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Abstract
Building a covariate model is a crucial task in population pharmacokinetics and 
pharmacodynamics in order to understand the determinants of the interindividual 
variability. Identifying a good covariate model usually requires many runs. Several 
procedures have been proposed in the past to automatize this task. The most com-
monly used is Stepwise Covariate Modeling (SCM). Here, we present a novel step-
wise method based on statistical tests between individual parameters sampled from 
their conditional distribution and the covariates. This strategy, called the COnditional 
Sampling use for Stepwise Approach based on Correlation tests (COSSAC), makes 
use of the information contained in the current model to choose which parameter-
covariate relationship to try next. This strategy greatly reduces the number of co-
variate models tested, while retaining on its search path the models improving the 
log-likelihood (LL). In this article, we detail the COSSAC method and its implemen-
tation in Monolix, and evaluate its performance. The performance was assessed by 
comparing COSSAC to the traditional SCM method on 17 representative data sets. 
For the large majority of cases (15 out of 17), the final covariate model is identical 
(11 cases) or very similar (4 cases with LL differences less than 3.84) with both pro-
cedures. Yet, COSSAC requires between 2 to 20 times fewer runs than SCM. This 
represents a decisive speed up, especially for models that take long to run and would 
not be tractable using the SCM method.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Current covariate search methods are very costly in computational time, difficult to 
implement, or rely on subjective preselection of covariates.
WHAT QUESTION DID THIS STUDY ADDRESS?
What are the principles of the COnditional Sampling use for Stepwise Approach 
based on Correlation tests (COSSAC) covariate search method and how does it com-
pare to the standard Stepwise Covariate Modeling (SCM) method?
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INTRODUCTION

The population pharmacokinetic/pharmacodynamic (PK/
PD) approach focuses on the characterization of the typical 
shape of the observations and of its interindividual variabil-
ity. This variability can often be partly related to patient char-
acteristics, called covariates. Identifying and quantifying the 
relationships between covariates and the model parameters 
allows to better understand the drug behavior and improve 
the accuracy of model predictions.

Typical data sets can have tens of covariates and PK/PD 
models a couple of parameters, which makes it impossible to 
test all possible covariate models. Thus, several procedures 
have been developed over the years to explore the space of 
covariate models.1,2

The most common approach is Stepwise Covariate 
Modeling (SCM).3 SCM is a stepwise procedure, with a for-
ward selection followed by backward elimination. In the for-
ward selection, each possible covariate addition is tested in 
turn, the one improving the likelihood the most is kept, and 
the addition of a second covariate is tested, etc. Although the 
simplicity of the method is appealing, it is computationally 
expensive as it is prone to combinatorial explosion.

To reduce the number of tested models, several methods 
have been proposed4–7 (Appendix S1). Among those, we find 
the generalized additive model (GAM) method8 particularly in-
teresting. It uses the empirical Bayes estimates (EBEs) obtained 
in the base run to identify a candidate covariate model. A linear 
regression is built iteratively between the EBEs and the covari-
ates. This linear regression does not require running the popula-
tion model and is computationally fast. The candidate model is 
then implemented in the population PK/PD model and run. The 
main drawback of GAM is that it relies on the EBEs. The in-
formativeness of the EBEs is poor when the individual data are 
sparse, because the EBEs shrink toward the population value.9 
In this situation, inferences based on EBEs can be misleading.

To circumvent the drawbacks of the EBEs, the use of ran-
dom samples from the conditional distribution of each indi-
vidual has been suggested.10 For each individual, a sample 
represents a plausible value for the individual parameters, al-
though not the most probable one. These samples are spread 
over the entire marginal distribution of individual parame-
ters and do not suffer from shrinkage. They can be used to 

perform unbiased statistical tests for which the type I error is 
correctly controlled.10

Our novel procedure called COnditional Sampling use for 
Stepwise Approach based on Correlation tests (COSSAC) 
exploits these reliable statistical tests to identify correla-
tions between individual parameters and covariates. This 
information is used to choose which parameter-covariate re-
lationship to add in the model, in a stepwise manner, with 
an alternance of forward and backward steps. In this article, 
we present the COSSAC procedure and compare it to the 
standard SCM procedure on a representative set of exam-
ples. COSSAC is implemented in Monolix, together with the 
SCM, covSAMBA-COSSAC,11 and SAMBA12 approaches.

