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Abstract

Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support

of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated

at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell

lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technol-

ogy measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates

cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater

temporal variations were seen in HEK293 cells, while results for the flor technology were

more similar across the two cell types. Chemicals were grouped into classes based on their

cytotoxicity kinetics profiles and these classes were evaluated for their associations with

activity in the Tox21 nuclear receptor and stress response pathway assays. Some path-

ways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity

classes, while others, such as activation of TP53, were associated with the slow-responding

cytotoxicity classes. By clustering pathways based on their degree of association to the dif-

ferent cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals

presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying

biological processes between pathways, for example, activation of H2AX and heat shock

factor. Others involving nuclear receptor activity are likely due to shared chemical structures

rather than pathway level interactions. Based on the linkage between androgen receptor

antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists

cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary,

the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data

related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate

mechanism-based hypotheses on the cytotoxic properties of the tested chemicals.
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Introduction

In the U.S. Tox21 program, a 10K chemical library is being evaluated for toxicological poten-

tial using mechanism-based, cell-based quantitative high throughput screening (qHTS) assays

(“toxicity pathways”) that focus on nuclear receptor and stress response pathways [1]. As of

2016 August, over 40 assays have been screened and the results released in PubChem (https://

www.ncbi.nlm.nih.gov/pcassay/?term=%22tox21%22). The goals of Tox21 include the priori-

tization of chemicals with little or no toxicological data for a more in-depth toxicological eval-

uation based on mechanism-based activity data and the development of models for better

predicting in vivo toxicity. For example, data from a battery of Tox21 estrogen receptor (ER)

related assays have been used in building a model for predicting ER dependent endocrine dis-

ruption potential [2,3]. In addition, in vitro to in vivo extrapolation (IVIVE) analysis based on

the Tox21 screening data is being conducted to predict the likelihood of activity in exposed

humans [4]. However, to date, no large-scale analysis has been conducted to characterize the

relationship between chemical-induced cell-based pathway perturbations and the cytotoxicity

of the Tox21 10K chemicals. Prioritizing chemicals based on cytotoxicity relevant cell-based

pathway perturbations could provide more phenotypically relevant, mechanism-based hypoth-

eses for toxicological testing.

Cell death plays an important role in chemical-induced toxicity in humans [5]. Many differ-

ent modes of action (MOA) can lead to cytotoxicity and in order to understand the underlying

mechanisms, hypotheses need to be generated and evaluated. By interrogating cytotoxicity in a

sufficiently large number of cell lines with diverse genetic features, chemicals with similar

MOAs can be grouped together based on their differential cytotoxic responses across cell lines

[6–9]. One example of this approach is the identification of novel kinase inhibitors based on

their cytotoxicity profiles in 102 cancer cell lines by comparing the similarity of their profiles

to known kinase inhibitors [9]. In addition to the pattern of cytotoxicity across cell lines, the

kinetics of cytotoxicity can vary greatly for different groups of chemicals [10–12]; for example,

immediate cellular changes can be seen for chemicals acting on ion channels, while a delayed

cytotoxic response occurs for chemicals that act on cell cycle processes. However, it has also

been shown that many chemicals with different pharmacological effects can display similar

kinetics for cytotoxicity, implying that they share some underlying common mechanisms lead-

ing to cell death, despite their seemingly unrelated pharmacological functions [10]. Without

some prior assumptions and data, identifying the underlying common mechanisms can be a

challenging experimental task.

In this study, chemical-induced cytotoxicity at six different time points (0, 8, 16, 24, 32, &

40 hours) was interrogated in two cell lines, HEK293, a human embryonic kidney cell line, and

HepG2, a human hepatocellular carcinoma cell line, using two multiplexed, real-time assay

technologies: the Promega RealTime-Glo™ MT Cell Viability Assay and the Promega CellTox™
Green Cytotoxicity Assay. The former measures the reducing potential of cells and thus their

metabolic ability (i.e., cell viability) based on a luciferase substrate produced in live cells only

while the latter detects the loss of cellular membrane integrity (i.e., cell death) based on a

DNA-binding dye preferentially excluded from live cells. Results from the four assays (i.e., two

assays each performed in two different cell lines) were compared in terms of the number of

actives, kinetics of response, and potency correlation. The active chemicals were then grouped

based on their similarity of cytotoxicity profiles (degree, mechanisms, and kinetics of cell

death/cell viability). Based on the assumption that groups of chemicals with similar cytotoxic-

ity profiles can have similar MOAs, which may be represented by activities in the Tox21 stress

response and nuclear receptor related pathway assays, we identified significant associations

between pairs of individual chemical cytotoxicity kinetics grouping and individual pathway.
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By clustering these pathways based on their degree of association to the different cytotoxicity

kinetics labels, we identified clusters of pathways where active chemicals presented similar

kinetics of cytotoxicity. We investigated some of the linkages (or clusters) using known recep-

tor antagonists and identified a possible MOA that could account for the observed cytotoxicity

effect. The identified relationships could be seen as in vitro biological features that could help

to differentiate true actives from the assay artifacts in these in vitro assays [13,14] and thus,

could be used to prioritize the actives identified in previous Tox21 screens. In summary, by

linking the phenotypic outcomes in this study with Tox21 cell-based, target-specific data, we

can formulate hypotheses as to the mechanisms of cytotoxicity produced by chemicals in the

Tox21 library.

