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Purpose: The aim of this study was to investigate transcriptional activities of genes encoding transforming growth factor
(TGF)-β isoforms in bullous keratopathy corneas.
Methods: The study group consisted of 45 patients with bullous keratopathy (22 females and 23 males). The control group
included 45 corneal donors (21 females and 24 males). Quantification of TGF-β1, TGF-β2, and TGF-β3 mRNAs was
performed by real-time quantitative reverse transcription PCR (QRT-PCR).
Results: TGF-β1, TGF-β2, and TGF-β3 mRNAs were detected in both normal and pseudophakic bullous keratopathy
(PBK) corneas. We found significantly lower transcriptional activity of TGF-β3 mRNA in bullous keratopathy corneas
compared to normal tissues. TGF-β1 and TGF-β2 expressions were at the same level in both PBK and healthy corneas.
Conclusions: Downregulation of TGF-β3 gene expression may play a significant role in molecular changes observed in
bullous keratopathy.

Pseudophakic bullous keratopathy (PBK) is a
complication of cataract surgery with intraocular lens
placement and is an indication for corneal transplantation.
Clinical hallmarks of this disease are chronic corneal edema
due to corneal endothelial cell dysfunction, subepithelial
bullae (blisters), and loss of transparency [1-3]. This disease
is also characterized by extensive fibrosis with abnormal
deposition of extracellular matrix proteins, tenascin-C, and
fibrillin [1,4,5]. Moreover, PBK is often accompanied by
scarring and neovascularization [3].

Various cytokines and growth factors are strongly
involved in these processes [6,7]. One of the most important
mediators is the family of transforming growth factors β
(TGF-β), composed of five isoforms (TGF-β1-5) [8,9].
Among them, only TGF-β1, β2, and β3 are found in humans
[9,10]. The TGF-β family of cytokines regulates such
fundamental aspects of cellular function as cell growth,
differentiation, inflammation, and wound healing [11-13]. In
addition, there is substantial evidence suggesting participation
of TGF-β in many human diseases [13-15], including fibrotic
pathologies of the eye [16-18].

In vitro TGF-β isoforms have a similar effect on biologic
tissues; however, in vivo they are generally characterized by
varied degrees of expression and different functions. Their
biologic activity depends on quantitative relationships
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between individual isoforms [19-21]. TGF-β1 and TGF-β2
isoforms have been reported to play a profibrotic role, whereas
TGF-β3 possesses antifibrotic activity [22]. Embryonic
wounds with a high level of TGF-β3 and low levels of TGF-
β1 and TGF-β2 heal with no scarring [23]. During scar-
forming in adults, however, TGF-β1 and TGF-β2 expression
is significantly higher than TGF-β3 expression during wound
healing. Such relationships during development of bullous
keratopathy as a result of cornea injury after cataract surgery
remain unclear.

Therefore, the present study focuses on transcriptional
activities of genes encoding TGF-β1, TGF-β2, and TGF-β3
isoforms in human corneas with bullous keratopathy.
Quantitative relationships between mRNA levels of these
three isoforms were also assessed.

METHODS
Tissues: Normal human corneas used as controls were taken
within 12 h after death from 45 donors (21 females and 24
males; mean age 53.4 years; range 42–65 years). Inclusion
criteria for becoming a corneal tissue donor were determined
by the Eye Bank Association of America (EBAA).

The patient group involved 45 individuals (22 females
and 23 males; mean age 56.1 years; range 45–65 years) with
a clinical diagnosis of PBK, treated in the Department of
Ophthalmology, Medical University of Silesia, St. Barbara
Hospital, Katowice, Poland. The PBK diagnosis was based on
the presence of chronic corneal stromal and epithelial edema,
painful epithelial bullae with recurrent erosions as well as
signs and symptoms of chronic ocular irritation. Exclusion
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criteria were as follows: the absence of inflammation and
degeneration of anterior and posterior segment of eyeball,
corneal neovascularization, diabetic retinopathy,
pseudoexfoliation syndrome (PEX) and glaucoma. All
patients were subjected to cataract surgery in the past; the
difference in time between cataract surgery and corneal
transplantation averaged 32.4 months. PBK corneas were
obtained within 12 h of penetrating keratoplasty.