METHODS

The COSSAC procedure relies on the correlations between the 
covariates and the individual parameters sampled from the con-
ditional distributions. We first explain how these correlations 
are calculated, then describe the COSSAC procedure step-by-
step and finally explicit its implementation in Monolix.

Correlation tests between covariates and 
individual parameters

Conditional distribution sampling

Correlation tests between the conditional expectation of the 
parameters and the covariates are unbiased. Thus, we esti-
mate the conditional expectation by a Monte Carlo approach 
(Appendix  S2). This is done by sampling several random 
effects (called replicates) from each individual conditional 
distribution and averaging them.

Forward step

For continuous covariates, a Pearson correlation test is per-
formed between the replicates averaged random effects and the 
covariates. The test statistic is compared to a t-distribution with 
N−2 degrees of freedom with N the number of individuals. For 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The COSSAC method yields identical or very similar final covariate models as SCM 
but requires far fewer iterations.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
The tremendous speedup of the COSSAC method allows to apply an automated and 
systematic procedure to computationally intensive models which would not be man-
ageable with SCM.
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categorical covariates, a one-way analysis of variance (ANOVA) 
is performed on the averaged random effects. When the covariate 
has more than two categories, the ANOVA procedure tests if at 
least one is significantly different from the others. These tests are 
performed for each pair of random effects and covariates, leading 
to one p value for each. It indicates the strength of the correlation 
between the covariate and a parameter random effects.

Backward step

Once covariates are included in the model, we would like 
to detect covariates bringing redundant information, which 
are not needed in the model. For this, pairwise correlation 
tests, as presented above, are not appropriate (Appendix S1). 
Instead, we perform a linear regression between the covari-
ates and the parameters and test whether the estimated β 
coefficients are significantly different from zero. A t-test is 
used, comparing the statistic β̂

se(β̂)
 to a t-distribution with N-

nC-1 degrees of freedom, with nC the number of coeffi-
cients and se

(

β̂
)

 the estimated standard error obtained by 
least squares estimation during the regression. The calcula-
tions are very fast and yield one beta coefficient and  
p value for each relationship with a continuous covariate, 
and one beta and p value per category (apart from the refer-
ence category) for categorical covariates. As above, sam-
ples from the conditional distribution are used and averaged 
over replicates. An example is provided in the Appendix S1.

The COSSAC procedure

COSSAC is an iterative stepwise procedure. It alternates be-
tween deletions of covariates (backward) and additions of 

covariates (forward). The choice of the parameter-covariate 
relationship to test for addition or removal is based on the 
p values of the correlation tests. For covariate additions, 
we first try relationships with small p values indicating sig-
nificant correlations between the covariates and the random 
effects. Covariates with p values above a threshold, which 
have very weak or no correlation with the random effects, 
are not tested at all. For covariate removals, we try to remove 
relationships with large p values, where the contribution of 
the relationship is uncertain. After model estimation, the ad-
dition or removal of a covariate is accepted according to a 
likelihood-based criterion, for instance, the likelihood ratio 
test (LRT). If addition or removal is accepted, this consti-
tutes the new current run from which we will try to add and 
remove further covariates.

Below, we detail each step of the COSSAC procedure, 
which is also depicted in Figure 1. To ease the reading, we 
use the default threshold values and acceptance criterion 
of Monolix but these values can be modified. The run of a 
model corresponds to the estimation of the population pa-
rameters, the estimation of the log-likelihood (−2LL abbre-
viated as LL), the sampling of individual parameters from 
the conditional distributions, and the calculation of the cor-
relation tests. An iteration is generally composed of several 
runs and a new iteration starts once a run is accepted.

At each iteration:
For iteration 1, start with the backward step. For the subse-

quent iterations, start with the step opposite to the previous one.

Backward step:

•	 Correlation test p values for parameter-covariates relation-
ships already included in the model, which are above 0.01, 
are ranked from largest to smallest.

F I G U R E  1   Scheme of the COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC) covariate model building 
procedure. LL stands for −2 times the log-likelihood
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•	 For each possible relationship starting with the one with 
the largest p value:

◦	 Remove the relationship and run the corresponding 
model.
▪	 If the increase of the LL is smaller than 6.635 (corre-

sponding to a p value of the LRT of 0.01), accept the 
removal of the relationship, and start a new iteration 
with this run.