Methods

Tox21 10K chemical library

The original Tox21 compound library consisted of ~12,500 (~8,300 unique CAS Registry

Number (CASRN)) compounds procured from commercial sources by the U.S. Environmen-

tal Protection Agency (EPA), the National Institute of Environmental Health Sciences

(NIEHS)/National Toxicology Program (NTP), and the National Institutes of Health (NIH)

National Center for Advancing Translational Sciences (NCATS)). The library consists of a

large variety of chemicals, including pesticides, industrial chemicals, natural food products,

and drugs. The latter category includes failed drugs that did not make it to market, drugs that

are no longer marketed, and drugs that are marketed currently. With usage, portions of the

library have been replaced and for this study, 9,667 compounds (7,872 unique CASRN) were

screened. Each substance was prepared as a stock solution (generally at 20 mM) in dimethyl

sulfoxide (DMSO) and was serially diluted to yield 15 concentrations generally ranging from 1

nM to 77 μM (final concentrations in the assay wells, concentration spacing ~ 0.35 log10 unit,

2.2 fold). Eighty-eight duplicate compounds were intentionally included on each of the

1536-well screening plates to evaluate technical variability across plates and runs. The list of

unique compounds, including chemical names and CASRNs, as well as curated chemical

structures and structure identifiers (formula, systematic names, SMILES, desalted SMILES,

InChI) can be downloaded from the EPA website (https://www3.epa.gov/research/

COMPTOX/toxcast_chemical_info.html). The results of the chemical purity analysis can be

found in the Tox21 Samples web site (https://tripod.nih.gov/tox21/samples).

Assays and qHTS

Cell viability was measured using the RealTime-Glo™ MT Cell Viability Assay (Promega,

Madison, WI, USA) while cell death was measured using the CellTox™ Green Cytotoxicity

Assay (Promega). Both assays are nonlytic and homogeneous. In the former assay (glo, in the

following text), the number of viable cells is proportional to the amount of luminescent signal,

which is directly proportional to the amount of NanoLuc1 substrate used in the NanoLuc1

luciferase reaction. The NanoLuc1 substrate is only produced in live cells where the cell-per-

meant prosubstrate is reduced [15,16]. Thus, as the number of metabolically active cells

decreases, the glo signal decreases proportionally. The latter assay (flor, in the following text)

measures changes in membrane integrity that occur as a result of cell death (i.e., an increase in

the number of dead cells is proportional to the increase in fluorescent signal, which results

from the increased number of DNA-dye aggregates detected due to the loss of cell membrane

integrity) [17]. Using the two real-time assays in a multiplexed mode, we measured in a single

run the changes in cell viability and cell death in two cell lines induced by the Tox21 chemicals

at 15 concentrations with a single well per concentration in a qHTS format (1536 well) after 0

Real-time cell toxicity profiling of Tox21 10K compounds
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(right after the chemical administration), 8, 16, 24, 32, and 40 hours of exposure. These sample

times were selected for the screening convenience. The two cell lines used in this study were

HEK293, a human embryonic kidney line, and HepG2, a human hepatocellular carcinoma cell

line. Selection of these two cell lines was based on their extensive use in many other Tox21

reporter assays. In total,>11K concentration-response curves were generated at each time

point using a single assay and a single cell line, with >266K concentration-response curves

were generated in this study. The plate/well level data can be downloaded from the UNC Data-

verse (https://dataverse.unc.edu/dataset.xhtml?persistentId=doi:10.15139/S3/12321) and are

available in PubChem (https://www.ncbi.nlm.nih.gov/pcassay?term=tox21+real+time). The

cytotoxicity kinetics data of mitomycin C in the HEK293 cell line using the glo assay technol-

ogy (HEK293[glo], in the following text) is provided in Fig 1 as an example of data handling.

Cell culture. HepG2 and HEK293 cells were purchased from the American Type Culture

Collection (ATCC, Manassas, VA, USA). Cells were dispensed at 800 HEK293 or 600 HepG2

cells/6 μL/well in tissue-culture treated 1,536-well white wall/solid bottom assay plates (Grei-

ner Bio-One North America, Monroe, NC, USA) using a Flying Reagent Dispenser (Aurora

Discovery, Carlsbad, CA, USA). Both HepG2 and HEK293 cells were incubated at 37˚C for 5

Fig 1. Cytotoxicity kinetics data of mitomycin C in HEK293 cell line using glo technology. a) The

percent of activity is plotted as the function of hour. The color represents different concentrations of the

chemical. The darker color (redder) is equivalent to higher concentrations. b) The concentration-response

data at three representative time points (0, 16, 40 hour). The total effect across concentrations can be

summarized as wAUC. c) The total effect (log10(wAUC+1)) is plotted as the function of exposure duration in

hours.

https://doi.org/10.1371/journal.pone.0177902.g001
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hours to allow for cell attachment, followed by addition of compounds via a pin tool station

(Kalypsys, San Diego, CA, USA). After compound addition, plates were read using a ViewLux

plate reader at 0 (right after addition), 8, 16, 24, 32, & 40 hours. Eight hours is the optimal time

interval between data collection based on the size of the compound library and the number of

concentrations tested as well as the time taken to collect data using both technologies in the

same well, while 40 hours is the maximum allowed time frame of exposure due to the potential

for evaporation using the 1536-well plate format. The positive control, tetra-N-octylammo-

nium bromide (Sigma, CASRN = 14866-33-2), in titration (16 concentrations, 2.35 nM to

77μM, for plate to plate quality control), was dispensed on each plate.

Concentration-response data processing

The raw plate reads for each titration point were first normalized relative to the DMSO only

wells on each plate (% Activity = [(Vcompound − VDMSO)/ VDMSO)] × 100, where Vcompound

denotes the compound well values, and VDMSO denotes the median values of the DMSO-only

wells. The % activity (either % of cell death increase or % of cell viability decrease) was rescaled

so that the baseline value is 0%. The normalized value was corrected by applying a pattern cor-

rection algorithm using DMSO control plates stacked between the screening plates [18]. The

normalized concentration-response data for each compound at each time point were applied to

a qHTS noise filtering algorithm [19,13] with assay noise level (25%, in 2 cell lines x 2 assay tech-

nologies) derived from the response variation in the 88 technical replicates on each plate [20]

The weighted area-under-curve (wAUC, total activity) [13], point-of-departure (POD, concen-

tration at which the response was equivalent to the noise threshold), AC50 (half maximal activity

concentration), and Emax (maximal response) were determined for each curve. Curves with

wAUC> 0 were considered as having significant responses; curves with wAUC = 0 were consid-

ered as having no response. The POD and AC50 values from the inactive curves were set as the

highest tested concentration. The median of activity value was reported for the technical repli-

cates. Activity values are reported for 9667 chemicals in the four assays at https://dataverse.unc.

edu/dataset.xhtml?persistentId=doi:10.15139/S3/12321. For the flor assay technology, since the

increase of wAUC could be affected by the number of cells in the well, the cell doubling factor

(adjusted wAUC = original wAUC/ 2^(time point /cell doubling time)) was applied to correct

the wAUC. Under the experimental conditions used, the cell doubling time for the HEK293 and

HepG2 cell lines is 22 and 40 hours, respectively.

