be misleading.

To circumvent the drawbacks of the EBEs, the use of ran-
dom samples from the conditional distribution of each indi-
vidual has been suggested.10 For each individual, a sample
represents a plausible value for the individual parameters, al-
though not the most probable one. These samples are spread
over the entire marginal distribution of individual parame-
ters and do not suffer from shrinkage. They can be used to
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WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?

The COSSAC method yields identical or very similar final covariate models as SCM
but requires far fewer iterations.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?

The tremendous speedup of the COSSAC method allows to apply an automated and
systematic procedure to computationally intensive models which would not be man-

perform unbiased statistical tests for which the type I error is
correctly controlled. 10

Our novel procedure called COnditional Sampling use for
Stepwise Approach based on Correlation tests (COSSAC)
exploits these reliable statistical tests to identify correla-
tions between individual parameters and covariates. This
information is used to choose which parameter-covariate re-
lationship to add in the model, in a stepwise manner, with
an alternance of forward and backward steps. In this article,
we present the COSSAC procedure and compare it to the
standard SCM procedure on a representative set of exam-
ples. COSSAC is implemented in Monolix, together with the
SCM, covSAMBA-COSSAC,"" and SAMBA '? approaches.

METHODS

The COSSAC procedure relies on the correlations between the
covariates and the individual parameters sampled from the con-
ditional distributions. We first explain how these correlations
are calculated, then describe the COSSAC procedure step-by-
step and finally explicit its implementation in Monolix.

Correlation tests between covariates and
individual parameters

Conditional distribution sampling

Correlation tests between the conditional expectation of the
parameters and the covariates are unbiased. Thus, we esti-
mate the conditional expectation by a Monte Carlo approach
(Appendix S2). This is done by sampling several random
effects (called replicates) from each individual conditional
distribution and averaging them.

Forward step

For continuous covariates, a Pearson correlation test is per-
formed between the replicates averaged random effects and the
covariates. The test statistic is compared to a t-distribution with
N-2 degrees of freedom with N the number of individuals. For
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categorical covariates, a one-way analysis of variance (ANOVA)
is performed on the averaged random effects. When the covariate
has more than two categories, the ANOVA procedure tests if at
least one is significantly different from the others. These tests are
performed for each pair of random effects and covariates, leading
to one p value for each. It indicates the strength of the correlation
between the covariate and a parameter random effects.

Backward step

Once covariates are included in the model, we would like
to detect covariates bringing redundant information, which
are not needed in the model. For this, pairwise correlation
tests, as presented above, are not appropriate (Appendix S1).
Instead, we perform a linear regression between the covari-
ates and the parameters and test whether the estimated 8
coefficients are significantly different from zero. A z-test is
used, comparing the statistic % to a t-distribution with N-
nc-1 degrees of freedom, with ne the number of coeffi-
cients and *(?) the estimated standard error obtained by
least squares estimation during the regression. The calcula-
tions are very fast and yield one beta coefficient and
p value for each relationship with a continuous covariate,
and one beta and p value per category (apart from the refer-
ence category) for categorical covariates. As above, sam-
ples from the conditional distribution are used and averaged
overreplicates. An example is provided in the Appendix S1.

The COSSAC procedure
COSSAC is an iterative stepwise procedure. It alternates be-
tween deletions of covariates (backward) and additions of

START
Initial Model

l

2xNO on same model?

covariates (forward). The choice of the parameter-covariate
relationship to test for addition or removal is based on the
p values of the correlation tests. For covariate additions,
we first try relationships with small p values indicating sig-
nificant correlations between the covariates and the random
effects. Covariates with p values above a threshold, which
have very weak or no correlation with the random effects,
are not tested at all. For covariate removals, we try to remove
relationships with large p values, where the contribution of
the relationship is uncertain. After model estimation, the ad-
dition or removal of a covariate is accepted according to a
likelihood-based criterion, for instance, the likelihood ratio
test (LRT). If addition or removal is accepted, this consti-
tutes the new current run from which we will try to add and
remove further covariates.