▪	 Otherwise, discard the run and test the next relation-
ship in p value order.

◦	 If no relationship with correlation test p value above 0.01 
remains to be tested, move to the forward step. If all for-
ward and backward candidates have been tested, stop.

Forward step:

•	 Correlation test p values for parameter-covariate rela-
tionships not yet in the model, which are below 0.3, 
are ranked from smallest to largest.

•	 For each possible relationship starting with the one with 
the smallest p value:

◦	 Add the relationship and run the corresponding model.
▪	 If the reduction of the LL is larger than 3.841 (corre-

sponding to a p value of the LRT smaller than 0.05), 
accept the addition of the relationship, and start a 
new iteration with this run.

▪	 Otherwise, discard the run and test the next relation-
ship in p value order.

◦	 If no relationship with correlation test p value below 0.3 
remains to be tested, move to backward step. If all for-
ward and backward candidates have been tested, stop.

When the addition or removal of a covariate leads to a 
model which has already run, the model is not re-run and the 
likelihood value is read directly.

In the ensemble of runs of a COSSAC procedure, most of 
the runs come from a forward step. Most forward candidates 
are accepted, except at the end of the COSSAC procedure 
where remaining weaker correlations are also tested. The al-
ternance of forward and backward steps avoids being trapped 
in a suboptimal path.1,13,14

Implementation in Monolix

We here describe the implementation of COSSAC in 
Monolix, which can be launched from the GUI or via the 
lixoftConnectors R package. Note that the implementation in 
the R package Rsmlx is a less efficient beta version of the 
procedure. The sampling from the conditional distribution is 

described in the Appendix S1, as well as additional imple-
mentation details.

In the “model building” tab of Monolix (version 2019 and 
above), the SCM and COSSAC procedures are available to 
automatically build the covariate model. The settings include:

•	 Method: COSSAC or SCM (among others).
•	 Parameter-covariate relationships to test: The user can se-

lect the covariates and the parameters to test. In addition, 
each parameter-covariate relationship can also be set as “to 
test,” “always included,” or “always excluded.”

•	 Criterion for acceptance: LRT or corrected Bayesian 
Information Criteria (BICc, asymptotically consistent for 
nonlinear mixed effect models15).

•	 Thresholds for LRT: Thresholds on the LRT p values, one 
for the forward step (default 0.05, corresponding to a 3.841 
points difference in the LL) and one for the backward step 
(default 0.01, corresponding to a 6.635 points difference).

•	 Thresholds for correlations: Thresholds on the correlation 
test p values, one for the forward step (default 0.3) and one 
for backward (default 0.01).

•	 Method to calculate the likelihood: Via linearization (de-
fault) or importance sampling.

For parameters without random effects, it is not possible 
to calculate the correlations between covariates and random 
effects. Thus, it is not possible to apply the COSSAC pro-
cedure. In Monolix, parameters without random effects are 
tested using SCM, once the COSSAC procedure on the pa-
rameters with random effects has finished.

COSSAC versus SCM

In COSSAC, relationships which are the most likely to improve 
the likelihood (as indicated by the correlation tests) are tested 
first. In addition, as soon as a relationship improves the likeli-
hood sufficiently (according to the criterion) it is accepted, and 
additional relationships are tested on top. On the opposite, with 
SCM, all possible relationships are tested and the one improv-
ing the likelihood the most is taken as the basis for the next 
addition. Furthermore, SCM proceeds with forward steps first 
followed by backward steps, whereas COSSAC switches be-
tween forward and backward frequently.

RESULTS

Step-by-step example

To illustrate the functioning of the COSSAC algorithm, we 
first present the procedure step-by-step on a small data set of 



322  |      AYRAL et al.

warfarin PK with few covariates.16 For comparison, the SCM 
procedure is also run on the same data set.

The data set contains plasma concentration measurements 
for 32 individuals after a single oral dose of 1.5 mg/kg body 
weight. There are 6 to 13 observations per individual, 247 
in total. Three covariates have been recorded: age, sex, and 
weight. A one-compartment model with delayed first-order 
absorption and linear elimination (parameters lag time of 
absorption [Tlag], absorption rate constant [ka], volume [V], 
and clearance [Cl]) properly captures the data. All parameters 
have random effects. This constitutes the base run, the start-
ing point for the covariate model building.

