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Due to multiple ancestral human retroviral germ cell infections, the modern human

genome is strewn with relics of these infections, termed endogenous retroviruses (ERVs).

ERV expression has been silenced due to negative selective pressures and genetic

phenomena such as mutations and epigenetic silencing. Nonetheless, select ERVs have

retained the capacity to be damaging to their host when reawakened. Much of the current

research on the ERVK Env protein strongly suggests a causal or contributive role in the

pathogenesis of various cancers, autoimmune and infectious diseases. Additionally, there

is a small body of research suggesting that ERVK Env has been domesticated for use in

placental development, akin to the ERVW syncytin. Though much is left to ascertain, the

innate immune response to ERVK Env expression has been partially characterized and

appears to be due to a region located in the transmembrane domain of the Env protein. In

this review, we aim to highlight ERVK Env as a biomarker for inflammatory conditions and

explore its use as a future therapeutic target for cancers, HIV infection and neurological

disease.
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INTRODUCTION

Over evolutionary time, endogenous retroviruses (ERVs) have integrated into the human genome
by germ-cell infections of human ancestors. Infection of germ cells would ensure that all the cells of
the progeny of the infected individual would contain and continue to transmit the ERV sequence
(Hohn et al., 2013). In healthy humans, select ERVs are expressed homeostatically in a tissue-
specific fashion without any negative consequences to the host. Thus, it would appear that overly
pathogenic strains have been lost to negative selective pressures (Voisset et al., 2008). Likewise,
pathogenicity is further dampened as many ERVs have been silenced due to the accumulation of
deleterious mutations and deletions, and epigenetic phenomena such as methylation (Voisset et al.,
2008). In the genome of modern humans,∼8% of genetic information can be attributed to ERVs.

The endogenous retrovirus-K (ERVK) species, especially the HML-2 clade, is one of the most
recently endogenized human retroviruses and retains open reading frames (ORFs) capable of
encoding functional proteins, making it the most intact and biologically active ERV group to
date (Hohn et al., 2013). In certain disease states, select ERVK loci can be reactivated, and
overall upregulation of ERVK expression has been associated with several cancers, inflammatory,
infectious, and autoimmune diseases. However, it remains unclear how ERVK is implicated in
the progression of disease—whether activation of the provirus plays a causal or contributive role
in pathogenesis, or if its reactivation is a bystander consequence of inflammation or hormone
dysregulation in disease states (Golan et al., 2008; Manghera and Douville, 2013; Reis et al., 2013).
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ERVK ENVELOPE PROTEIN

Accumulating evidence points toward the role of ERVK envelope
(Env) protein in health and disease. Based on the research that is
available on ERVK Env protein, it is known to exert neurotoxic
and immunosuppressive effects (Morozov et al., 2013; Li et al.,
2015), although the mechanisms underlying these events are
incompletely understood. The ERVK Env is composed of a 55-
kDa surface (SU) unit, which is responsible for receptor binding,
and a 39-kDa fusogenic transmembrane (TM) unit (Figure 1).

It appears that a specific region within the ectodomain of
the TM subunit, referred to as the immunosuppressive (ISU)
domain, may be responsible for ERVK immunomodulation, or
at least contribute greatly to it. The TM protein of ERVK is
similar to that of many other retroviruses (although not all
retroviral TM proteins contain an ISU domain), as it tends
to remain conserved (Henzy and Johnson, 2013; Morozov
et al., 2013). The ISU is located in the N-terminal end of the
ectodomain, adjacent to the conserved cysteine residues. The vast
majority of ERVK sequences contain the ISU domain sequence
LANQINDLRQTVIW, with a minority having the sequences
LASQINDLRQTVIW, and LANQINDLRQSVTW (Morozov
et al., 2013). Interestingly, it was found that when the HIV-1
TM subunit gp41 was selectively mutated in the ISU domain, the

