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Background: Human papillomavirus-positive (HPV+) cervical cancers are highly
heterogeneous in molecular and clinical features. However, the molecular classification
of HPV+ cervical cancers remains insufficiently unexplored.

Methods: Based on the expression profiles of 50 genes having the largest expression
variations across the HPV+ cervical cancers in the TCGA-CESC dataset, we hierarchically
clustered HPV+ cervical cancers to identify new subtypes. We further characterized
molecular, phenotypic, and clinical features of these subtypes.

Results: We identified two subtypes of HPV+ cervical cancers, namely HPV+G1 and
HPV+G2. We demonstrated that this classification method was reproducible in two
validation sets. Compared to HPV+G2, HPV+G1 displayed significantly higher immune
infiltration level and stromal content, lower tumor purity, lower stemness scores and
intratumor heterogeneity (ITH) scores, higher level of genomic instability, lower DNA
methylation level, as well as better disease-free survival prognosis. The multivariate
survival analysis suggests that the disease-free survival difference between both
subtypes is independent of confounding variables, such as immune signature,
stemness, and ITH. Pathway and gene ontology analysis confirmed the more active
tumor immune microenvironment in HPV+G1 versus HPV+G2.

Conclusions: HPV+ cervical cancers can be classified into two subtypes based on the
expression profiles of the 50 genes with the largest expression variations across the HPV+
cervical cancers. Both subtypes have significantly different molecular, phenotypic, and
clinical features. This new subtyping method captures the comprehensive heterogeneity in
molecular and clinical characteristics of HPV+ cervical cancers and provides potential
clinical implications for the diagnosis and treatment of this disease.

Keywords: human papillomavirus-positive cervical cancer, subtyping, clustering analysis, tumor immune
microenvironment, multi-omics
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INTRODUCTION

Cervical cancer is the most common gynecological malignancy
(1), of which around 90% are squamous cell carcinomas and 10%
are adenocarcinomas. Infection by the human papillomavirus
(HPV) is the major risk factor for cervical cancer, and about 70%
of HPV-related cervical cancer is caused by HPV-16 or HPV-18
(2). Furthermore, previous studies have revealed that HPV-18
infection is an adverse prognostic parameter and that HPV-16
infection has no significant association with survival prognosis in
cervical cancer (3). Most of cervical squamous cell carcinoma
(CESC) patients are HPV-positive, while about 25% of cervical
adenocarcinoma patients are HPV-negative (4). Previous studies
have revealed that cervical cancer is highly heterogeneous in
clinical and molecular profiles (5). The Cancer Genome Atlas
(TCGA) network grouped cervical cancer into four subtypes:
HPV clade A9, A7, HPV-negative, and other (5). Besides, TCGA
identified three subtypes of cervical cancer, namely keratin-low
squamous, keratin-high squamous, and adenocarcinoma-rich by
an integrative analysis of copy number, methylation, mRNA and
microRNA profiles (5). In addition, TCGA identified three
clusters of cervical cancer by reverse phase protein array
(RPPA) analysis of 155 samples with 192 antibodies; these
clusters included hormone, epithelial-mesenchymal transition
(EMT), and PI3K-AKT, of which the EMT cluster showed the
worst five-year overall survival outcome (5).

Currently, surgery, chemotherapy and radiotherapy are three
major therapeutic options for cervical cancer, although they have
limited efficiency for advanced or recurrent cervical cancers (6).
Recently, immunotherapies, particularly immune checkpoint
inhibitors (ICIs) (7), exhibit efficiency for various solid tumors,
such as melanoma, lung cancer, head and neck cancer, kidney
cancer, bladder cancer, triple-negative breast cancer, cervical
cancer, liver cancer, prostate cancer, and gastrointestinal cancers
with mismatch repair deficiency (dMMR). ICIs can induce the
regression of certain virus infection-related epithelial
malignancies, such as HPV-related cervical (8), head and neck
(9), and anal (10) cancers. In fact, the use of ICIs for treating
recurrent or metastatic cervical cancers has recently approved by
FDA, although less than 20% of cancer patients have an active
response to ICIs.