The continuous covariates age and weight (WT) are 
log-transformed and centered. Only the log-transformed 
counterparts, which correspond to power-law relationships 
(Appendix  S2), are tested. All covariates (logAge, logWT, 
and sex) are tested on all parameters (Tlag, ka, V, and Cl). 
The default Monolix settings are used, except that the LRT 
threshold of the backward steps is set to 0.05 (same as for-
ward) to mirror the SCM implementation in PsN17 (Perl mod-
ules to aid Nonmem usage). Files to reproduce this example 
are provided (Appendix S2).

COSSAC procedure

All information used during the procedure is depicted 
in Figure  2 and a scheme of the run series is provided in 
Figure 3a.

Initialization

•	 Run 1 (base model): LL = 653.7

Iteration 1 – 1 run

For the first run, we start with the backward step. As the 
model does not include covariates, the backward step is 
skipped, and we proceed to the forward step. The p values of 
the correlation tests between the random effects and covari-
ates are shown in Figure 2. Four relationships’ p values are 
below the 0.3 threshold and logWT on the volume V has the 
smallest p value. This relationship is thus added in the model 
for the next run.

•	 Run 2 with logWT on V: LL = 627.5.

This model leads to an LL of 627.5, which corresponds to 
a decrease of 26.2 points, larger than the 3.841 LRT thresh-
old. The model is accepted, and a new iteration starts with 
this run as a basis.

Iteration 2 – 1 run

As the previous step was forward, we start analyzing run 2 
with the backward step. The p value for beta_V_logWT, the 
only relationship included in the model is 2.45e-8, below the 
0.01 threshold, so we do not try to remove it.

We proceed to the forward step of run 2. Two relation-
ships are below the 0.3 threshold and logWT on the Cl has 
the smallest p value. This relationship is thus added in the 
model for the next run.

•	 Run 3 with logWT on V, logWT on Cl: LL = 622.4.

Run 3 corresponds to a decrease in LL of 5.1 points, larger 
than the 3.841 LRT threshold. The logWT on Cl relationship 
is accepted and a new iteration starts.

Iteration 3 – 1 run

We start with the backward check of run 3. One p value for the 
correlations of relationships already included in the model is 
above 0.01 threshold, that for logWT on Cl. Removing logWT 
on Cl from run 3 actually corresponds to run 2, which has al-
ready run and was shown to be worse than run 3.

No untested candidates remain for the backward step, so 
we proceed to the forward step. One relationship is below the 
0.3 threshold: logAGE on Cl. This relationship is thus added 
in the model for the next run.

•	 Run 4 with logWT on V, logWT on Cl, logAGE on Cl: 
LL = 618.1.

This model leads to an LL of 618.1, which corresponds 
to an improvement of 4.3 points, larger than the 3.841 LRT 
threshold. The logAGE on Cl relationship is accepted.

Iteration 4 – 3 runs

As the previous step was forward, we start with the back-
ward step on run 4. Two p values for the correlations of re-
lationships already included in the model are above the 0.01 
threshold, that for logAGE on Cl and for logWT on Cl. We 
start with the larger one, logAGE on Cl. Removing it would 
correspond to run 3, which was shown to be worse than run 
4. We thus try to remove the second candidate, logWT on Cl, 
as the next run.

•	 Run 5 with logWT on V, logAGE on Cl: LL = 623.9.

Compared with run 4, the LL has increased by 5.8 
points, which corresponds to a significant worsening, 
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F I G U R E  2   Step-by-step COnditional Sampling use for Stepwise Approach based on Correlation tests (COSSAC) procedure on the warfarin 
example with three covariates (log weight [logWT], logAGE, and SEX) and a four-parameter model (lag time of absorption [Tlag], absorption rate 
constant [ka], volume [V], and clearance [Cl]). At each iteration, covariates are checked for removal (backward step), and covariates are checked 
for addition (forward step). At each new run, the log-likelihood (LL) change is assessed. If a run is accepted, a new iteration starts. The correlation 
test p value thresholds are 0.3 in forward and 0.01 in backward. The likelihood ratio test p value threshold is 0.05 in both directions, corresponding 
to a difference of 3.841 LL points. Correlation test p values below the forward threshold or above the backward threshold are colored in yellow if it 
has already been tested, in light orange if it has not yet been tested, and in dark orange if it will be tested in the next run