Surgical anesthesia was as follows: Fentanyl (2 mg),
Midazolam (2 mg), Athropine (0,01 mg/kg body mass),
Thiopental (4-5 mg/kg body mass), Vecuronium (0,1 mg/kg
body mass). Because only the central corneal buttons (7.5 mm
diameter) were available for PBK corneas, normal corneas
were trephined, and only the central portions were used.
Tissue specimens were stored in EUSOL C (Alchimia,
Padova, Italy) at –70 °C for 24 h until RNA extraction. The
research was approved by the Bioethics Committee of
Medical University of Silesia, Katowice, Poland (NN-6501–
146/06). All patients were informed about the research and
signed an informed consent form.
RNA extraction from tissue specimens: Total RNA was
extracted from the specimens using a commercially available
kit (Total RNA Prep Plus Kit; A&A Biotechnology, Gdansk,
Poland) based on acid guanidinium-thiocyanate phenol-
chloroform method by Chomczynski and Sacchi, according
to the manufacturer's instructions. RNA extracts were treated
with DNase I (MBI Fermentas, Vilnius, Lithuania). The
quality of extracts was checked electrophoretically using an
0.8% agarose (Sigma-Aldrich, Munich, Germany) gel stained
with ethidium bromide (Sigma-Aldrich). Results were
analyzed and recorded using the gel documentation system
1D Bas-Sys (Biotech-Fisher, Perth, Australia). Total RNA
concentration was determined by spectrophotometric
measurement using the Gene Quant II RNA/DNA Calculator
(Pharmacia Biotech, Cambridge, UK).
Real-time quantitative reverse transcription-PCR assay:
Transcriptional activities of TGF-β1, TGF-β2, TGF-β3, and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes
were evaluated using real time quantitative reverse

transcription (QRT)-PCR and SYBR Green I chemistry
(QuantiTect® SYBR® Green RT-PCR kit; QIAGEN,
Valencia, CA). Analysis was performed using an Opticon™
DNA Engine Continuous Fluorescence Detector (MJ
Research, Watertown, MA). All samples were tested in
triplicate. GAPDH was included to monitor the QRT-PCR
efficiency. Oligonucleotide primers specific for TGF-β1,
TGF-β2, TGF-β3, and GAPDH genes were described
previously by Strzalka et al. [24,25] and Ercolani et al. [26],
respectively (Table 1). The thermal profile for one-step RT-
PCR was as follows: reverse transcription at 50 °C for 30 min,
denaturation at 95 °C for 15 min, 50 cycles consisting of
temperatures 94 °C for 15 s, 60 °C for 30 s, and 72 °C for 30
s. To detect the expression profile of each investigated gene,
commercially available standards of β-actin (ACTB) cDNA
(TaqMan® DNA Template Reagent kit; PE Applied
Biosystems, Inc., Foster, CA) were used at five different
concentrations (ranging from 400 to 8,000 copies of ACTB
cDNA), as recommended by Bustin [27]. Amplification plots
for each standard template were used to determine the cycle
threshold values (Ct). A standard curve was generated by
plotting the Ct values against the log of the known amount of
the ACTB cDNA copy number. The obtained results of the
mRNA copy number were recalculated per 1 μg of total RNA.
Each run was completed using melting curve analysis to
confirm specificity of the amplification and absence of the
primer dimers. The RT-PCR products were also separated in
6% polyacrylamide gels (PAA) and visualized with silver
salts.

Statistical analyses: Statistical analyses were performed using
Statistica 8.0 software (StatSoft, Tulsa, OK), with a
significance level set at p<0.05. Values are expressed as
median (Me), minimum, and maximum. The Kruskal–Wallis
one-way analysis of variance test and post hoc multiple test
based on the average ranks were applied to assess differences
in the expression of TGF-β isoforms in normal and
pathological tissues. Comparison of transcriptional activity of
examined genes between normal and PBK corneas was made
using the Mann–Whitney U test.