Below, we detail each step of the COSSAC procedure,
which is also depicted in Figure 1. To ease the reading, we
use the default threshold values and acceptance criterion
of Monolix but these values can be modified. The run of a
model corresponds to the estimation of the population pa-
rameters, the estimation of the log-likelihood (—2LL abbre-
viated as LL), the sampling of individual parameters from
the conditional distributions, and the calculation of the cor-
relation tests. An iteration is generally composed of several
runs and a new iteration starts once a run is accepted.

At each iteration:

For iteration 1, start with the backward step. For the subse-
quent iterations, start with the step opposite to the previous one.

Backward step:

e Correlation test p values for parameter-covariates relation-
ships already included in the model, which are above 0.01,
are ranked from largest to smallest.

END

NO

Final Model

—

Is there any correlation for covariates included in the model
which has not been tested yet and with a p-value > 0.01?

Is there any correlation for covariates not included in the model
which has not been tested yet and with a p-value < 0.3?

YES /

Remove relationship with largest
p-value from the model and run
LLincrease < 6.6?

Nc/ \(ES

Go on with new model
Start new iteration

Back to previous
model

FIGURE 1
procedure. LL stands for —2 times the log-likelihood

~—

\rss

Add relationship with smallest
p-value to the model and run
LL reduction > 3.8?

ves / \NO

Go on with new model
Start new iteration

Back to previous
model

Scheme of the COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC) covariate model building
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e For each possible relationship starting with the one with
the largest p value:

o Remove the relationship and run the corresponding
model.

m If the increase of the LL is smaller than 6.635 (corre-
sponding to a p value of the LRT of 0.01), accept the
removal of the relationship, and start a new iteration
with this run.

m Otherwise, discard the run and test the next relation-
ship in p value order.

o If no relationship with correlation test p value above 0.01
remains to be tested, move to the forward step. If all for-
ward and backward candidates have been tested, stop.

Forward step:

e Correlation test p values for parameter-covariate rela-
tionships not yet in the model, which are below 0.3,
are ranked from smallest to largest.

e For each possible relationship starting with the one with
the smallest p value:

o Add the relationship and run the corresponding model.
m If the reduction of the LL is larger than 3.841 (corre-
sponding to a p value of the LRT smaller than 0.05),
accept the addition of the relationship, and start a
new iteration with this run.
m Otherwise, discard the run and test the next relation-
ship in p value order.
o If no relationship with correlation test p value below 0.3
remains to be tested, move to backward step. If all for-
ward and backward candidates have been tested, stop.

When the addition or removal of a covariate leads to a
model which has already run, the model is not re-run and the
likelihood value is read directly.

In the ensemble of runs of a COSSAC procedure, most of
the runs come from a forward step. Most forward candidates
are accepted, except at the end of the COSSAC procedure
where remaining weaker correlations are also tested. The al-
ternance of forward and backward steps avoids being trapped
in a suboptimal path.l’n’14

Implementation in Monolix

We here describe the implementation of COSSAC in
Monolix, which can be launched from the GUI or via the
lixoftConnectors R package. Note that the implementation in
the R package Rsmlx is a less efficient beta version of the
procedure. The sampling from the conditional distribution is
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described in the Appendix S1, as well as additional imple-
mentation details.

In the “model building” tab of Monolix (version 2019 and
above), the SCM and COSSAC procedures are available to
automatically build the covariate model. The settings include:

o Method: COSSAC or SCM (among others).

e Parameter-covariate relationships to test: The user can se-
lect the covariates and the parameters to test. In addition,
each parameter-covariate relationship can also be set as “to
test,” “always included,” or “always excluded.”

e Criterion for acceptance: LRT or corrected Bayesian
Information Criteria (BICc, asymptotically consistent for
nonlinear mixed effect models').

e Thresholds for LRT: Thresholds on the LRT p values, one
for the forward step (default 0.05, corresponding to a 3.841
points difference in the LL) and one for the backward step
(default 0.01, corresponding to a 6.635 points difference).

e Thresholds for correlations: Thresholds on the correlation
test p values, one for the forward step (default 0.3) and one
for backward (default 0.01).

e Method to calculate the likelihood: Via linearization (de-
fault) or importance sampling.

For parameters without random effects, it is not possible
to calculate the correlations between covariates and random
effects. Thus, it is not possible to apply the COSSAC pro-
cedure. In Monolix, parameters without random effects are
tested using SCM, once the COSSAC procedure on the pa-
rameters with random effects has finished.