Run 1 (base model)
Tlag ka V Cl

SEX
Ini�aliza�on logAGE

logWT
LL=653.7

Run 1 Run 1 Run 2
Tlag ka V Cl eta_Tlag eta_ka eta_V eta_Cl Tlag ka V Cl

SEX SEX 0.740 0.519 1.16E-04 0.516 SEX
logAGE logAGE 0.542 0.816 0.874 0.084 logAGE
logWT logWT 0.424 0.387 4.26E-07 0.024 logWT
No rela�onships to remove => no backward logWT on V has the smallest p-value LL=627.5, ΔLL=-26.2 < -3.841 

 => added for the next run #2 => logWT on V accepted

Run 2 Run 2 Run 3
Tlag ka V Cl eta_Tlag eta_ka eta_V eta_Cl Tlag ka V Cl

SEX SEX 0.480 0.496 0.506 0.532 SEX
logAGE logAGE 0.890 0.704 0.651 0.086 logAGE
logWT 2.45E-08 logWT 0.815 0.444 0.030 logWT
All p-val < 0.01 => no backward logWT on Cl has the smallest p-value LL=622.4, ΔLL=-5.1 < -3.841

=> added for the next run #3 => logWT on Cl accepted

Run 3 Run 3 Run 4
Tlag ka V Cl eta_Tlag eta_ka eta_V eta_Cl Tlag ka V Cl

SEX SEX 0.312 0.414 0.511 0.358 SEX
logAGE logAGE 0.819 0.602 0.748 0.037 logAGE
logWT 4.37E-08 0.025 logWT 0.742 0.826 logWT
pval logWT on Cl>0.01 => already tested (run 2) logAGE on Cl has the smallest p-value LL=618.1, ΔLL=-4.3 < -3.841 

 => added for the next run #4 => logAGE on Cl accepted

Run 4 Run 5
Tlag ka V Cl Tlag ka V Cl

SEX SEX
logAGE 0.035 logAGE
logWT 2.66E-08 0.011 logWT
pval logAGE on Cl > 0.01 => already tested (run 3) LL=623.9, ΔLL=5.8 > 3.841 
pval logWT on Cl > 0.01 => removed in the next run #5 => removal of logWT from Cl not accepted. 

Back to run 4, backward step

Run 4 Run 4 Run 6
Tlag ka V Cl eta_Tlag eta_ka eta_V eta_Cl Tlag ka V Cl

SEX SEX 0.218 0.816 0.506 0.517 SEX
logAGE 0.035 logAGE 0.650 0.390 0.879 logAGE
logWT 2.66E-08 0.011 logWT 0.594 0.243 logWT
All pval > 0.01 already tested => no backward SEX on Tlag has the smallest p-value LL=617.3, ΔLL=-0.8 > -3.841 

=> added for the next run #6 => addi�on of SEX on Tlag not accepted. 
Back to run 4, forward step

Run 4 Run 7
eta_Tlag eta_ka eta_V eta_Cl Tlag ka V Cl

SEX 0.218 0.816 0.506 0.517 SEX
logAGE 0.650 0.390 0.879 logAGE
logWT 0.594 0.243 logWT

Color legend: SEX on Tlag already tested LL=617.0, ΔLL=-1.1 > -3.841 
logWT on ka has the second smallest p-value => addi�on of logWT on ka not accepted.

above (if F)/below (if B) threshold => added for the next run #7  Back to run 4, forward step

already tested Run 4
eta_Tlag eta_ka eta_V eta_Cl

not yet tested SEX 0.218 0.816 0.506 0.517
logAGE 0.650 0.390 0.879

will be tested in next run logWT 0.594 0.243
All pval < 0.3 already tested => STOP

Iter. 2

Iter. 3

Iter. 4

Forward stepBackward step Covariate model tested

Iter. 1
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above the 3.841 threshold. The removal of logWT from Cl 
is not accepted and we go back to run 4 (which has already 
run). In run 4, all possible backward candidates have been 
tested.