TABLE 1. CHARACTERISTIC OF PRIMERS USED FOR AMPLIFICATION.

Gene Sequence of primers Length of amplicon
(bp)

Tm
(ºC)

GAPDH Forward: 5’-GAAGGTGAAGGTCGGAGTC-3’ 226 80
 Reverse: 5’-GAAGATGGTGATGGGATTC-3’   
TGFβ-1 Forward:5’TGAACCGGCCTTTCCTGCTTCTCATG3’ 151 85
 Reverse: 5’GCGGAAGTCAATGTACAGCTGCCGC3’   
TGFβ-2 Forward: 5’TACTACGCCAAGGAGGTTTACAAA3’ 201 80
 Reverse: 5’TTGTTCAGGCACTCTGGCTTT3’   
TGFβ-3 Forward: 5’CTGGATTGTGGTTCCATGCA3’ 121 81
 Reverse: 5’TCCCCGAATGCCTCACAT3’   

In the table, bp indicates base pairs and Tm indicates melting temperature.
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RESULTS
In the present study, transcriptional activity of TGF-β
isoforms in both normal and bullous keratopathy human
corneas was determined using real-time QRT-PCR. In the first
step of the study, specificity of the RT-PCR assay for the target
genes was confirmed experimentally on the basis of the
amplimers’ melting temperatures. For each RT-PCR product,
a single peak at the expected temperature was observed: TGF-
β1 85.4 °C; TGF-β2 80.0 °C; TGF-β3 80.6 °C; GAPDH
80.1 °C (data not shown). Gel electrophoresis also revealed
the presence of a single product of the predicted length (Figure
1).

In the next step, levels of TGF-β1, TGF-β2, and TGF-
β3 mRNAs in normal and bullous keratopathy human corneas
were assessed and the quantitative relations among the mRNA
of these three isoforms were then evaluated (Figure 2A,B).
TGF-β1, TGF-β2, and TGF-β3 isoforms were detected in all
tested samples obtained from normal corneas (TGF-β1
Me=4,693.0 copies/μg RNA; TGF-β2 Me=719.0 copies/μg
RNA; TGF-β3 Me=3,844.7 copies/μg RNA) and bullous
keratopathy corneas (TGF-β1 Me=5,553.0 copies/μg RNA;
TGF-β2 Me=738.9 copies/μg RNA; TGF-β3 Me=2,176.5
copies/μg RNA). Comparable analysis of all TGF-β mRNA
copies/μg of total RNA revealed the following relationships
in healthy cornea: TGF-β1>TGF-β2 (p=0.0164, post hoc test);
TGF-β3>TGF-β2 (p<0.001, post hoc test); TGF-β1=TGF-β3
(not significant [NS], post hoc test). Pathologically changed
cornea relationships were similar to that observed in normal
cornea: TGF-β1>TGF-β2 (p<0.001, post hoc test); TGF-
β3>TGF-β2 (p=0.0221, post hoc test); TGF-β1=TGF-β3 (NS,

post hoc test). In PBK corneas TGF-β3 mRNA expression was
found to be significantly lower (Mann–Whitney U test,
p=0.0107) compared to normal tissues (Figure 2C). However,
transcriptional activity of the TGF-β1 (p=0.0585) and TGF-
β2 (p=0.5540) genes in both healthy and PBK corneas was at
the same level.

DISCUSSION
The role of TGF-β1, TGF-β2, and TGF-β3 in the cornea is
relatively well understood [10,13,28]. However, quantitative
relationships between mRNA expressions of different
isoforms in the course of some corneal pathologies are still
unclear. In previously published reports mRNA expression of
TGF-β was evaluated mostly in healthy tissues [10,21,24,
25], and only a few authors have analyzed the expression
profile of TGF-β1, TGF-β2, and TGF-β3 in the course of
bullous keratopathy [1,3,5].