Cytotoxicity kinetics analysis

For each of the four assays (2 cell lines x 2 assay technologies), the Mann-Kendall Trend Test [R

package: trend [21]] was applied to identify if there was a monotonic increase in cell death or

decrease in cell viability across the different time points for each chemical. The degree of cell

death or cell viability was quantified by the wAUC. A p-value< 0.05 was set as the significance

threshold. If there was a significant increase in cell death or decrease in cell viability across time

points, the earliest time interval at which the maximum cytotoxic effect achieved was deter-

mined. The change of effect was quantified by the coefficient of variation (cv [22], the ratio of

the standard deviation (σ) to the mean μ, σ/μ) based on the wAUC values across time points: 0

to 40 hour (6 wAUC values from 6 experiments), 8 to 40 hour (5 wAUC values), 16 to 40 hour

(4 wAUC values), 24 to 40 hour (3 wAUC values), and 32 to 40 hour (2 wAUC values). If the cv
was smaller than a threshold, the earliest time interval was reported as the time interval where

the maximum cytotoxic effect was obtained. The cv threshold was set as 0.71 (HEK293[flor]),

0.52 (HEK293[glo]), 0.76 (HepG2[flor]), and 0.85 (HepG2[glo]), which was the median cv based

on the data of the active technical replicates across time points assuming that the replicate data
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at each time point should have same wAUC. Using digitonin in HEK293[glo] as an example

(see Fig 2), the cv for 0 to 40 hour was 0.51, for 8 to 40 hour is 0.12, for 16 to 40 hour is 0.09, for

24 to 40 hour is 0.006, for 32 to 40 hour is 0.007. Since the cv for 0 to 40 hour was 0.51, smaller

than the threshold (0.52), it was considered that for this assay (HEK293[glo]), digitonin already

reached its maximum cytotoxic effect in the time interval of 0 to 8 hour. For chemicals where a

monotonic trend was absent (e.g., only having a small differentiation in response between time

points or chemicals only active in the later time points), they were grouped depending on their

cv of 0 to 40 hour or cv of 8 to 40 hour and whether there was an effect seen at the 24-, 32-, and

40-hour time points. A flowchart for this process is provided in S1 Fig.

Enrichment analysis and clustering

The Tox21 chemicals were grouped based on their cytotoxicity kinetics profiles (i.e., the earliest

time interval where a maximum cytotoxic effect was obtained in each of the four assays or inac-

tive label). A Fisher’s exact test [23] was conducted on each of the groupings to investigate the

association between pairs of individual chemical cytotoxicity grouping and individual Tox21

Phase II assay (https://tripod.nih.gov/tox21/assays/ and [13]). The targets in these assays were

either stress response pathways (e.g., TP53 activation) or nuclear receptor related pathways

(e.g., estrogen receptor). Activities resulted from various kinds of assay interference such as

auto-fluorescence/quenching and chemically-induced cytotoxicity were flagged and not used in

the enrichment analysis. Specifically, we flagged activities where the potency (EC50) data or total

effect data (wAUC) in the Tox21 targeted assays were not significantly greater than the respec-

tive data from the Tox21 assays for detecting auto-fluorescent compounds or the cell viability

assays multiplexed with the targeted assay [13]. The complete list of assay names is provided in

Table A in S1 Text, and include 29 nuclear receptor related assays and 12 stress response path-

ways. A Bonferroni correction [24] was applied to p-values generated for each chemical cytotox-

icity kinetics grouping and the significant threshold was set as 0.05.

Fig 2. Examples of two chemicals (digitonin vs. mitomycin C) with different kinetics of cytotoxicity.

Blue: HEK293; red: HepG2. Filled circle (glo); hollow circle (flor); the arrow represents the earliest time

interval where the maximum cytotoxic effect was obtained (filled arrow head: glo; hollow arrow head: flor).

https://doi.org/10.1371/journal.pone.0177902.g002
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The binary association (significant or non-significant) between pairs of individual chemical

cytotoxicity kinetics grouping and individual stress response/nuclear receptor pathways were

further transformed. The degree of association between the earliest time interval where chemi-

cals reached their maximum cytotoxic effect and activity in these pathway assays was quanti-

fied by dividing the sum of times of association of a certain activity at a particular time interval

in an assay by sum of times of association of that activity to cytotoxicity kinetics groupings.

For example, increased γ-H2AX activity could be associated with ‘x’ different cytotoxicity

kinetics groupings and the time interval (0< time < 8 hours, HepG2[glo]) was found ‘y’ of ‘x’

times; thus, the degree of association between 0< time < 8 hours, HepG2[glo] and γ-H2AX

induction is ‘y/x’.

For chemical clustering, the wAUC, POD, and Emax values per chemical at each time point

in each assay were collected. The wAUC value was transformed using log10(wAUC+1) func-

tion (+1 is to avoid the infinity value for the inactives). The five cv values and the log10(p-

value) from the trend test were also used as descriptors. The values were Z-score normalized.

The Pearson’s correlation coefficient value (Pearson’s R) between chemicals was calculated.

The chemical-chemical pairwise Pearson’s R values were used in the hierarchical clustering

based on the Euclidean distance. The matrix of descriptors used in clustering is provided in

the S1 Dataset and on the UNC Dataverse (https://dataverse.unc.edu/dataset.xhtml?

persistentId=doi:10.15139/S3/12321).

Repeated measure linear model

Repeated measure linear model [25] was adopted to explore the source of activity variation

based on the activity data from the 24 measurements (2 cell lines x 2 technologies x 6 time

points) while accommodating the within-time point correlation. The activity outcome (log10(-

wAUC+1)) was set as a dependent variable; the cell line and technology were included in the

model as categorical independent variables; time (with 6 time points) was viewed as a continu-

ous independent variable. The maximum likelihood method with classical assumptions for the

random errors (type III sum of squares F statistics) was applied to estimate the degree of activ-

ity variation contributed by the three factors: cell line, technology, and time.