FIGURE 1 | The ERVK envelope protein is composed of surface (SU)

and transmembrane (TM) subunits. (A) The TM subunit contains an

immunosuppressive (ISU) domain, which is postulated to contribute toward

host immune-modulation. The majority of ERVK sequences contain the ISU

domain sequence LANQINDLRQTVIW, with a minority having the sequences

LASQINDLRQTVIW, and LANQINDLRQSVTW. The arrowhead represents a

consensus furin cleavage site. (B) The surface ERVK Env protein is a trimer of

SU and TM heterodimers. The TM anchors the viral receptor into the host cell

membrane, and is essential in the fusion of virion and host cell membranes.

The SU provides host cell receptor specificity, although the cellular receptors

for ERVK Env are unknown.

virus was not able to effectively infect host cells (Morozov et al.,
2012). Thus, the ISU domain is crucial for host cell infectivity and
modulating cytokine production in infected cells.

A recent study performed using ERVK virus-like particles,
a recombinant ERVK TM and a peptide corresponding to the
conserved region of the ERVK TM, revealed that the immune
response elicited against the protein appears to share many
parallels with that targeting HIV-1 TM gp41(Morozov et al.,
2013). It was found that the proteins were able to modulate
production of numerous cytokines, inhibit the activation of
immune cells, and induce changes in the transcription levels of
hundreds of genes (Morozov et al., 2013). In one of the assays
performed, it was found that the ERVK TM was able to inhibit
the activation of PBMCs in both human and murine cells in
a dose-dependent fashion (Morozov et al., 2013). Furthermore,
the ERVK TM was found to induce the overexpression of
the following cytokines: IL-6, IL-8, IL-10, MCP-1, RANTES,
MIP-1α, MIP-1β, uPAR, sTNFRII, and GCSF (Morozov et al.,
2013). In particular, the immunosuppressive IL-10 was expressed
in significantly higher amounts (Morozov et al., 2013). When
analysing changes in gene expression, over 300 genes were
upregulated in response to the TM protein and over 300 were
downregulated (Morozov et al., 2013). Among the 10 most
upregulated genes were (in order of highest to lowest fold
change) MMP-1, IL-6, IL-1A, CXCL13, CCL7, TREM1, CXCL1,
ARNT2, CA12, and KIAA1295 (Morozov et al., 2013). The nine
most downregulated genes (in order of highest to lowest fold
change) were SEPP1, FCN1, DHRS9, FCN2, HS3ST2, TREM2,
ALDH1A1, GPR34, and KCNJ35 (Morozov et al., 2013). The
results of this study are consistent with previous data suggesting
the ERVK TM is immunosuppressive. As well, it is important
to note that the recombinant TM protein and the peptide
corresponding to the ISU domain of the TM elicited similar
immune responses; this suggests that this domain is likely
responsible for the bulk of the protein’s immunomodulatory
activity (Morozov et al., 2013).

Moreover, another study has demonstrated that ERVK
Env is able to antagonize the activity of tetherin, an innate
immune protein which functions in preventing the budding of
enveloped viruses from an infected cell (Lemaître et al., 2014).
Consequently, ERVK re-activation can prove to be detrimental
for resolution of infections with exogenous enveloped viruses,
such as HIV-1. Lastly, research has also suggested that the ERVK
TM can supress T cell activation via its modulation of dendritic
cells (Hummel et al., 2015).

ERVK Env IN HEALTH AND DISEASE
STATES

Placental Development
Though the majority of the research on ERVK focuses on its
contributions to disease, other research suggests that it may
play a role in normal physiology. It has been suggested that
the TM subunit of ERVK envelope protein may be implicated
in placentogenesis and pregnancy (Kammerer et al., 2011). The
ERVK Env has been found to be expressed in villous and
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extravillous cytotrophoblast cells, both of which are components
of the placenta (Kammerer et al., 2011). As this protein is known
to have immunosuppressive properties, it is thought that it may
play a role in protecting the fetus from the maternal immune
system. Due to its expression pattern in placental tissue and
fusogenic properties, it is believed that the ERVK TM may play
a role in cell-cell fusion, similar to the envelope proteins ERVW
syncytin and ERV-FRD syncytin 2. The functional redundancy of
these ERV Env proteins may ensure placentogenesis in the face of
variations in ERV expression (Kammerer et al., 2011).