In this study, we identified subtypes of HPV-positive (HPV+)
cervical cancers based on gene expression profiles in cervical
cancers. Furthermore, we compared molecular and clinical
features between the HPV+ cervical cancer subtypes. We also
compared molecular features between HPV+ and HPV-negative
(HPV-) cervical cancers. This study aimed to explore a new
subtyping method for HPV+ cervical cancers and provide
Abbreviations: HPV, human papillomavirus; HPV+, Human papillomavirus-
positive; HPV-, HPV-negative; CESC, cervical squamous cell carcinoma; EMT,
epithelial-mesenchymal transition; dMMR, mismatch repair deficiency; TMB,
tumor mutation burden; CNA, copy number alteration; ITH, intratumor
heterogeneity; HRD, Homologous recombination deficiency; PR, progesterone
receptor; ICIs, immune checkpoint inhibitors; RF, Random Forest; DFS, disease-
free survival; HR, hazard ratio; HLA, human leukocyte antigen; MHC, major
histocompatibility complex; CV, cross-validation; CIMP, CpG island
hypermethylated; WGCNA, weighted gene co-expression network analysis.
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potential clinical implications for the diagnosis and treatment
of HPV+ cervical cancers.
METHODS

Datasets
We downloaded three datasets of gene expression profiles in
cervical cancer, including TCGA-CESC (5), GSE29570 (11), and
GSE39001 (12). The TCGA-CESC dataset was from the genomic
data commons (GDC) data portal (https://portal.gdc.cancer.gov/),
and GSE30784 and GSE39366 were from the NCBI gene
expression omnibus (https://www.ncbi.nlm.nih.gov/geo/). From
GDC, we also downloaded the protein expression, somatic
mutation, and somatic copy number alteration (CNA) profiles
and clinical data in TCGA-CESC. We took TCGA-CESC as the
discovery set and performed main analyses in this dataset. The
other two datasets were validation sets. These datasets contained
only data of human mRNA expression, but not data of the
expression of infecting HPV variants. The data on the mRNA
expression of HPV alpha-7 and alpha-9 clades were not available
in any of these datasets. A summary of these datasets is shown
in Table 1.

Clustering Analysis
We first identified 50 genes having the largest expression
variations across the HPV+ cervical cancers in TCGA-CESC.
Based on the expression profiles of the 50 genes, we performed
the hierarchical clustering of the HPV+ cervical cancers in the
three datasets, respectively.

Gene-Set Enrichment Analysis
We quantified the enrichment level of an immune signature or
phenotypic feature in a tumor sample by the single-sample gene-
set enrichment analysis (ssGSEA) of its marker gene set (13). The
ssGSEA calculates the enrichment score of a gene set in a sample
based on its expression profiles. The ratios of immunostimulatory/
immunosuppressive signatures were the base-2 log-transformed
values of the geometric mean expression levels of all marker genes
of immunostimulatory signatures divided by those of
immunosuppressive signatures. The marker gene sets of
immune signatures or phenotypic features are shown in
Supplementary Table S1.

Pathway and Gene Ontology (GO) Analysis
We first identified the genes differentially expressed between two
classes of samples using the Student’s t test with a threshold of
adjusted P value < 0.05 and fold change of their mean expression
levels > 2. By inputting the differentially expressed genes into the
GSEA web tool (14), we identified KEGG (15) pathways highly
enriched in one class versus another class using a threshold of
adjusted P value < 0.05. We used the weighted gene co-
expression network analysis (WGCNA) (16) to identify gene
modules significantly enriched in subtypes. Based on the
expression correlations between the gene modules’ hub genes,
we identified GO terms having significant correlations with
specific trait by WGCNA.
January 2022 | Volume 13 | Article 801639
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Calculation of Immune Score, Tumor
Purity, Stemness Score and Intratumor
Heterogeneity (ITH)
We used the ESTIMATE algorithm (17) to calculate tumor
immune score, stromal score, and tumor purity based on gene
expression profiles. The immune score, stromal score, and tumor
purity indicate the level of tumor-infiltrating lymphocytes,
proportion of stromal component, and proportion of tumor
cells in a bulk tumor sample. The stemness score was calculated
by the ssGSEA of its marker gene set (18) and defined the level of
tumor stem cell-like phenotypic feature. We evaluated the ITH
level by the DEPTH algorithm (19), which quantifies ITH based
on transcriptomic alterations in the tumor.

Survival Analysis
We used Kaplan–Meier curves to display the survival time
difference between cervical cancer subtypes, whose significance
was evaluated by the log-rank test. The function “survfit” in the R
package “survival” was utilized to perform this analysis. In addition,
we performed multivariate survival analysis to investigate the
correlation between cervical cancer subtypes and survival
prognosis after adjusting for confounding variables, including
immune score, stemness score, and ITH score. All these variables
are continuous variables. The Cox proportional hazards model was
utilized to implement the multivariate survival analysis with the
function “coxph” in the R package “survival”.