Results

Screening performance

The two assay technologies performed well in both cell lines. The qHTS assay performance sta-

tistics are as follows: signal to background (S/B) ratio from 3 to 16 fold, coefficient of variance

(CV) of 6% to 8%, and Z’ factors >0.7 (Table B in S1 Text). Overall, the standard deviation

(SD) of half-maximal effect or inhibitory concentration (EC50 or IC50, respectively) of the posi-

tive control tetra-N-octylammonium bromide titration embedded on each plate was <3-fold.

In the HEK293 cell line using the glo assay, the IC50 values of tetra-N-octylammonium bro-

mide were 5.91±1.26 (mean and SD), 2.53±0.74, 1.34±0.52, 0.87±0.44, and 0.79±0.32 μM at 8,

16, 24, 32, and 40 hours, respectively, while using the flor assay, the EC50 values of the positive

control chemical were 9.88±2.10, 8.01±1.52, 6.06±1.11, 6.80±1.47, and 7.69±1.76 μM at 8, 16,

24, 32, and 40 hours, respectively. Tetra-N-octylammonium bromide had similar potencies in

the HepG2 cell line in both assays with IC50 or EC50 values of 6 to 8 μM (Table B in S1 Text).

EC50 or IC50 data are not available for the 0 time point as the exposure duration was not long

enough for the positive control to have an effect. It is interesting to note that among the cell

line/technology combinations, the potency of the positive control in the HEK293[glo] assay

increased with increasing exposure duration while in the other three combinations, potency

stayed relatively constant across time.
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Relative assay sensitivity

Activity. The number of actives at each time point for each technology and cell line used

is presented in Fig 3. Between the four assays, screening chemicals using the HEK293[glo]

assay resulted in the most number of actives: over 2200 chemicals were considered active at

the 40-hour time point. In contrast, using the same assay technology (glo) in the HepG2 cell

line produced the least number of actives (i.e., only ~800 chemicals were considered active at

the 40-hour time point). In fact, across all time points >0 hours, more actives were detected in

the HEK293 cell line than in the HepG2 cell line when using the glo technology. However, the

opposite was observed for the flor technology (i.e., more actives were detected in the HepG2

vs. the HEK293 cell line). Moreover, in the HepG2[glo] assay, the rate at which the number of

actives increased with increasing time was the slowest in comparison with the other three

assays. We evaluated the extent of active chemical overlap between the four assays at the

40-hour time point (Table 1). At this maximal exposure time point, 3140 unique chemicals

were classified as active in the two cell lines using the two technologies; 1260 (~40%) of which

were concordant across the four assays. The HEK293[glo] assay produced the most number of

Fig 3. Comparison of number of actives in four assays. The number of actives detected in the four assays at the six different time points.

Blue: HEK293 cell line; red: HepG2 cell line. Filled circle: glo assay technology; hollow circle: flor assay technology.

https://doi.org/10.1371/journal.pone.0177902.g003
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unique actives (25%, 791/3140) while the HepG2[glo] assay contributed only 1.7% (54/3140) of

the unique actives. On the other hand, the percentages of unique actives from the HEK293

[flor] and HepG2[flor] assays were similar (<10%, 273/2140 vs. 322/2140, respectively). We

also compared overlapping actives between assay technologies (or cell lines) in different cell

lines (or assay technologies) (S2 Fig). Over 90% of actives in HepG2[glo] assay was also active

in HEK293[glo] assay.

Pearson’s correlation coefficient (Pearson’s R) was applied to evaluate the activity (POD)

correlation between the four assays (Table 2). The results from the flor assay technology using

either HEK293 or HepG2 cell lines are the most correlated (R = 0.86) while the results of the

HEK293[glo] technology is less correlated compared with the other three assays, with R value

ranging from 0.6 to 0.7. In addition, we applied the repeated measure linear model to the

wAUC data to estimate the degree of activity variation contributed by the three factors: cell

line, technology, and time. The result shows that technology contributes the major variation of

activity (65.6%) among the explainable variation, while time contributes 20% and the cell line

contributes around 14.4%.

To evaluate at which time point the total number of actives became stabilized, the fold

change of the number of actives between two consecutive time points was calculated (Table C

in S1 Text). A fold change threshold for each assay technology was derived based on the num-

ber of actives at the 0-hour time point, assuming that only the physicochemical properties of

the chemicals and the technical assay variation contributed to the observed effect. For example,

for the glo technology, the number of actives at 0-hour time point in HEK293 cell line and in

HepG2 cell line were 416 and 550, respectively. Comparing to the average number (483), there

was< 20% of increase (or decrease) of number of actives using either of the cell lines (e.g.,

550/483 = 1.14 [HEK293] vs. 416/483 = 0.86 [HepG2]). Thus, 20% is set as the threshold to

define if there is a significantly increase of actives when comparing two consecutive time

points (Table C in S1 Text). Based on the threshold, we identified the time point where the

total number of actives became stabilized is 16 and 32 hours in the glo and flor assays,

respectively.

Kinetics of cytotoxicity. In each of the four assays, the chemicals were grouped as shown

in S1 Fig. The log10(wAUC+1) of two chemicals across the six time points are provided as

examples in Fig 2. Digitonin, a mild detergent, quickly reaches its maximum cytotoxic effect

(0< time < 8 hour) in all four assays. On the other hand, mitomycin C (MMC), a genotoxic

compound that induces DNA cross-links, produces an assay specific cytotoxic effect (i.e., it

Table 1. Number of active chemical overlaps between four assays at 40 hours classified by cell lines and technologies.

cell line

HEK293 Both HepG2

technology glo 791 53 54

Both 153 1260 20

flor 273 214 322

https://doi.org/10.1371/journal.pone.0177902.t001

Table 2. Activity correlation between four assays.