COSSAC versus SCM

In COSSAC, relationships which are the most likely to improve
the likelihood (as indicated by the correlation tests) are tested
first. In addition, as soon as a relationship improves the likeli-
hood sufficiently (according to the criterion) it is accepted, and
additional relationships are tested on top. On the opposite, with
SCM, all possible relationships are tested and the one improv-
ing the likelihood the most is taken as the basis for the next
addition. Furthermore, SCM proceeds with forward steps first
followed by backward steps, whereas COSSAC switches be-
tween forward and backward frequently.

RESULTS
Step-by-step example

To illustrate the functioning of the COSSAC algorithm, we
first present the procedure step-by-step on a small data set of
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warfarin PK with few covariates.'® For comparison, the SCM
procedure is also run on the same data set.

The data set contains plasma concentration measurements
for 32 individuals after a single oral dose of 1.5 mg/kg body
weight. There are 6 to 13 observations per individual, 247
in total. Three covariates have been recorded: age, sex, and
weight. A one-compartment model with delayed first-order
absorption and linear elimination (parameters lag time of
absorption [Tlag], absorption rate constant [ka], volume [V],
and clearance [Cl]) properly captures the data. All parameters
have random effects. This constitutes the base run, the start-
ing point for the covariate model building.

The continuous covariates age and weight (WT) are
log-transformed and centered. Only the log-transformed
counterparts, which correspond to power-law relationships
(Appendix S2), are tested. All covariates (logAge, logWT,
and sex) are tested on all parameters (Tlag, ka, V, and CI).
The default Monolix settings are used, except that the LRT
threshold of the backward steps is set to 0.05 (same as for-
ward) to mirror the SCM implementation in PsN'7 (Perl mod-
ules to aid Nonmem usage). Files to reproduce this example
are provided (Appendix S2).

COSSAC procedure

All information used during the procedure is depicted
in Figure 2 and a scheme of the run series is provided in
Figure 3a.

Initialization

e Run 1 (base model): LL = 653.7

Iteration 1 — 1 run

For the first run, we start with the backward step. As the
model does not include covariates, the backward step is
skipped, and we proceed to the forward step. The p values of
the correlation tests between the random effects and covari-
ates are shown in Figure 2. Four relationships’ p values are
below the 0.3 threshold and logWT on the volume V has the
smallest p value. This relationship is thus added in the model
for the next run.

e Run 2 with logWT on V: LL = 627.5.

This model leads to an LL of 627.5, which corresponds to
a decrease of 26.2 points, larger than the 3.841 LRT thresh-
old. The model is accepted, and a new iteration starts with
this run as a basis.

Iteration 2 — 1 run

As the previous step was forward, we start analyzing run 2
with the backward step. The p value for beta_V_logWT, the
only relationship included in the model is 2.45e-8, below the
0.01 threshold, so we do not try to remove it.

We proceed to the forward step of run 2. Two relation-
ships are below the 0.3 threshold and logWT on the CI has
the smallest p value. This relationship is thus added in the
model for the next run.

e Run 3 with logWT on V, logWT on Cl: LL = 622.4.

Run 3 corresponds to a decrease in LL of 5.1 points, larger
than the 3.841 LRT threshold. The logWT on Cl relationship
is accepted and a new iteration starts.

Iteration 3 — 1 run

We start with the backward check of run 3. One p value for the
correlations of relationships already included in the model is
above 0.01 threshold, that for logWT on Cl. Removing logWT
on Cl from run 3 actually corresponds to run 2, which has al-
ready run and was shown to be worse than run 3.

No untested candidates remain for the backward step, so
we proceed to the forward step. One relationship is below the
0.3 threshold: l1ogAGE on CI. This relationship is thus added
in the model for the next run.

e Run 4 with logWT on V, logWT on Cl, logAGE on CI:
LL =618.1.

This model leads to an LL of 618.1, which corresponds
to an improvement of 4.3 points, larger than the 3.841 LRT
threshold. The 1ogAGE on Cl relationship is accepted.