Evaluation of Tumor Mutation Burden
(TMB) and CNAs
The TMB was defined as the total number of somatic mutations in
the tumor. We used GISTIC2 (20) to calculate G-scores for cervical
cancer subtypes. The G-score represents the amplitude of the CNA
and the frequency of its occurrence across a group of samples (20).

Class Prediction
We utilized the Random Forest (RF) algorithm (21) to predict
cervical cancer subtypes. In the RF, the number of trees was set to
500, and the features included the 50 genes with the largest
expression variations across the HPV+ cervical cancers in TCGA-
CESC. We reported sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC) to evaluate the
prediction performance. The R package “randomForest” was
utilized to perform the RF algorithm. The R package “PreHPVcc”
for predicting HPV+ cervical cancer subtypes is available in the
GitHub repository (https://github.com/WangX-Lab/PreHPVcc).

Statistical Analysis
In class comparisons, we used the Mann–Whitney U test or
Kruskal–Wallis (K–W) test for not normally distributed data
Frontiers in Immunology | www.frontiersin.org 3
(Shapiro test, P < 0.05) and Student’s t test or one-way analysis of
variance (ANOVA) test for normally distributed data. We
utilized the chi-square test to analyze contingency tables. We
used the Benjamini-Hochberg method (22) to adjust for P values
in multiple tests. We performed all statistical analyses in the R
programming environment (version 4.0.2).
RESULTS

Subtyping of HPV+ Cervical Cancers
We hierarchically clustered HPV+ cervical cancers based on the
expression profiles of 50 genes which had the largest expression
variations across the HPV+ cervical cancers. We obtained two
clear clusters, termed HPV+G1 and HPV+G2 (Figure 1A). We
confirmed that this classification was reproducible in two other
datasets (GSE29570 and GSE39001) (Figure 1A). We found that
HPV+G1 had a significantly higher disease-free survival (DFS)
rate than HPV+G2 (log-rank test, P = 0.01) (Figure 1B).
Interestingly, HPV+G1 showed significantly higher enrichment
levels of various immune signatures than HPV+G2, including
CD8+ T cells, B cells, M1 macrophages, cytolytic activity, IFN
response, CD4+ regulatory T cells, pro-inflammatory cytokines,
T cell exhaustion, MDSCs, PD-L1 expression, and anti-
inflammatory cytokines (one-tailed Mann–Whitney U test, P <
0.01) (Figure 1C). Moreover, the ratios of immunostimulatory/
immunosuppressive signatures (M1/M2 macrophages and pro/
anti-inflammatory cytokines) were higher in HPV+G1 than in
HPV+G2 (Figure 1C). We further used the ESTIMATE
algorithm (17) to calculate the immune score representing the
tumor immune infiltration level. As expected, immune scores
were significantly higher in HPV+G1 than in HPV+G2 (P <
0.001) (Figure 1D), while tumor purity was significantly lower in
HPV+G1 than in HPV+G2 (P < 0.001) (Figure 1E). These
results suggest that HPV+G1 has a more active tumor immune
microenvironment than HPV+G2. In addition, we found that
stromal scores were significantly higher in HPV+G1 than in
HPV+G2 (P = 0.002) (Figure 1F). HPV+G1 had significantly
lower stemness scores than HPV+G2 (P = 0.005) (Figure 1G).
Moreover, HPV+G1 had significantly lower ITH scores than
HPV+G2 (P = 0.005) (Figure 1H).

Because tumor immune signatures, stemness, and ITH are
associated with clinical outcomes in cancer (18, 23, 24) and had
significantly different scores between the HPV+ cervical cancer
subtypes, the survival difference between the subtypes could be
impacted by these confounding variables. To explore the
possibility, we performed multivariate (immune score,
stemness score, ITH score, and subtype) survival analysis with
the multivariate Cox proportional hazards model. The result
TABLE 1 | A summary of the datasets analyzed.