hek293_flor hek293_glo hepg2_flor hepg2_glo

hek293_flor 1.00 0.60 0.86 0.76

hek293_glo 0.60 1.00 0.64 0.70

hepg2_flor 0.86 0.64 1.00 0.78

hepg2_glo 0.76 0.70 0.78 1.00

https://doi.org/10.1371/journal.pone.0177902.t002
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was not active in the HEK293[flor] assay, but was in the HepG2[flor] assay with a relatively

slow rate to reach its maximum cytotoxic effect (i.e., 24 < time < 32 hour). Although MMC

was active in both the HEK293[glo] and the HepG2[glo] assays, it reached its maximum cyto-

toxic effect more quickly in the HepG2 cell line (0 < time< 8 hour) compared to the HEK293

cell line (16< time < 24 hour). The number of chemicals that reach their maximum cytotoxic

effect in each assay time interval is provided in Table 3. Greatest sensitivity to time was seen in

the HEK293[glo] assay (i.e., the number of active chemicals reaching their maximum cytotoxic

effect was more scattered over the different time intervals). For the same assay technology,

over 75% of actives in the HepG2[glo] assay quickly reached their maximum cytotoxic effect

(0< time < 8 hour). Overall, in the flor technology, there were more chemicals that required

longer times to reach their maximum effect (~ 20%, time >32 hour) than by using the glo tech-

nology (< 10%, time>32 hour). And likewise, the results using the flor technology were more

similar: ~40% of actives quickly reached their maximum effect (0 < time < 8 hour) in both

cell lines. In total, 1960 chemicals showed varying cytotoxicity kinetics in the four assays

(including inactive labels) while 5960 chemicals were non-cytotoxic in all four assays under

the experimental conditions used.

Identification of cytotoxicity dependent toxicity pathway linkage

The 1960 chemicals can be grouped into 350 bins based on their cytotoxicity kinetics profiles

in the four assays (e.g., digitonin belongs to the bin that is labelled with “0< time < 8” in all

four assays and there are 73 chemicals in this group). The enrichment analysis was conducted

as described in the Methods section using the results from the primary screen of each Tox21

assay [13]. The binary significance of association for each bin-toxicity pathway pair are pre-

sented as a heat map using hierarchically clustering with average linkage (Fig 4A). Nine of 29

nuclear receptor related pathways and three of 12 stress response pathways did not have any

significant associations with any of the cytotoxicity kinetics groupings, which includes most of

agonist-mode of nuclear receptor related assays and assays related to activation of HIF-1, NF-

κB, and ATF-6.

Chemicals that increased production of γ-H2AX were found to be most commonly associ-

ated with the cytotoxicity kinetics grouping, and were particularly associated with the groups

where chemicals show significant activities in all four assays. Chemicals that caused mitochon-

drial membrane potential (MMP) disruption were found to be the second group most com-

monly associated with the cytotoxicity kinetics grouping, specifically with two groups of

chemicals: chemicals that induced cytotoxic effects in all four assays or chemicals that active in

the HEK293[glo] assay only. In contrast, chemicals that were active in nuclear receptor related

pathway assays were preferentially associated with chemical groups that induced cytotoxic

effects in the HEK293[glo] assay only. In addition to the aforementioned two stress response

pathways (MMP and γ-H2AX), other cytotoxicity kinetics groupings were found to be to be

Table 3. Number of chemicals that reached their maximum cytotoxic effect in each time interval by assay.

assay 0 < time < 8 8 < time < 16 16 < time < 24 24 < time < 32 32 < time < 40 time > 40* inactive inconclusive

flor[HEK293] 523 (42.9%) 103 (8.4%) 203 (16.6%) 127 (10.4%) 223 (18.3%) 41 (3.4%) 7927 520

glo[HEK293] 545 (25.9%) 664 (31.5%) 424 (20.1%) 248 (11.8%) 151 (7.2%) 73 (3.5%) 6999 563

flor[HepG2] 609 (40.2%) 178 (11.8%) 330 (21.8%) 137 (9.0%) 241 (15.9%) 19 (1.3%) 7774 379

glo[HepG2] 586 (74.9%) 71 (9.1%) 57 (7.3%) 23 (2.9%) 31 (4.0%) 14 (1.8%) 8206 679

(percentage) represents the percentage of chemicals identified in this time interval relative to the total number of chemicals identified in all time intervals

*: the time interval that cytotoxic effect become stabilized is outside the exposure time

https://doi.org/10.1371/journal.pone.0177902.t003
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associated with chemicals that activated other stress response pathways. For example, chemi-

cals that increased TP53 transcriptional factor (TF) activity were associated with groups where

chemicals required a longer time to reach the maximum cytotoxic effect (time > 16 hours).

The degree of association between the time interval where chemicals reached their maxi-

mum cytotoxic effect and activity in the stress response/nuclear receptor pathway assays was

calculated (see Methods). For example, chemicals that increased γ-H2AX activity were associ-

ated with 18 different cytotoxicity kinetics groupings and the time interval (0< time < 8

hours, HepG2[glo]) was found 17 of 18 times; thus, the degree of association between 0< time

< 8 hours, HepG2[glo] and γ-H2AX induction is 0.94 (17/18)). The degree of association is

presented as a heat map using hierarchical clustering (only the rows) with average linkage (Fig

4B). Several Tox21 stress response/nuclear receptor pathways were found to be clustered

together through the association of active chemicals to certain cytotoxicity kinetics groupings.