In the present study real-time RT-PCR was used to
examine the mRNA expression of genes encoding TGF-β
isoforms in human normal and pathologically changed cornea.
Transcriptional activity was measured on the basis of the
mRNA copy number per 1 μg of total RNA, following the
recommendations of Tricarico et al. [29]. Transcripts of all
three TGF-β isoforms were detected in PBK corneas and in
healthy ones, which is in agreement with other published
results when the examined material constituted cell cultures
[10,30] or rat corneal epithelium [13,28].

Li et al. [21] reported that TGF-β1 transcriptional activity
was the highest in all tested parts of the anatomy of the eye.
However, they studied the expression of genes encoding

Figure 1. Reverse transcription PCR
products separated in 6%
polyacrylamide gel. lane 1, marker of
size pBR 322/BsuRI (MBI Fermentas,
Vilnius, Lithuania); lane 2,
transforming growth factor -β1 (152
base pair, bp); lane 3, transforming
growth factor -β2 (201 bp); lane 4,
transforming growth factor -β3 (121
bp); lane 5 glyceraldehyde-3-phosphate
dehydrogenase (226 bp).
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isoforms of TGF-β only in the healthy human cornea. This
remains partly consistent with current results showing TGF-
β1 and TGF-β3 as the predominant isoforms both in human
healthy cornea and in affected cornea. Similar results were
also demonstrated by Carrington et al. [31] and Tseng et al.
[32]. Carrington et al. found TGF-β1 to be the predominant
isoform in the bovine cornea during wound healing. Tseng et
al. postulated that healthy human cornea is characterized by
high transcriptional activity of TGF-β1. However, Tuli et al.
[12], based on investigations using animal models, revealed
that damage of the corneal surface leads to an increase in
expression of genes encoding TGF-β2 and TGF-β3.

Of importance here is that only a fraction of previous
studies shows quantitative relationships between TGF-β
isoforms in the course of bullous keratopathy. Saghizadeh et
al. [33] evaluated expression of the TGF-β2 isoform both at
the mRNA and protein levels in PBK and normal cornea;
however statistically significant differences were not found.
Kenney et al. [2] performed similar studies but revealed a
significant increase in transcriptional activity of genes
encoding isoforms of TGF-β1 and TGF-β2 in the course of
bullous keratopathy. Their report contradicts our findings,
which demonstrated that the differences in mRNA expression
of both TGF-β1 and TGF-β2 genes in patients with bullous
keratopathy compared to the control group were not
statistically significant.

Interestingly, transcriptional activity of TGF-β3 was
reduced in PBK compared to the control group. Data are
lacking regarding TGF-β3 expression in bullous keratopathy.
Downregulation of transcriptional activity of TGF-β3 in the
present study may have been caused by the loss of
keratinocytes observed in the course of PBK [34]. On the other
hand, molecular mechanisms leading to a decrease in the
TGF-β3 mRNA level cannot be ruled out. After cataract
surgery epithelial cells undergo epithelial-mesenchymal

transition (EMT) [35]. In this process not only the morphology
but also the transcriptional program of the epithelial cells is
altered. After epithelial-mesenchymal transition cells become
capable of expressing components of the extracellular matrix
and probably other molecules, which can lead to reduced
TGF-β3 gene expression. The TGF-β3 isoform is a potential
therapeutic agent of corneal repair, especially as it has no
harmful effect on corneal re-epithelialization [31]. Thus, early
application of TGF-β3 during or shortly after cataract surgery
would prevent patients from such complications as PBK. The
question remains about whether such treatment in patients
with bullous kerathopathy could restore normal corneal
morphology, taking into account the role of TGF-β3 in tissue
remodeling after wounding [22].

Summarizing the results of the present study, all three
isoforms were found to be differentially expressed in the
course of bullous kerathopathy, but only TGF-β3 was changed
compared to normal cornea. Obtained data suggest that
decreased expression of TGF-β3 may play a significant role
in molecular changes observed in bullous keratopathy.
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