Dataset # tumors # HPV+ tumors # HPV+G1 tumors # HPV+G2 tumors # HPV- tumors Source

TCGA-CESC 303 281 221 60 22 TCGA (https://portal.gdc.cancer.gov/)
GSE29570 62 45 35 10 17 GEO (https://www.ncbi.nlm.nih.gov/geo/)
GSE39001 55 43 25 18 12 GEO (https://www.ncbi.nlm.nih.gov/geo/)
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showed that the subtype HPV+G2 remained a significant risk
factor (P = 0.007; hazard ratio (HR) = 3.76 and its 95%
confidence interval (CI) (3):) (Figure 1I). It suggests that the
DFS difference between both subtypes is independent of these
confounding variables.

Genomic and Epigenomic Profiles of the
HPV+ Cervical Cancer Subtypes
Genomic instability often leads to increased TMB and CNAs (25).
We found that HPV+G1 had higher TMB than HPV+G2 (one-
Frontiers in Immunology | www.frontiersin.org 4
tailed Mann–Whitney U test, P = 0.057) (Figure 2A).
Homologous recombination deficiency (HRD) may lead to
aneuploidy, namely CNAs (25). We obtained the HRD scores
for the TCGA cervical cancers from the publication by
Knijnenburg et al., which were the combined scores of HRD
loss of heterozygosity, large-scale state transitions, and the number
of telomeric allelic imbalances (25). We found that HPV+G1 had
significantly higher HRD scores thanHPV+G2 (one-tailedMann–
Whitney U test, P = 0.015) (Figure 2B). We found that the G-
scores of copy number amplifications and deletions were
A B

D E
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I
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c

FIGURE 1 | Subtyping of HPV+ cervical cancers based on gene expression profiles. (A) Based on the expression levels of the 50 genes having the largest
expression variations across the TCGA HPV+ cervical cancers, hierarchical clustering analyses identify two subtypes of HPV+ cervical cancers: HPV+G1 and
HPV+G2, consistently in three different datasets. (B) HPV+G1 showing significantly higher disease-free survival rate than HPV+G2. The log-rank test P value is
shown. (C) HPV+G1 showing significantly higher enrichment levels of various immune signatures than HPV+G2. The one-tailed Mann–Whitney U test or two-tailed
Student’s t test P values are indicated. Comparisons of immune scores (D), tumor purity (E), stromal scores (F), stemness scores (G), and intratumor heterogeneity
(ITH) scores (H) between HPV+G1 and HPV+G2. The one-tailed Mann–Whitney U test P values are shown. (I) Cox proportional hazards regression analysis showing
that the subtype HPV+G2 is a risk factor for disease-free survival prognosis in HPV+ cervical cancers after adjusting for tumor immune signatures, stemness, and
ITH. HR, hazard ratio; CI, confidence interval; *P < 0.05, **P < 0.01, ***P < 0.001 (they also apply to the following figures).
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significantly higher in HPV+G1 than in HPV+G2 cervical cancers
(Figure 2C). Taken together, these results indicated that HPV+G1
was more genomically instable than HPV+G2.

We compared global methylation levels (26) between both
subtypes and found that HPV+G1 had significantly lower global
methylation levels than HPV+G2 (one-tailed Mann–Whitney U
Frontiers in Immunology | www.frontiersin.org 5
test, P = 0.011) (Figure 2D). This result conforms with that low
methylation levels is associated with increased TMB and CNAs in
cancer (26). Strikingly, we found that 5367 genes showed
significantly lower methylation levels in HPV+G1 than in HPV
+G2 (FDR < 0.05), while there was no any gene showing
significantly higher methylation levels in HPV+G1 than in HPV
A B

C

D

FIGURE 2 | Comparisons of genomic and epigenomic profiles between the HPV+ cervical cancer subtypes. HPV+G1 having higher TMB (A), homologous
recombination deficiency (HRD) scores (B), and G-scores of copy number amplifications and deletions (C), and lower global methylation levels (D) than HPV+G2.
The one-tailed Mann–Whitney U test P values are shown in (A, B, D). The G-score calculated by GISTIC2 (20) represents the amplitude of the copy number
alteration and the frequency of its occurrence across a group of samples.
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+G2. These results indicate a significant difference in epigenomic
profiles between both subtypes.