For example, the chemicals that decreased androgen receptor (AR) TF activity in either the

full-length receptor or the ligand-binding-domain (LBD) assays tended to be more selectively

active in the HEK293[glo] assay, similar to the chemicals that increase Nrf2 TF activity. Other

linkages were revealed (the list was based on the decreasing number of times of association

found; the number of times is provided in parenthesis): for example, increased production of

γ-H2AX (18) clustered with increased heat shock factor (HSF) TF activity (5), decreased estro-

gen receptor (ER) TF activity (10) clustered with disruption of MMP (12), increased TP53 TF

activity (5) clustered with decreased farnesoid X receptor (FXR) TF activity (4), increased aryl

hydrocarbon receptor (AhR) TF activity (4) clustered with increased constitutive androstane

receptor (CAR) TF activity (4), decreased peroxisome proliferator-activated receptor (PPARγ)

TF activity (4) clustered with decreased glucocorticoid receptor (GR) TF activity (3), increased

Activator protein 1 (AP-1) TF activity (4) clustered with increased vitamin D receptor (VDR)

TF activity (3). Some of the associations could also be seen by comparing the overall activity

similarity of chemicals between the Tox21 assays (e.g., increased AhR TF activity clustered

with increase CAR TF activity, increased production of γ-H2AX clustered with increased HSF

TF activity, and decreased ER TF activity clustered with disruption of MMP) but some are not

Fig 4. Toxicity pathway clustering based on chemical cytotoxicity kinetics data. a) binary association between activities in pathways (rows) and

chemical cytotoxicity kinetics groupings(columns). Magenta cell: significant; white cell: non-significant. n_in_bin: number of chemicals in the bin (grouping).

b) degree of association between the earliest time intervals where chemicals reached the maximum cytotoxic effect and activity in toxicity pathways. Red row

text: stress response pathways; black row text: nuclear receptor related pathways; n: number of times of associations found in a); more intensified purple

color, higher degree of association.

https://doi.org/10.1371/journal.pone.0177902.g004
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(S3 Fig), indicating the associations seen in Fig 4B are more related to the underlying mecha-

nisms of cytotoxicity. In addition, some Tox21 stress response/nuclear receptor pathways were

not directly linked with any other pathway such as the increase of ATAD5 TF activity.

Linkage investigation and chemical prioritization

As noted above, chemicals that decreased AR TF activity tended to be more selectively

active in the HEK293[glo] assay, similar to the chemicals that increased Nrf2 TF activity.

To investigate this association, the cytotoxicity kinetics activity data of AR antagonists with

well documented effects in humans or rodents in the Tox21 10K library (including both phar-

maceuticals and environmental chemicals) [26] were hierarchically clustered with average

linkage (k = 4, number of groups) and the POD potency data related to decreased AR TF activ-

ity (AR(down)), increased Nrf2 TF activity (Nrf2(up)), other activities in Tox21 (Other), and

cytotoxicity in the four assays (Cyto(realtime)) in this study compared (Fig 5A and S4A Fig).

When there were multiple activities in the real-time cytotoxicity data, the most potent activity

is presented. The four AR antagonists (hydroxyflutamide, flutamide, diethylstilbestrol, and bis-

phenol A) with increased Nrf2 TF activity were grouped together due to their similar cytotox-

icity kinetics activity data (i.e., active only in HEK293[glo]). Weak Nrf2 activity was seen for

procymidone; however, this effect was inconsistent across different chemical sources (e.g.,

chemicals from different vendors/preparations) for this compound. The POD potency of Nrf2

activation was within 10-fold of the POD potency of cytotoxicity (in this case, HEK293[glo]) in

the real-time assays, while the AR activity tended to be more potent than both the activation of

Nrf2 and the cytotoxic effect in HEK293[glo] (purple cluster including hydroxyflutamide in

Fig 5A). The relationship between the cytotoxicity kinetics data, decreased AR TF activity, and

increased Nrf2 TF activity matches with the profile in Fig 4B. The two AR antagonists that had

no activity in all four real-time cytotoxicity assays (vinclozolin and procymidone), showed

very few and weak activities in the Tox21 assays other than their AR-related activities. The oth-

ers (p,p’-DDE and 4-(1,1,3,3-tetramethylbutyl)phenol)) tended to quickly reach the maximum

cytotoxic effect in at least three assays and had more diverse activities seen in other Tox21

Fig 5. Activity potency comparison between the known nuclear receptor antagonists clustered based on their cytotoxicity kinetics activity data.

a) AR antagonists. b) ER antagonists. Dendrogram on the left represents the clustering using the cytotoxicity kinetics activity data and color represents the

groupings; the symbols represent the most potent activity in the respective assays.

https://doi.org/10.1371/journal.pone.0177902.g005
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assays. The same exercise was also performed on the known ER antagonists in the Tox21 10K

library (k = 2, number of groups)[27](Fig 5B and S4B Fig). Fulvestrant had distinct cytotoxicity

kinetics when compared with the other ER antagonists, and all of them showed activity in the

Tox21 MMP assay (either increase or decrease of MMP). The potency of MMP disruption

tended to track with cytotoxicity potency (for ‘tamoxifen’ cluster’, potency was from all four

active assays; while for the fulvestrant, the potency was from the solely active, HEK293[glo]

assay). The more diverse cytotoxicity kinetics profiles in relationship with disruption of MMP

and decrease of ER TF activity were also reflected in the results seen in Fig 4. The above analy-

ses suggest that there are classes of AR/ER antagonists having Nrf2 activation/MMP disruption

at a potency level similar to the potency of their cytotoxicity effects in the HEK293/HepG2 cell

lines.

Thus, considering the relationship as a biological feature that can help to identify true AR/

ER antagonists, we prioritized the actives identified in previous Tox21 screens. In total, there

are 108 chemicals with decreased AR TF activity and increased Nrf2 activity and 70 chemicals

with decreased ER TF activity and MMP disruption having cytotoxicity kinetics profile as seen

in the Fig 4B based on the hierarchical clustering analysis. The results were ranked by their

most potent AR/ER activity and the respective Nrf2/MMP activity as well as the activity in the

real-time cytotoxicity assays are reported in S5 Fig and S1 and S2 Tables.

Discussion

In this study, we interrogated chemical-induced cytotoxicity at six different time points (0, 8,

16, 24, 32, & 40 hours) using two cell lines (HEK293 and HepG2) and two real-time assay tech-

nologies measuring different cytotoxicity mechanisms: the glo technology measured the reduc-

ing potential of cells and thus their metabolic ability (i.e., decrease of cell viability) while the

flor technology measured the loss of cellular membrane integrity (i.e. increase of cell death).