ERVK Env in Cancers
Currently, the implications of enhanced ERVK Env expression in
the pathogenesis of human cancers has yet to be fully elucidated
(Downey et al., 2014). However, even with the limited knowledge
that is available in this area of ERVK research, several novel
cancer treatments have focused on exploiting the expression of
ERVK Env on the surface of tumor cells.

Research has shown that ERVK tends to be overexpressed in
cancers of the reproductive system, lymphoid organs, myeloid
organs, breast, prostate, and urinary bladder (Singh, 2007;
Wallace et al., 2014; Wang-Johanning et al., 2014). As a
biomarker, ERVK Env or antibodies targeting ERVK Env
may be independent disease indicators or paired with current
disease markers to improve diagnostic and prognostic reliability
(Wallace et al., 2014; Wang-Johanning et al., 2014). It has been
proposed that this protein may contribute to carcinogenesis
by triggering cell-cell fusion and possibly encouraging tumor
proliferation and metastasis (Hohn et al., 2013). Moreover, as
ERVK Env is known to have immunosuppressive properties, it
may putatively provide protection to tumors by helping them
evade immune surveillance, similar to that of the fetal-maternal
interface (Kammerer et al., 2011; Hohn et al., 2013).

It is interesting to note that some melanoma cell lines
(SKMel-28, SKMel-1, 518A2, MelJuso, HS-Mel2 and JH-Mel6,
and V-Mel7) were able to be produce virus-like particles which
contained mature ERVK Gag and Env proteins (Hohn et al.,
2013; Downey et al., 2014). Additionally, it has been reported
by several groups that T47D human mammary carcinoma cell
lines have been able to produce virus-like particles containing
ERVK-related sequences (Seifarth et al., 1998; Contreras-Galindo
et al., 2015). Although the retroviral-like particles produced
demonstrated reverse transcriptase activity and were able to
enter neighboring cells, they proved to be unable to undergo
integration into the host genome (Contreras-Galindo et al.,
2015).

Breast Cancer
The reactivation and increased expression of ERVK Env has
been linked to the majority of malignant breast tumors (Wang-
Johanning et al., 2012; Cegolon et al., 2013; Downey et al.,
2014; Figure 2). In studies involving American and Chinese
breast cancer patients, it was found that the ERVK Env protein
by itself was an indicator of poor prognosis and lymph node
metastasis (Zhao et al., 2011). Furthermore, another study also
determined that ERVK env transcripts in blood plasma or serum
were significantly lower in breast cancer patients undergoing

treatment, in contrast to primary breast cancer patients. As well,
patients being treated with taxotere or taxol had the lowest levels
of env transcripts (Rhyu et al., 2014), although the mechanism of
env suppression remains to be elucidated.

The innate and adaptive immune responses to ERVK Env
in breast tumors have been partially characterized. ERVK Env
has been demonstrated to elicit both B and T cell responses in
breast cancer patients (Wang-Johanning et al., 2008). Notably,
significant titers of anti-ERVKEnv IgG antibodies where detected
in the majority of breast cancer patients (Wang-Johanning et al.,
2008, 2012). In vitro, PBMC from breast cancer patients that were
stimulated with autologous dendritic cells pulsed with ERVK SU
antigens activated T cell responses against ERVK, which resulted
in the proliferation of T cells, the production of IFN-γ, and
cytokine secretion (Wang-Johanning et al., 2008).When cytokine
secretion in response to the ERVK antigens was analyzed, it
was observed that a T-helper 1 cytokine dominated response
was elicited, as characterized by measurement of IL-2, IL-6, IL-
8, and IL-10 (Wang-Johanning et al., 2008). As well, it was
found that ERVK-specific cytotoxic T lymphocytes were capable
of killing cells expressing ERVK Env in breast cancer patients
(Wang-Johanning et al., 2008).