Tteration 4 — 3 runs

As the previous step was forward, we start with the back-
ward step on run 4. Two p values for the correlations of re-
lationships already included in the model are above the 0.01
threshold, that for logAGE on Cl and for logWT on Cl. We
start with the larger one, logAGE on CI. Removing it would
correspond to run 3, which was shown to be worse than run
4. We thus try to remove the second candidate, logWT on CI,
as the next run.

e Run 5 with logWT on V, logAGE on CI: LL = 623.9.

Compared with run 4, the LL has increased by 5.8
points, which corresponds to a significant worsening,
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Backward step Forward step Covariate model tested
Run 1 (base model)
Tlag ka \" cl
SEX
Initialization logAGE
logWT
LL=653.7
Run1 Run1 Run 2
Tlag ka Y cl eta_Tlag| eta_ka | eta_V | eta_Cl Tlag ka Vv cl
lter. 1 SEX SEX 0.740 0.519|1.16E-04 0.516 SEX
— |logAGE logAGE 0.542 0.816 0.874 0.084 logAGE
logWT logWT 0.424 0.387|4.26E-07 0.024 logWT v
No relationships to remove => no backward logWT on V has the smallest p-value LL=627.5, ALL=-26.2 < -3.841
=> added for the next run #2 =>1ogWT on V accepted
Run 2 Run 2 Run 3
Tlag ka Vv cl eta_Tlag| eta_ka | eta_V | eta_Cl Tlag ka Y cl
ter. 2 SEX SEX 0.480 0.496 0.506 0.532 SEX
— |logAGE logAGE 0.890 0.704 0.651 0.086 logAGE
logWT 2.45E-08 logWT 0.815 0.444 0.030 logWT v v
All p-val < 0.01 => no backward logWT on Cl has the smallest p-value LL=622.4, ALL=-5.1 < -3.841
=> added for the next run #3 =>logWT on Cl accepted
Run 3 Run 3 Run 4
Tlag ka Vv cl eta_Tlag| eta_ka | eta_V | eta_Cl Tlag ka Vv cl
lter. 3 SEX SEX 0.312 0.414 0.511 0.358 SEX
— |logAGE logAGE 0.819 0.602 0.748 0.037 logAGE 4
logWT 4.37E-08 0.025| |logWT 0.742 0.826 logWT v v
pval logWT on CI>0.01 => already tested (run 2) logAGE on Cl has the smallest p-value LL=618.1, ALL=-4.3 <-3.841
=> added for the next run #4 =>|ogAGE on Cl accepted
Run 4 Run 5
Tlag ka Vv Cl Tlag ka Vv Cl
SEX SEX
Iter. 4
—— |logAGE 0.035 logAGE v
logWT 2.66E-08 0.011 logWT 4
pval logAGE on Cl > 0.01 => already tested (run 3) LL=623.9, ALL=5.8 > 3.841
pval logWT on Cl > 0.01 => removed in the next run #5 =>removal of logWT from Cl not accepted.
Back to run 4, backward step
Run 4 Run4 Run 6
Tlag ka \" cl eta_Tlag| eta_ka | eta_V | eta_Cl Tlag ka \" cl
SEX SEX 0.218 0.816 0.506 0.517 SEX v
logAGE 0.035| |logAGE 0.650 0.390 0.879 logAGE v
logWT 2.66E-08 0.011| |logWT 0.594 0.243 logWT v 4
All pval > 0.01 already tested => no backward SEX on Tlag has the smallest p-value LL=617.3, ALL=-0.8 > -3.841
=> added for the next run #6 => addition of SEX on Tlag not accepted.
Back to run 4, forward step
Run 4 Run 7
eta_Tlag| eta_ka [ eta_V | eta_Cl Tlag ka Vv cl
SEX 0.218 0.816] 0.506 0.517 SEX
logAGE 0.650( 0.390| 0.879 logAGE v
logWT 0.594( 0.243 logWT v v v

Color legend:

[ Jabove (if Fi/below (if B) threshold
l:lalready tested
:l not yet tested
l:lwill be tested in next run

SEX on Tlag already tested
logWT on ka has the second smallest p-value
=> added for the next run #7

Run 4

eta_Tlag| eta_ka | eta_V | eta_Cl
SEX 0.218 0.816| 0.506 0.517
logAGE 0.650 0.390 0.879
logWT 0.594 0.243