Based on the number of actives detected and the kinetics of cytotoxicity observed, greatest sen-

sitivity was seen in the HEK293[glo] assay as this assay has the most number of actives as well

as the most number of unique actives. It also has the greatest temporal variation. On average,

actives in the HEK293[glo] assay tended to be ~2 fold more potent than the same chemicals

when active in the HepG2[glo] assay, which might explain why more actives were detected

using the HEK293[glo] assay. In contrast, the potency of actives in the two cell lines using the

flor assay technology was more similar. Using the Promega CellTiter-Glo1 assay, which

assessed cytotoxicity by measuring ATP levels, Xia et al. [8] also showed that HEK293 cells

were more sensitive than HepG2 cells in terms of a greater number of active compounds and

greater potency. The greater sensitivity in HEK293 (vs HepG2) might be related to the faster

doubling time of the HEK293 cell line (22 hours vs. 40 hours for the HepG2 cell line) while the

greater sensitivity in glo technology (vs flor) is related to the use of a metabolic activity marker

as the endpoint vs a compromised cell membrane as the endpoint. Metabolic activity markers

can detect non-lethal perturbations (e.g., cessation of proliferation and inhibition of mito-

chondrial respiration) in contrast to the flor technology that detects more “bona fide” cell

death (a lack of cell membrane integrity) [5].

By analyzing the degree of variation contributed by three factors (technology, time, and cell

line) by repeated measure linear model, we found the technology factor contributed the most

(>60%) to the variation in activity while the other two factors (time and cell line) each contrib-

uted<20%. However, interactions were seen between these three factors, especially the cell

line by technology interaction effect, which means that each assay should be treated indepen-

dently. Future study design could take the interaction effect into account with application of a

more complex statistical model for a better assessment of the source of variation. Nevertheless,

Real-time cell toxicity profiling of Tox21 10K compounds

PLOS ONE | https://doi.org/10.1371/journal.pone.0177902 May 22, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0177902


the current analysis demonstrated that the difference of these two technologies affected the

results the most.

In terms of kinetics, we found that a longer exposure time was needed in order to obtain

the most number of actives using the flor technology (32 hours vs 16 hours using the glo tech-

nology) and more actives required a longer exposure time to reach the maximum cytotoxic

effect by the flor technology (~ 20%, time >32 hour vs < 10%, time >32 hour by the glo tech-

nology). This observation is most likely related to the different cytotoxicity mechanisms

detected by these two assay technologies: the flor technology detects cell membrane leakage,

which is the last step of the necrosis while the glo technology detects cell metabolic perturba-

tions, which happen after the chemical insult and would occur before cell membrane leakage.

Based on the assumption that chemicals with similar cytotoxicity profiles can have similar

MOA, we grouped the chemicals based on their similarity of cytotoxicity kinetics profiles. To

take into account the correlated structure of the time factor, we designed a parameter that cap-

tured the earliest time interval where a maximal cytotoxic effect was achieved, assuming that

the cytotoxic effect had a monotonic behavior during the exposure duration (40 hours, the

maximum allowed exposure duration using the 1536-well plate format due to the potential for

evaporation). We also assumed that the MOAs might be represented by some of the activities

in Tox21 stress response/nuclear receptor assays. Fisher’s exact test was conducted in order to

identify the significant associations between pairs of individual cytotoxicity kinetics grouping

and individual assay. We found that chemicals that increased production of γ-H2AX and/or

disrupted MMP were often associated with groups of chemicals that induced cytotoxicity. The

results were not surprising since the formation of γ-H2AX plays a key role in responding to

DNA double-strand breaks [28] and alterations in MMP is frequently a decisive event for cell

death, irrespective of an underlying mechanism that might be apoptotic, necrotic, or autopha-

gic [29]. Chemicals that increased production of γ-H2AX were found to be particularly associ-

ated with the groups that quickly reached the maximum cytotoxic effect in all four assays. On

the other hand, chemicals that disrupted MMP were not only associated with groups of chemi-

cals that were active in all four assays but also with groups of chemicals that were active in the

HEK293[glo] assay only, suggesting that the two chemical groups may involve different mecha-

nisms of cytotoxicity [30].

DNA damage is a likely MOA for cytotoxicity. With the exception of increased production

of γ-H2AX, the Tox21 genotoxicity related pathway assays, including increase of TP53 TF

activity, increase of ATAD5 protein production, increase of Ku70/Rad54 protein activity, and

increase of Rev3 enzyme activity, tended to be associated with the groups of chemicals which

required a longer time to reach a maximum cytotoxic effect. It has been reported that the for-

mation of γ-H2AX tends to be quite fast, usually less than 4 hour after the start of exposure

[31]. On the other hand, chemicals that activated other genotoxicity related pathways involv-

ing cell cycle processes (cell doubling time is 22 hours and 40 hours for HEK293 cell line and

HepG2 cell line, respectively) would probably take a longer time to reach maximal adverse bio-

logical consequences, including cytotoxicity. Only three of 12 available stress response path-

ways did not have any significant associations with any of the cytotoxicity kinetics groupings;

the three assays were those related to activation of HIF-1, NF-κB, and ATF-6. These three

assays had the least number of actives compared with the other stress response pathway assays.

For nuclear receptor related assays, interestingly, the chemical groups that were only active in

the HEK293[glo] assay were often associated with chemicals that either increase or decrease

nuclear receptor related TF activity.

We further clustered the Tox21 stress response/nuclear receptor pathway assay results

based on their degree of association to the different cytotoxicity kinetics labels (i.e., earliest

time interval maximal cytotoxic effect achieved), we found that active chemicals in some stress
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response/nuclear receptor pathways tend to have rather unique kinetics of cytotoxicity (e.g.,

increase of ATAD5 protein production). However, there were also clusters of pathways where

active chemicals exhibited similar kinetics of cytotoxicity. One possible explanation is that the

active chemicals in these pathways may share certain chemical structures (i.e., toxicophores)

related to the observed cytotoxic effect. For example, the bisphenol structural class that

increases Nrf2 activation and decreases AR TF activity. The other possible explanation is that

there may be shared underlying biological processes between these pathways which converge

on a similar cytotoxic profile. An example of such a biological interaction is that a positive heat

shock response could induce phosphorylation of histone H2AX in mammalian cells [32]. In

addition, in relation to the HSF and γ-H2AX association, a convergent mechanism of toxicity

has been suggested based on the interaction of the DNA damage and heat shock pathways

through the DNA Damage checkpoint control protein, MDC1 [33].