Pathways and GO Enriched in the HPV+
Cervical Cancer Subtypes
We compared gene expression profiles between HPV+G1 and
HPV+G2 and identified significantly upregulated genes in both
subtypes. Based on these upregulated genes, we identified KEGG
pathways highly enriched in HPV+G1 and HPV+G2, respectively,
using the GSEA web tool (14). Many of the pathways especially
enriched in HPV+G1 were involved in immune signatures,
including cytokine-cytokine receptor interaction, cell adhesion
molecules, complement and coagulation cascades, chemokine
signaling, Toll-like receptor signaling, Fc gamma R-mediated
phagocytosis, leukocyte transendothelial migration, intestinal
Frontiers in Immunology | www.frontiersin.org 6
immune network for IgA production, natural killer cell-
mediated cytotoxicity, NOD-like receptor signaling, and Jak-
STAT signaling (Figure 3A). It confirms the more active tumor
immune microenvironment in HPV+G1 versus HPV+G2.

WGCNA (16) identified nine gene modules significantly
differentiating cervical cancers by subtype (Figure 3B). The
representative GO terms for the gene modules upregulated in
HPV+G1 while downregulated in HPV+G2 included immune
response (in brown) and epidermal and epithelial cell
differentiation (in black). In contrast, the representative GO
terms for the gene modules upregulated in HPV+G2 while
downregulated in HPV+G1 included intracellular non-
membrane-bounded organelle (in green) and microvillus (in
pink). Again, these results confirm that HPV+G1 has a more
active tumor immune microenvironment versus HPV+G2.
A

B

FIGURE 3 | Pathways and gene ontology (GO) enriched in the HPV+ cervical cancer subtypes. (A) The immune-related pathways enriched in HPV+G1 versus HPV+G2.
(B) Nine gene modules and their representative GO terms significantly differentiating cervical cancers by subtype and survival. OS, overall survival; DFS, disease-free survival.
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Protein Expression Profiles in the HPV+
Cervical Cancer Subtypes
We compared the expression levels of 192 proteins between HPV
+G1andHPV+G2and identified significantlyupregulatedproteins
in both subtypes (two-tailed Student’s t test, P < 0.05).We found 22
proteins having significantly higher expression levels in HPV+G1,
including NDRG1_pT346, Notch1, EGFR, Annexin-1, CD49b,
PI3K-p85, EGFR_pY1068, Caveolin-1, YB-1_pS102, Src_pY416,
Bad_pS112,MEK1,Myosin-IIa_pS1943, PAI-1, YAP_pS127, YAP,
Bcl-2, Fibronectin, MYH11, GSK3_pS9, Syk, and VHL (Figure 4).
Among them,AnnexinA1, alsoknownas lipocortin I, plays a role in
the regulation of innate and adaptive immunity (27). CD49b
(cluster of differentiation 49b) is an integrin alpha subunit
expressed on various cell types, including T cells and NK cells
(28). YAP is involved in theHippo signaling pathway,which plays a
role in tumor immune regulation (29). Bcl-2 is a positive regulator
of apoptosis, which is associated with anti-tumor immunity (30).
Collectively, these results again confirmed the more active tumor
immune microenvironment in HPV+G1 versus HPV+G2.

In contrast, 25 proteins showed significantly higher expression
levels in HPV+G2 than in HPV+G1 (Figure 4). These proteins
included TIGAR, XRCC1, AMPK-a, Claudin-7, Bcl-xL, PCNA,
p27, SCD1, TAZ, INPP4B, Ku80, ASNS, AMPK_pT172, MSH2,
Acetyl-a-Tubulin-Lys40, 53BP1, Rab25, MIG-6, MSH6, mTOR,
Chk2, ER-a, c-Kit, PKC-delta_pS664, and Transglutaminase.
Among them, many proteins are involved in DNA repair,
including XRCC1, PCNA, Ku80, MSH2, and MSH6, confirming
that HPV+G2 was more genomically stable than HPV+G2.

Comparisons Between the HPV+ Cervical
Cancer Subtypes and HPV- Tumors
Although HPV+G2 had lower enrichment levels of immune
signatures than HPV+G1, it showed significantly higher
Frontiers in Immunology | www.frontiersin.org 7
enrichment levels of various immune signatures than HPV-
tumors, including

NK cells, M1 macrophages, IFN response, CD4+ regulatory T
cells, and M2 macrophages (Supplementary Figure S1A).
Moreover, the ratios of immunostimulatory/immunosuppressive
signatures (CD8+ T cells/MDSCs) were significantly higher in
HPV+G2 than in HPV- cervical cancers (Supplementary Figure
S1B). Most of the human leukocyte antigen (HLA) genes, which
encode major histocompatibility complex (MHC) proteins and
play essential roles in the regulation of the immune system,
displayed significantly higher expression levels in HPV+G2 than
in HPV- cervical cancers (two-tailed Student’s t test, FDR < 0.02;
fold change (FC) > 1.5) (Supplementary Figure S1C). Immune
scores were significantly higher in HPV+G2 than in HPV- cervical
cancers (P = 0.04) (Supplementary Figure S1D). These results
support that HPV infection results in a more active tumor
immune microenvironment in cervical cancer.