All pval < 0.3 already tested => STOP

LL=617.0, ALL=-1.1 >-3.841
=> addition of logWT on ka not accepted.
Back to run 4, forward step

FIGURE 2 Step-by-step COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC) procedure on the warfarin

example with three covariates (log weight [logWT], logAGE, and SEX) and a four-parameter model (lag time of absorption [Tlag], absorption rate
p g welg g g p g p g p

constant [ka], volume [V], and clearance [Cl]). At each iteration, covariates are checked for removal (backward step), and covariates are checked

for addition (forward step). At each new run, the log-likelihood (LL) change is assessed. If a run is accepted, a new iteration starts. The correlation

test p value thresholds are 0.3 in forward and 0.01 in backward. The likelihood ratio test p value threshold is 0.05 in both directions, corresponding

to a difference of 3.841 LL points. Correlation test p values below the forward threshold or above the backward threshold are colored in yellow if it

has already been tested, in light orange if it has not yet been tested, and in dark orange if it will be tested in the next run
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(@) COSSAC procedure

Iter1-1run
Run 1: Base model Run 2: WT-V
(no covariates) ALL =-26.2

Iter2—-1run

Run 3: WT-V, WT-CI

ALL=-5.1

() SCM procedure

Iter 1-F—12 runs Iter 2—F—11runs

ALL=-0.6 WT-V, AGE-Tlag
ALL=-0.3
ALL=0.1 WT-V, WT-Tlag
ALL=-0.5
ALL=0.2 WT-V, SEX-Tlag
AGEka ALL=-0.9
AlL=-1.1 WT-V, AGE-ka
WTka ALL=-0.9
AlL=-09 WT-V, WT-ka
SExka ALL=-0.6
ALL=-0.1 WT-V, SEX-ka
no covariates AGE-V ALL=-0.3
/ WT-V, AGE-V
WTV ALL=-0.8
ALL=-26.2 |\ WT-V, SEX-V
SEXV ALL=-13
ALL=-14.9 WT-V, AGE-Cl
AGECI ALL=-3.5
ALL=-3.4 WT-V, WT-CI
Wil ALL=-5.1
ALL=-5.8 WT-V, SEX-CI
SEX-CI ALL=-0.7
ALL=-1.1

Legend:

]
]

i

Models accepted Models tested

i Backward runs

Forward runs

]

Iter 4 -3 runs

Iter 3—1run

Run 4: WT-V, WT-Cl, AGE-CI
ALL=-4.3

WT-V, WT-Cl, AGE-Cl, SEX-Tlag
ALL=-0.8

Run 7: WT-V, WT-Cl, AGE-CI, WT-Tlag
ALL=-1.1

Iter 3—F—10 runs Iter 4—F -9 runs

WT-V, WT-Cl, AGE-Tlag
ALL=0.2

WT-V, WT-CI, AGE-Cl, AGE-Tlag

WT-V, WT-Cl, WT-Tlag ALL=-0.7
ALL=-0.4 WT-V, WT-Cl, AGE-Cl, WT-Tlag ’
WT-V, WT-Cl, SEX-Tlag AlL=-13
ALL=-0.8 WT-V, WT-Cl, AGE-Cl, SEX-Tlag ‘
WT-V, WT-Cl, AGE-ka AlL=-08
ALL=-0.5 WT-V, WT-Cl, AGE-CI, AGE-ka
WT-V, WT-Cl, WT-ka ALL=-0.7
ALL=-0.6 WT-V, WT-Cl, AGE-Cl, WT-ka
AlL=-1.1

WT-V, WT-CI, SEX-ka
ALL=0.9

WT-V, WT-Cl, AGE-V

WT-V, WT-Cl, AGE-Cl, SEX-ka
ALL=-1.0

WT-V, WT-Cl, AGE-Cl, AGE-V ‘

ALL=-0.8

WT-V, WT-Cl, SEX-V ALL=0.3
ALL=-1.0 WT-V, WT-Cl, AGE-Cl, SEX-V

WT-V, WT-Cl, AGE-CI AlL=-12
A==t WT-V, WT-Cl, AGE-Cl, SEX-CI

WT-V, WT-Cl, SEX-CI | \ AlL=-21
AlL=-1.7

Iter5-B-1run

Models tested but
which have already run

FIGURE 3 Tree-view of the runs performed on the warfarin example with the COnditional Sampling use for Stepwise Approach based on

Correlation tests COSSAC) procedure (a) and the Stepwise Covariate Modeling (SCM) procedure (b). Selected models are colored in green, tested

models in white, and models tested but which have already run in grey

above the 3.841 threshold. The removal of logWT from Cl
is not accepted and we go back to run 4 (which has already
run). In run 4, all possible backward candidates have been
tested.