When considering the found associations between nuclear receptor pathways and cytotox-

icity, it is important to note that there is no endogenous androgen and estrogen receptors in

the HEK293/HepG2 cell lines. Hence, the linkages between stress response pathways and nu-

clear receptor pathways (i.e., Nrf2 activation–decrease of AR TF activity and MMP disruption–

decrease of ER TF activity) through cytotoxicity are most likely due to shared toxicophores

rather than to a biological interaction between the pathways. For example, the bisphenol struc-

tural class that increases Nrf2 activation and decreases AR TF activity. In these cases, although

the activity on nuclear receptors cannot be the MOA for cytotoxicity, considering that the

nuclear receptors can be viewed as biosensors that mediate the cellular reactions to chemical

insult, grouping chemicals based on their activity on the nuclear receptors can still provide use-

ful information and activity on the stress response pathway may serve as the possible MOA for

cytotoxicity if both present similar potency values. For in vitro HTS assays, it is recognized that

each assay only represents a part of the components in the stress response/nuclear receptor

pathways [34]. Orthogonal assays are needed to help discriminate the true pathway-level actives

from the artifacts. Thus, we think if some of the pathway-level actives also presented the identi-

fied relationship (i.e., cytotoxicity dependent toxicity pathway linkages), the relationship could

be used as in vitro biological features to prioritize chemicals in previous in vitro nuclear receptor

screenings for further in vivo endocrine screening. Preferably, the potency of nuclear receptor

activity should be more potent than the potency seen in the real-time cytotoxicity assays. How-

ever, since the different cell lines and time points were used in various Tox21 assays, potency in

the different assays might not be directly comparable.

Based on this concept, the linkages of decrease AR TF activity–increase Nrf2 TF activity

and decrease ER TF activity–MMP disruption were investigated using known nuclear receptor

antagonists. The expected relationships were confirmed and actives in the Tox21 assays were

prioritized. In addition to the antagonists used in the study, other top actives (based on

potency) also have abundant published studies related to AR (e.g., cyproterone acetate, niluta-

mide, bicalutamide). For chemicals that decreased ER TF activity (S2 Table), the results were

compared with the corresponding ER antagonist AUC score if available from the pathway-

level model constructed using all Tox21/ToxCast ER assays of 1812 ToxCast chemicals [14]. In

addition to the known ER antagonists, some other classes of chemicals overlapped with the

chemicals with ER antagonist AUC score higher than 0.01. These include, for example, two

gallates with long alkyl chains (octyl gallate and dodecyl gallate), two ionic liquids (hexadecyl-

trimethylammonium bromide and N,N,N-trimethyltetradecan-1-aminium chloride), and the

organotin tetrabutyltin. Other ionic liquids and organotins also appeared in the prioritized ER

list (S2 Table). Although mostly caused by the results from the HEK293[glo] assay, greater

overlap in potency was seen between the ER antagonist activity and the most potent activity in
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the four real-time cytotoxicity assays, suggesting that there was a greater chance that ER activ-

ity could be confounded by cytotoxicity.

In summary, the real-time cytotoxicity screen provides informative cytotoxicity kinetics

data to help classify chemicals related to their cytotoxicity MOA, which could be hypothesized

by linking the cytotoxicity outcomes with Tox21 cell-based, target-specific data. In the future,

with the advance of phenotypic screening using in vivo alternative animal models [35,36] and

with the better curation of historical animal data [37] with target-level effects, similar studies

can be conducted to relate chemical-induced in vivo outcome to the respective in vitro mecha-

nisms through Tox21 assays or all PubChem assays [38,39]. When using these in in vitro assays

for MOA identification, limitations such as the difficulty in cross-species/cross-cell line com-

parison, the over-simplification schema for in vivo/in vitro dose extrapolation, and limited

metabolic activity in vitro must be considered.

Supporting information

S1 Fig. Flowchart to identify the earliest time interval where the maximum cytotoxic effect

of chemical is reached.

(PNG)

S2 Fig. The Venn diagram [40] of the number of actives at the 40-hour time point. a) com-

parison between cell lines using either glo or flor technology. b) comparison between assay

technologies using either HEK293 or HepG2 cell line.

(PDF)

S3 Fig. Hierarchical clustering of toxicity pathways based on the activity similarity of

chemicals. The log10(point-of-departure (POD)) activity value was used when comparing

pathways. The 1 molar concentration activity value was set for the inactive and inconclusive

chemicals (artifacts included). Pearson’s correlation between toxicity pathways was calculated.

Only chemicals active in at least one of the pathways were included. The average linkage was

used to connect the pathways with similar activity profile.

(PDF)

S4 Fig. Cytotoxicity kinetics of the representative nuclear receptor antagonists in the clus-

ters. a) AR. The background color corresponds to the clusters presented in Fig 5A; filled circle

(glo); hollow circle (flor). b) ER. The background color corresponds to the clusters presented in

Fig 5B; filled circle (glo); hollow circle (flor).

(TIF)

S5 Fig. Prioritized chemicals based on identified cytotoxicity dependent toxicity pathway

linkages. a) chemicals that decrease AR TF activities in the any of the three Tox21 assays

(tox21-ar-bla-antagonist-p1, tox21-ar-mda-kb2-luc-antagonist-p1, tox21-ar-mda-kb2-luc-

antagonist-p2, see Table A in S1 Text for the description). b) chemicals that decrease ER TF

activities in any of the two Tox21 assays (tox21-er-luc-bg1-4e2-antagonist-p1, tox21-er-luc-

bg1-4e2-antagonist-p2). Median activity in real-time cytotoxicity assays was used. c) chemicals

that decrease ER TF activities in any of the two Tox21 assays (tox21-er-luc-bg1-4e2-antago-

nist-p1, tox21-er-luc-bg1-4e2-antagonist-p2). Most potent activity in real-time cytotoxicity

assays was used.

(PDF)

S1 Text. Table A. Tox21 assays used in the enrichment analysis. Public data can be down-

loaded from https://tripod.nih.gov/tox21/assays/. Table B. Assay performance evaluation.

Table C. Number of actives at each time point and the fold change of actives between two
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