Both ITH and stemness scores followed the pattern: HPV+G1 <
HPV+G2 < HPV-, while global methylation levels were higher in
HPV+G2 than in both HPV+G1 and HPV- (Supplementary
Figure S1E). In addition, although TMB and HRD scores were
higher in HPV+G1 than in HPV+G2, they were not significantly
different between HPV+G2 and HPV- (P > 0.2). Furthermore, we
did not observe significantly different OS or DFS rate between the
HPV+ subtypes and HPV- (log-rank test, P > 0.2).

Prediction of the HPV+ Cervical
Cancer Subtypes
We used TCGA-CESC as the training set and the other two
datasets as test sets. The 10-fold cross-validation (CV) sensitivity,
specificity, and AUC in TCGA-CESC were 99.1%, 95.0%, and
100.0%, respectively. The prediction sensitivity, specificity, and
AUC in GSE29570 were 100%, 80.0%, and 90.0%, respectively,
FIGURE 4 | Heatmap showing 22 and 25 proteins upregulated in HPV+G1 and HPV+G2, respectively.
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and in GSE39001 were 92.0%, 100%, and 96.0%, respectively
(Figure 5). These results suggest that our subtyping method for
HPV+ cervical cancers is highly reproducible and predictable. In
the prediction model, we found that the 10 features (genes) with
the highest importance weights included DSG3, DSC3, CLCA2,
LASS3, CALML3, SERPINB13, IVL, PROM1, AGR3, and
TMPRSS11D (Table 2).
Overlapping Between the HPV+ Subtypes
and Other Subtypes of Cervical Cancer
We investigated the relationship between our subtyping method
and other cervical cancer subtyping methods (5). We found that
squamous cell carcinomas constituted 98% of HPV+G1 tumors
versus 34% of HPV+G2 tumors (chi-square test, P < 0.001)
(Figure 6). In contrast, adenocarcinomas constituted 63% of
HPV+G2 tumors versus 2% of HPV+G1 tumors. The TCGA
network classified cervical cancers into three subtypes by
unsupervised clustering of variable DNA-methylation probes
(5). The three subtypes included: CpG island hypermethylated
(CIMP-high), CIMP-intermediate, and CIMP-low. We found
that 4% of HPV+G1 tumors were CIMP-high, compared to 53%
of HPV+G2 tumors being CIMP-high, and that 46% of HPV
Frontiers in Immunology | www.frontiersin.org 8
+G1 tumors were CIMP-low versus 29% of HPV+G2 tumors
being CIMP-low (P < 0.001) (Figure 6). It is consistent with the
lower overall DNA methylation level in HPV+G1 relative to
HPV+G2. In addition, we found 20% of HPV+G1 tumors being
Clade A7 versus 50% of HPV+G2 tumors and 78% of HPV+G1
tumors being Clade A9 versus 50% of HPV+G2 tumors (P =
0.002) (Figure 6). The different distribution of HPV clades
between HPV+G1 and HPV+G2 indicates a better prognosis in
HPV+G1 versus HPV+G2 since HPV clade A7 cervical cancers
are more aggressive than clade A9 cancer (31). RPPA-based
clustering identified three clusters: hormone, EMT, and PI3K-
AKT (5). We found that 34% of HPV+G1 tumors were in the
EMT cluster versus 8% of HPV+G2 tumors (P = 0.002)
(Figure 6). It is justified since EMT represents a stromal
signature and HPV+G1 has higher stromal scores than HPV
+G2. In addition, 32% of HPV+G1 tumors were in the PI3K-
AKT cluster versus 17% of HPV+G2 tumors, and 34% of HPV
+G1 tumors were in the hormone cluster versus 75% of HPV
+G2 tumors. It is consistent with previous results that PI3K-p85
was more abundant in HPV+G1 while ER-a was more
abundant in HPV+G2. Furthermore, 37% of HPV+G1 tumors
were HPV-16 positive versus 32% of HPV+G2 tumors, and 5%
of HPV+G1 tumors were HPV-18 positive versus 25% of HPV
FIGURE 5 | Prediction of the HPV+ cervical cancer subtypes using the 50 genes having the largest expression variations across the TCGA HPV+ cervical cancers
by random forest. TCGA-CESC was the training set and GSE29570 and GSE39001 were test sets. The sensitivity, specificity, and AUC are shown. AUC, area under
the receiver operating characteristic curve; CV, cross validation.
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+G2 tumors. It indicates that a significantly higher proportion of
HPV+G2 tumors are HPV-18 positive compared to HPV+G1
tumors (P < 0.001). This result supports that HPV-18 infection
is an adverse prognostic factor in cervical cancer (3), while
HPV-16 infection is a positive prognostic factor in cervical
cancer (32).
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DISCUSSION