Nonetheless, the presence of the ERVK Env in breast cancer
tumors does need to be viewed as a bad omen. Though this
protein is a marker of malignant tumors, the results of recent
studies have given hope that this protein may be targeted in
novel breast cancer therapies. In xenograft mice studies, it was
found that anti-ERVK Env monoclonal antibodies were able
to inhibit the growth of and induce apoptosis in tumor cells
(Wang-Johanning et al., 2012; Cegolon et al., 2013). Though
additional research is needed in this area, exploiting ERVK-
specific expression in breast cancer tumors is a promising avenue
for the development of novel targeted immunotherapies.

Melanoma
Within the env gene of ERVK (HML-6) lies an ORF for a pseudo-
gene known as ERVK-MEL (Schiavetti et al., 2002; Katoh et al.,
2011; Cegolon et al., 2013). The protein product of this ORF
is an antigenic peptide that has been found to be significantly
expressed in the majority of benign tumors, such as normal and
dysplastic naevi, as well as in malignant tumors such as sarcomas,
lymphomas, and bladder and breast cancers (Schiavetti et al.,
2002; Cegolon et al., 2013). ERVK-MEL is considered to be a
marker of increased risk of melanoma and has been found to
be expressed in 85% of malignant melanocytes (Schiavetti et al.,
2002). In addition, cytotoxic T cells have been shown to recognize
this antigen and mount an adaptive immune response (Schiavetti
et al., 2002). Moreover, it is interesting to add that there exists
a sequence homology between ERVK-MEL and the epitopes in
the Bacillus of Calmette Guerin and vaccina virus vaccine, as
well as the yellow fever virus vaccine (Krone et al., 2005). This
has led some to believe that these vaccines may be able to play
a preventative role in melanoma development due to the cross-
reactivity of the adaptive immune response against ERVK-MEL
(Krone et al., 2005).

The expression of the HML-2 Env protein has also been
associated with melanomas (Büscher et al., 2006). The ERVK Env
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FIGURE 2 | Putative involvement of ERVK Env in breast cancer pathology and progression. The ERVK viral promoter is responsive to androgens, estrogens,

progestogens, and glucocorticoid hormones, thus favoring viral transcription and the production of Env protein. Taxol limits ERVK env expression and may prevent

ERVK Env trafficking to the cell surface by modulating microtubule assembly. Cell surface expression of Env promotes secretion of the cytokine IL-10, which is a

potent modulator of immune responses. Secretion of retroviral virions or exosomes carrying retroviral cargo may promote cellular transformation at metastatic sites.

has been detected in primary and metastatic melanoma biopsies
and melanoma cell lines, but not in melanocytes or lymph nodes
(Büscher et al., 2005). Unfortunately, there is evidence suggesting
that the antibody response to the ERVK Env protein in early
to mid-stage melanoma is negatively correlated with patients’
chances of survival (Hahn et al., 2008). Little is known about the
role of this protein in melanoma or the innate immune response
it elicits.

ERVK envelope protein remains a candidate target for novel
melanoma treatments by the fact that it is a tumor-associated
antigen can be exploited (Krishnamurthy et al., 2015). In a mouse
xenograft study, it was found that T cells genetically engineered
to target the ERVK Env protein were able to exert significant
anti-tumor effects on metastasized melanoma tumors expressing
the ERVK Env in an antigen-specific fashion (Krishnamurthy
et al., 2015). Although further work is required to translate this
treatment for human use, it remains a promising therapeutic
option for advanced stage melanoma (Krishnamurthy et al.,
2015).