We proceed to the forward step. Two relationships are 
below the 0.3 threshold: SEX on Tlag and logWT on ka. We 
start with the smallest p value and add SEX on Tlag for the 
next run.

•	 Run 6 logWT on V, logWT on Cl, logAGE on Cl, SEX on 
Tlag: LL = 617.3.

This model leads to an LL of 617.3, which corresponds 
to an improvement of 0.8 point, smaller than the 3.841 LRT 
threshold. The SEX on Tlag relationship is not accepted and 
we go back to run 4. In run 4, the second relationship to test 
is logWT on ka, it is added for the next run.

•	 Run 7 logWT on V, logWT on Cl, logAGE on Cl, logWT 
on ka: LL = 617.0.

The LL improvement is only 1.1 points, not enough to 
accept logWT on ka. There are no remaining relationships 

F I G U R E  3   Tree-view of the runs performed on the warfarin example with the COnditional Sampling use for Stepwise Approach based on 
Correlation tests COSSAC) procedure (a) and the Stepwise Covariate Modeling (SCM) procedure (b). Selected models are colored in green, tested 
models in white, and models tested but which have already run in grey
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with correlation p value below 0.3. All backward and for-
ward candidates have been tested, so the COSSAC procedure 
stops. The final model is run 4.

SCM procedure

The SCM procedure is described in the Appendix S2 and de-
picted in Figure 3b. In brief, during the first iteration, all 12 
possible models are run and logWT on V is accepted, then 
the remaining 11 candidates are run and logWT on Cl is ac-
cepted, etc.

Comparison

Both procedures lead to the same final covariate model and 
have taken the same path of accepted models. The COSSAC 
procedure requires 6 runs (base run excluded) whereas 43 are 
needed with SCM.

Performance evaluation of COSSAC 
versus SCM

To assess the performance of the COSSAC procedure com-
pared to the SCM procedure, we have applied both routines 
to a collection of 17 representative datasets. They comprise 
PK, PK/PD, and disease models. Most of them are continu-
ous data but we have also included one time-to-event data 
set and one count data example. Some data sets are dense, 
whereas others are sparse. The number of parameters vary 
from two to nine, whereas the number of covariates vary 
from two to eight. Many examples contain covariates that are 
strongly correlated with each other. An overview of the data 
set characteristics is given in Table 1 and Monolix projects 
and settings are provided in the Appendix S2.

All data sets are real (not simulated) for which the “true” 
covariate model is unknown. The COSSAC and SCM proce-
dures are compared in terms of number of runs, final covari-
ate model obtained, final LL, and BICc.15 The run duration 
varies only very slightly with the number of covariate effects 
to estimate (Appendix S1). The total computational time of 
the covariate search procedure is thus proportional to the 
number of runs.

All results are presented in Table 1. The first observation 
is that the COSSAC procedure completes in much fewer runs 
than SCM. The reduction in the number of runs varies from 
twice fewer for models with few possible relationships to 
more than 20 times fewer for realistic data sets with many co-
variates, such as the data set provided by the ASCPT Grand 
Prix modeling challenge. An approximate formula for the dif-
ference in the number of runs can be derived (Appendix S1). 

The difference grows linearly with the number of parameters 
and the number of covariates, and decreases with the square 
of the number of relationships.

Out of the 17 data sets, 11 of them result in the exact same 
final covariate model after COSSAC and after SCM. They 
correspond to data sets with few relationships in the final 
model. Four further datasets lead to slightly different models, 
but for which the difference in LL is small, less than 3.84 
points.

For one run (remifentanil seqPD), the SCM method finds 
a model with one additional relationship (logAGE on E0) 
compared to COSSAC, which leads to an 8.4 points better 
LL. This better model is not tested by COSSAC because lo-
gAGE on E0 improves the LL only once covariates have been 
added on the gamma parameter, which has no variability and 
is tested after all others only. Running COSSAC again at the 
end would resolve the discrepancy but comes at a substan-
tial cost in terms of runs. A similar situation happens for the 
Verapamil PK example.