Based on the expression profiles of the 50 genes with the largest
expression variations across the HPV+ cervical cancers in TCGA-
CESC, we identified two subtypes of HPV+ cervical cancers,
namely HPV+G1 and HPV+G2. We demonstrated that this
TABLE 2 | The 10 genes with the highest importance weights in the prediction model.

Symbol Entrez
ID

Full Name Pathway or biological process* Importance
weight

DSG3 1830 Desmoglein 3 Apoptosis; Developmental biology; Keratinization 14.36
DSC3 1825 Desmocollin 3 Developmental biology; Keratinization 14.22
CLCA2 9635 Chloride channel accessory 2 Activation of cAMP-Dependent PKA; 14.19

Ion channel transport;
Cholera infection

CERS3 204219 Ceramide synthase 3 Sphingolipid metabolism 12.82
CALML3 810 Calmodulin like 3 B cell receptor signaling; 12.23

MAPK-Erk pathway
SERPINB13 5275 Serpin family B member 13 regulation of keratinocyte differentiation 10.63
IVL 3713 Involucrin Keratinization; 8.12

G-beta gamma signaling;
Developmental biology; Corticotropin-releasing hormone signaling

PROM1 8842 Prominin 1 Wnt/Hedgehog/Notch; Embryonic and induced pluripotent stem cells and
lineage-specific markers;

8.07

Neural stem cells and lineage-specific markers
AGR3 155465 Anterior gradient 3, protein disulphide isomerase

family member
Estrogen receptor signaling 7.60

TMPRSS11D 9407 Transmembrane serine protease 11D Regulation of viruses into host cells 6.89
January 2022 | Volume 13
*The pathways or biological processes the genes involved in were obtained from the GeneCards (https://www.genecards.org/) and NCBI (https://www.ncbi.nlm.nih.gov/gene/).
FIGURE 6 | Overlapping between the HPV+ subtypes and other subtypes of cervical cancer.
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classification method was reproducible in two validation sets.
Compared to HPV+G2, HPV+G1 displayed significantly higher
immune infiltration level and stromal content, lower tumor purity,
lower stemness scores and ITH scores, higher level of genomic
instability, lower DNAmethylation level, as well as more favorable
prognosis. The multivariate survival analysis suggests that the
survival difference between both subtypes is independent of
confounding variables, such as immune signature, stemness, and
ITH. It is interesting to observe that HPV+G1 has a better DFS
prognosis than HPV+G2, while HPV+G1 is more genomically
instable compared to HPV+G2. Genomic instability is a common
characteristic of cancers that drives cancer development (33).
Nevertheless, increased TMB resulting from genomic instability
may have generated more neoantigens that were shown to
promote antitumor immune response (34). This could explain
why patients in group HPV+G1 have a more favorable prognosis
than in HPV+G2, even though the former display a higher level of
genomic instability than the latter (35).