We proceed to the forward step. Two relationships are
below the 0.3 threshold: SEX on Tlag and logWT on ka. We
start with the smallest p value and add SEX on Tlag for the
next run.

e Run 6 logWT on V, logWT on Cl, logAGE on Cl, SEX on
Tlag: LL = 617.3.

This model leads to an LL of 617.3, which corresponds
to an improvement of 0.8 point, smaller than the 3.841 LRT
threshold. The SEX on Tlag relationship is not accepted and
we go back to run 4. In run 4, the second relationship to test
is logWT on ka, it is added for the next run.

e Run 7 1ogWT on V, logWT on Cl, logAGE on Cl, logWT
onka: LL =617.0.

The LL improvement is only 1.1 points, not enough to
accept logWT on ka. There are no remaining relationships
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with correlation p value below 0.3. All backward and for-
ward candidates have been tested, so the COSSAC procedure
stops. The final model is run 4.

SCM procedure

The SCM procedure is described in the Appendix S2 and de-
picted in Figure 3b. In brief, during the first iteration, all 12
possible models are run and logWT on V is accepted, then
the remaining 11 candidates are run and logWT on Cl is ac-
cepted, etc.

Comparison

Both procedures lead to the same final covariate model and
have taken the same path of accepted models. The COSSAC
procedure requires 6 runs (base run excluded) whereas 43 are
needed with SCM.

Performance evaluation of COSSAC
versus SCM

To assess the performance of the COSSAC procedure com-
pared to the SCM procedure, we have applied both routines
to a collection of 17 representative datasets. They comprise
PK, PK/PD, and disease models. Most of them are continu-
ous data but we have also included one time-to-event data
set and one count data example. Some data sets are dense,
whereas others are sparse. The number of parameters vary
from two to nine, whereas the number of covariates vary
from two to eight. Many examples contain covariates that are
strongly correlated with each other. An overview of the data
set characteristics is given in Table 1 and Monolix projects
and settings are provided in the Appendix S2.

All data sets are real (not simulated) for which the “true”
covariate model is unknown. The COSSAC and SCM proce-
dures are compared in terms of number of runs, final covari-
ate model obtained, final LL, and BICc." The run duration
varies only very slightly with the number of covariate effects
to estimate (Appendix S1). The total computational time of
the covariate search procedure is thus proportional to the
number of runs.

All results are presented in Table 1. The first observation
is that the COSSAC procedure completes in much fewer runs
than SCM. The reduction in the number of runs varies from
twice fewer for models with few possible relationships to
more than 20 times fewer for realistic data sets with many co-
variates, such as the data set provided by the ASCPT Grand
Prix modeling challenge. An approximate formula for the dif-
ference in the number of runs can be derived (Appendix S1).

ASCPT

The difference grows linearly with the number of parameters
and the number of covariates, and decreases with the square
of the number of relationships.

Out of the 17 data sets, 11 of them result in the exact same
final covariate model after COSSAC and after SCM. They
correspond to data sets with few relationships in the final
model. Four further datasets lead to slightly different models,
but for which the difference in LL is small, less than 3.84
points.

For one run (remifentanil seqPD), the SCM method finds
a model with one additional relationship (IogAGE on EO)
compared to COSSAC, which leads to an 8.4 points better
LL. This better model is not tested by COSSAC because lo-
2AGE on EO improves the LL only once covariates have been
added on the gamma parameter, which has no variability and
is tested after all others only. Running COSSAC again at the
end would resolve the discrepancy but comes at a substan-
tial cost in terms of runs. A similar situation happens for the
Verapamil PK example.