On the opposite, for the model-informed drug develop-
ment (MIDD) dataset, COSSAC finds a model that is 40 
points better than SCM. The path of accepted runs taken by 
both methods is the same for the four first covariate additions. 
For the fifth, SCM adds nDiseases on the first order degrada-
tion rate (kdeg) (largest LL decrease) and no further addition 
leads to a sufficient LL improvement. COSSAC adds logWT 
on Clr (smallest correlation p value). The LL improvement 
of this addition is smaller than that of nDiseases on kdeg, but 
this turns to be an advantage afterward, as the end-stage renal 
disease (ESRD) on Cl and logALB on renal clearance (Clr) 
can be added as additional significant covariates.

DISCUSSION

This paper presents a novel covariate model building proce-
dure, which offers many advantages. First, it is systematic 
and does not depend on a subjective preselection of covari-
ates. Second, its implementation is relatively easy and, con-
trary to the lasso or FREM, does not require to modify the 
covariate encoding. Finally, it requires only a limited number 
of runs, much fewer than the widely used SCM method.

One of the key characteristics of COSSAC is the use of 
correlation tests between the individual parameters sam-
pled from the conditional distribution and the covariates. 
Importantly, these correlation tests are fast to calculate and 
necessitate only the base (or current) run. In addition, these 
tests are not subject to shrinkage bias and are reliable, be-
cause they use samples from the conditional distributions 
rather than the modes (EBEs).10 In COSSAC, the cor-
relation test p-values are used to select which parameter-
covariate relationship will be added and evaluated first. This 
is very efficient because the p-values are good predictors 
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of the LL improvement obtained when the corresponding 
relationship is added to the model. Note that ranking the  
p-values is equivalent to ranking the correlation coefficients 
(Appendix S1). Tested relationships are thus accepted most 
of the time. When the pvalues are sufficiently different from 
each other, their order reflects the order of LL improvement 
obtained when adding the covariates in a univariate manner. 
In this case, COSSAC and SCM are taking the same path 
of accepted models, except that COSSAC tries only the best 
relationship, whereas SCM tests all possible relationships. 
Thus, in the MIDD example, COSSAC adds the first four 
covariates in four runs. SCM adds the same 4 covariates but 
requires 282 runs. When the two smallest p-values are close, 
their order can by chance be the same or opposite than that 
of the LL improvement. This is, for instance, the case when 
two covariates are strongly correlated with each other. In this 
case, the paths taken by SCM and COSSAC can be differ-
ent but with very similar LL improvements. At a given step, 
SCM will always select the addition leading to the largest LL 
improvement whereas COSSAC may not. This may (or may 
not) lead to a better final model, as in the MIDD example.

We have tested the COSSAC procedure on all nonconfi-
dential data sets in our hands. Among the 17 data sets, the 
majority leads to the same final covariate model proposed 
by COSSAC and SCM (11 cases) or to very similar models 
with almost the same LL and BICc15 (4 cases). Yet, COSSAC 
requires, on average, seven times fewer runs to complete. 
The gain in number of runs is especially large when there 
are many possible relationships (i.e., number of parameters 
times number of covariates) but only a few are retained in the 
final model. On the opposite, parameters without random ef-
fects cannot be assessed via COSSAC. In the Monolix imple-
mentation, SCM is used for them. Therefore, models having 
parameters with and without variability show only an inter-
mediate speedup compared to SCM. To avoid the costly SCM 
on parameters without variability, one option is to consider a 
small fixed variability (for instance 5%) on these parameters.

As SCM, COSSAC is a stepwise procedure, which re-
peatedly applies a likelihood ratio test to assess the benefits 
of the added covariates. In general, stepwise procedures are 
known to be prone to selection bias (i.e., overestimation of 
the effects of the selected covariates). In the population PK/
PD field, some authors have reported a high selection bias 
with SCM, especially for small data sets,18 whereas others 
have concluded it is only minor in a typical realistic covari-
ate search setting.19 One can expect the selection bias to be 
similar with SCM and COSSAC. Its precise quantification 
deserves further investigation but is out of the scope of this 
article. We have also not attempted to evaluate type I and type 
II errors using simulated data sets. This will be addressed in 
a separate work.

The large speedup in computation time offered by 
COSSAC compared to the standard SCM method makes it an 

appealing method, especially for complex models with long 
run time or data sets with many covariates. We believe that 
its efficient implementation in Monolix will contribute to its 
spreading in the community.
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