Among the 50 genes for clustering analysis, 37 showed higher
expression levels in HPV+G1 versus HPV+G2. These genes
included four members of the keratin gene family: KRT1, KRT4,
KRT13, and KRT14. It supports previous findings that keratin
expression plays a role in cervical cancer classification (36). The 37
genes also included two genes encoding calmodulin-like proteins:
CALML3 and CALML5. CALML5 has been identified as a tumor
suppressor gene in squamous cell carcinoma of uterine cervix (37).
It consistent with that CALML5 is upregulated in HPV+G1 which
has a more favorable prognosis versus HPV+G2. CALML3 and
CALML5 are involved in the Ras, Rap1, calcium, neurotrophin,
and estrogen signaling pathways, which plays important roles in
cervical cancer development (38–42). In addition, the 37 genes
included six members of the small proline-rich protein gene
family: SPRR1A, SPRR1B, SPRR2A, SPRR2D, SPRR2E, and
SPRR3. Previous studies have revealed that many small proline-
rich protein genes were downregulated in cervical cancer relative
to normal cervical tissue (43, 44), suggesting their tumor
suppressor roles. It conforms to the better prognosis in HPV
+G1 versus HPV+G2. 13 of the 50 genes for clustering analysis
were more highly expressed in HPV+G2 than in HPV+G1,
including MUC5B, BPIFB1, PIGR, MUC13, SLC34A2, TFF3,
AQP5, LTF, PROM1, GABRP, AGR3, PAX7, and TSPAN8.
Among them, MUC5B and MUC13 belong to the mucin gene
family, which plays oncogenic roles in various cancers (45, 46).
Previous studies also showed that mucin genes were associated
with subtyping of cervical cancer (5). PAX7 is a member of the
paired box (PAX) family of transcription factors and is oncogenic
in a variety of cancers, including cervical cancer (47). Again, PAX7
upregulation in HPV+G2 relative to HPV+G1 is in line with the
better prognosis in HPV+G1 versus HPV+G2. Interestingly, 47 of
the 50 genes for clustering analysis were differentially expressed
between HPV-16 positive HPV+G1 and HPV-18 positive HPV
+G2 tumors (FDR < 0.01, FC > 2). The 47 genes included 34 genes
which were more highly expressed in HPV-16 positive HPV+G1
versus HPV-18 positive HPV+G2 tumors and were also more
highly expressed inHPV+G1 versus HPV+G2 tumors. In contrast,
the other 13 genes were more highly expressed in HPV-18 positive
Frontiers in Immunology | www.frontiersin.org 10
HPV+G2 versus HPV-16 positive HPV+G1 tumors and were also
more highly expressed in HPV+G2 versus HPV+G1 tumors.
These data suggest that the HPV genotype could exert a
significant effect on the expression pattern of most of the 5o
genes since the HPV-18 genotype has a significantly different
distribution between HPV+G1 and HPV+G2. In fact, previous
studies have shown that HPV infection is able to cause global gene
expression changes at the precancerous and cancerous stages of
cervical cancer (48–50). For example, HPV-16 and HPV-18 E6
oncoproteins promote the deregulation of tumor suppressor
genes, such as TP53 and RB1, to induce the expression changes
of their target genes (51–53). Interestingly, some of the 50 genes,
such as DSG3 and CLCA2, have been identified as targets of p53
(54, 55).

The TCGA network also performed mRNA clustering
analysis to identify cervical cancer subtypes using the
uncentered correlation and centroid linkage method (5). This
method discovered three cervical cancer subtypes: C1, C2, and
C3. We found that 95% of HPV+G2 tumors belonged to C1 and
that 72% and 25% of HPV+G1 tumors belonged to C2 and C3,
respectively. It indicates that HPV+G2 is nearly equivalent to C1
and that HPV+G1 is the combination of C2 and C3. However,
survival analysis showed that there was no significant difference
in DFS among C1, C2, and C3, compared to significant difference
in DFS between HPV+G1 and HPV+G2. It suggests that our
mRNA-based subtyping method is more reasonable than that
method in terms of the prognostic relevance.
CONCLUSIONS

HPV+ cervical cancers can be classified into two subtypes based
on the expression profiles of the 50 genes with the largest
expression variations across the HPV+ cervical cancers. Both
subtypes have significantly different immune and stromal
microenvironment, tumor purity, stemness, ITH, genomic
instability, DNA methylation level, as well as survival prognosis.
This new subtyping method captures the comprehensive
heterogeneity in molecular and clinical characteristics of HPV+
cervical cancers and provides potential clinical implications for the
management of this disease.
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Supplementary Figure 1 | Comparisons between the HPV+ cervical cancer
subtypes and HPV- tumors. Higher enrichment levels of immune signatures (A), ratios
of immunostimulatory/immunosuppressive signatures (CD8+ T cells/MDSCs) (B),
expression levels of human leukocyte antigen (HLA) genes (C), and immune scores (D) in
HPV+G2 than in HPV- cervical cancers. (E) Comparisons of ITH scores, stemness
scores, and global methylation levels among cervical cancer subtypes. The K–Wor one-
way ANOVA test (A, C), two-tailed Student’s t test (B), and one-tailed Mann–Whitney U
test (D, E) P values are indicated. * P < 0.05, ** P < 0.01, *** P < 0.001.
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