On the opposite, for the model-informed drug develop-
ment (MIDD) dataset, COSSAC finds a model that is 40
points better than SCM. The path of accepted runs taken by
both methods is the same for the four first covariate additions.
For the fifth, SCM adds nDiseases on the first order degrada-
tion rate (kg,) (largest LL decrease) and no further addition
leads to a sufficient LL improvement. COSSAC adds logWT
on Clr (smallest correlation p value). The LL improvement
of this addition is smaller than that of nDiseases on kg, but
this turns to be an advantage afterward, as the end-stage renal
disease (ESRD) on Cl and logALB on renal clearance (Clr)
can be added as additional significant covariates.

DISCUSSION

This paper presents a novel covariate model building proce-
dure, which offers many advantages. First, it is systematic
and does not depend on a subjective preselection of covari-
ates. Second, its implementation is relatively easy and, con-
trary to the lasso or FREM, does not require to modify the
covariate encoding. Finally, it requires only a limited number
of runs, much fewer than the widely used SCM method.

One of the key characteristics of COSSAC is the use of
correlation tests between the individual parameters sam-
pled from the conditional distribution and the covariates.
Importantly, these correlation tests are fast to calculate and
necessitate only the base (or current) run. In addition, these
tests are not subject to shrinkage bias and are reliable, be-
cause they use samples from the conditional distributions
rather than the modes (EBES).IO In COSSAC, the cor-
relation test p-values are used to select which parameter-
covariate relationship will be added and evaluated first. This
is very efficient because the p-values are good predictors
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of the LL improvement obtained when the corresponding
relationship is added to the model. Note that ranking the
p-values is equivalent to ranking the correlation coefficients
(Appendix S1). Tested relationships are thus accepted most
of the time. When the pvalues are sufficiently different from
each other, their order reflects the order of LL improvement
obtained when adding the covariates in a univariate manner.
In this case, COSSAC and SCM are taking the same path
of accepted models, except that COSSAC tries only the best
relationship, whereas SCM tests all possible relationships.
Thus, in the MIDD example, COSSAC adds the first four
covariates in four runs. SCM adds the same 4 covariates but
requires 282 runs. When the two smallest p-values are close,
their order can by chance be the same or opposite than that
of the LL improvement. This is, for instance, the case when
two covariates are strongly correlated with each other. In this
case, the paths taken by SCM and COSSAC can be differ-
ent but with very similar LL improvements. At a given step,
SCM will always select the addition leading to the largest LL
improvement whereas COSSAC may not. This may (or may
not) lead to a better final model, as in the MIDD example.

We have tested the COSSAC procedure on all nonconfi-
dential data sets in our hands. Among the 17 data sets, the
majority leads to the same final covariate model proposed
by COSSAC and SCM (11 cases) or to very similar models
with almost the same LL and BICc" (4 cases). Yet, COSSAC
requires, on average, seven times fewer runs to complete.
The gain in number of runs is especially large when there
are many possible relationships (i.e., number of parameters
times number of covariates) but only a few are retained in the
final model. On the opposite, parameters without random ef-
fects cannot be assessed via COSSAC. In the Monolix imple-
mentation, SCM is used for them. Therefore, models having
parameters with and without variability show only an inter-
mediate speedup compared to SCM. To avoid the costly SCM
on parameters without variability, one option is to consider a
small fixed variability (for instance 5%) on these parameters.

As SCM, COSSAC is a stepwise procedure, which re-
peatedly applies a likelihood ratio test to assess the benefits
of the added covariates. In general, stepwise procedures are
known to be prone to selection bias (i.e., overestimation of
the effects of the selected covariates). In the population PK/
PD field, some authors have reported a high selection bias
with SCM, especially for small data sets,18 whereas others
have concluded it is only minor in a typical realistic covari-
ate search setting.19 One can expect the selection bias to be
similar with SCM and COSSAC. Its precise quantification
deserves further investigation but is out of the scope of this
article. We have also not attempted to evaluate type I and type
I errors using simulated data sets. This will be addressed in
a separate work.

The large speedup in computation time offered by
COSSAC compared to the standard SCM method makes it an

appealing method, especially for complex models with long
run time or data sets with many covariates. We believe that
its efficient implementation in Monolix will contribute to its
spreading in the community.
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