Lymphoma
It is thought that ERVK18 superantigen (Sag) may play a role
in the development of some lymphomas (Sutkowski et al., 2004;
Gross et al., 2011). Non-specific activation of T cells by ERVK18
SAg may enhance cytokine secretion, although its exact role
in inflammation and tumorigenesis has yet to be confirmed or
debunked. Epstein Barr virus (EBV) has been associated with the

development of lymphoma, and is known to transactivate the
expression of ERVK18 Env (Sutkowski et al., 2004). Thus, EBV-
triggered ERVK18 SAg expression may contribute to lymphoma
by triggering the expansion of self-reactive T cells via stimulating
Vβ7 T cells and the subsequent breakdown of host immunity
(Stauffer et al., 2001). As the ERVK18 SAg is also known to
be activated by the antiviral cytokine IFNα, an inflammatory
response following other exogenous virus infections may be
sufficient to enhance ERVK18 Sag expression (Stauffer et al.,
2001). It is possible that the superantigen activity of ERVK18 Env
may play a role in human carcinogenesis analogous to that of
mouse mammary tumor virus (MMTV) in murine carcinomas.
Expression of viral SAg ensures the establishment of a viral
reservoir of infected and proliferating lymphocytes, and delivery
of virus to lymph nodes and the mammary gland (Ross, 2010).
Moreover, it is worth mentioning that the levels of ERVK RNA
viral load in the blood of lymphoma patients have been observed
to drop following therapy (Contreras-Galindo et al., 2008). This
finding points to the possibility of utilizing ERVK titers as a tool
in monitoring therapeutic progress.

ERVK Env in Autoimmune and Infectious
Disease
Though much of the research on ERVK Env and disease pertains
to its association to tumorigenesis, this viral protein is also
thought to be implicated in several autoimmune disorders,
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such as insulin-dependent diabetes mellitus (IDDM), multiple
sclerosis (MS), and rheumatoid arthritis (RA) (Sicat et al., 2005;
Dickerson et al., 2008; de la Hera et al., 2013; Mason et al., 2014).
Current data suggests a link between ERVK and autoimmunity,
however, the details of mechanisms by which it may occur remain
to be fully elucidated. ERVKhas also been shown to be reactivated
and implicated inHIV infection (reviewed in van der Kuyl, 2012).
Interestingly, ERVK Env expression in the brain is postulated
to be neuroprotective in HIV infection (Bhat et al., 2014). In
contrast, it has recently been shown that enhanced expression of
ERVK envelope protein contributes to neuronal DNA damage
and motor neuron death in a transgenic mouse model (Li
et al., 2015), highlighting that ERVK can drive neuropathogenic
outcomes.

MODULATION OF THE IMMUNE
RESPONSE BY ERVK Env

Though the mechanism by which the ERVK envelope
glycoprotein triggers an immune response and contributes to
immune suppression continues to evade us, general knowledge of
the immune response to ERVK has been partially characterized.
One prominent feature of the immune response to ERVK Env, in
particular the TM subunit, is a spike in the production of IL-10
(Morozov et al., 2013). IL-10 is an immunosuppressive cytokine
that impedes the expression of inflammatory cytokines, MHC
class II antigens and costimulatory molecules on macrophages,
as well as promotes B cell proliferation and antibody production
(Couper et al., 2008). This is consistent with the observation
that the ERVK envelope protein is frequently expressed at the
surface of tumor cells which appears to allow them to remain
undetected by the immune system and still allow the recognition
of ERVK Env as a non-self target, as evidenced by an ERVK Env-
specific antibody response (Hahn et al., 2008; Wang-Johanning
et al., 2012; Reis et al., 2013). This mechanism may account
for the immune protection of the fetus during pregnancy,
as ERVK Env has been found to be expressed in placental
tissues along with elevated levels of IL-10 (Kammerer et al.,
2011; Morozov et al., 2013). Considering that NF-κB signaling
mediates the induction of ERVK (Manghera and Douville,
2013; Manghera et al., 2015), the counter-mechanism of ERVK
Env to induce IL-10 and hinder the inflammatory response
and NF-κB activity may represent a viral immune evasion
strategy. NF-κB is known to be involved in the JAK-STAT
signaling pathway, whose deregulation is implicated in various
cancers (Boudny and Kovarik, 2002). As ERVK is found to be
transcriptionally activated in many cancers, it is possible that
ERVK Env induction of anti-inflammatory cytokines protects
both cancerous tumors and ERVK from immune detection.
Thus, we hypothesize that having its envelope glycoprotein
expressed at the cell surface represents a strategy by which the
ERVK provirus can protect the tumor environment in which it is
up-regulated.

Despite immunomodulation driven by IL-10, there is evidence
that the adaptive immune system can detect and respond to

ERVK Env antigen. Specifically, anti-ERVK Env antibodies can
facilitate antibody-dependent cytotoxicity in HIV infected cells
(Michaud et al., 2014). In a complementary manner, ERVK
Env-derived peptides can also be potent T cell epitopes (Garrison
et al., 2007; SenGupta et al., 2011; Jones et al., 2012). CD8+

T cells responding to the peptide sequence CIDSTFNWQHR
within ERVK Env, were able to kill cells expressing their cognate
peptide (Jones et al., 2012).

As well, several studies have demonstrated that despite
being unable to produce productive infections, ERVK virus-
like particles (VLPs) are able to enter cells (Contreras-Galindo
et al., 2015). This means it is possible that the envelope protein
may be detected upon viral entry by either cell surface TLR4 or
other innate immune sensors (Altfeld and Gale, 2015; Duperray
et al., 2015; Hurst and Magiorkinis, 2015). It also alludes to the
possibility that VLPs or exosomes carrying viral protein cargo
may mediate tumorigenesis at metastatic sites (Balaj et al., 2011;
Lokossou et al., 2014).

CONCLUSIONS

Despite the limited knowledge that is currently available on
the ERVK envelope protein, it has great potential for use
in diagnosing, monitoring, and treating human illness. The
utility of ERVK Env as a blood biomarker stems from its
reliability in discriminating between individuals with cancer and
without. However its use independently of co-indicators may
be limited due to enhanced expression not only in cancers,
but also in infectious and neurological diseases (Garrison
et al., 2007; Li et al., 2015). In combination with suitable
biomarkers of a given condition, detection of ERVK Env itself
or anti-ERVK Env antibody titers can enhance diagnostic and
prognostic readouts (Wallace et al., 2014; Wang-Johanning et al.,
2014).

As this protein is a tumor-associated antigen, it is possible
to use it to develop targeted therapies that could result in fewer
side effects, due to the specificity of anti-ERVK Env antibodies.
This could lead to not only more successful treatment, but a
higher quality of life for those undergoing treatment. Several
independent groups of researchers have shown that an anti-
ERVK Env vaccine is a promising cancer treatment as it has
been effective in targeting several types of malignant tumors
via the inhibition of tumor growth and induction of apoptosis
(Downey et al., 2014). Moreover, there exists the possibility of
conjugating cytotoxic drugs to ERVK Env-specific antibodies to
increase the effectiveness and specificity of treatment (Wang-
Johanning et al., 2012; Downey et al., 2014). Additionally,
modulating cytotoxic killing of cells expressing ERVK Env
antigens (Jones et al., 2012; Michaud et al., 2014), through
interferon treatment, expansion of relevant T cell subsets or small
molecules promoting effector mechanisms, may prove useful in
eradicating malignant cells. Finally, as the upregulation of ERVK
transcripts is well-documented in many disease states, and its
downregulation during or following treatment, it is possible to
use this as a marker of therapeutic progress in numerous types of
cancers.
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More resources need to be allocated toward gaining a
deeper understanding of ERVK biology, its Env protein
and the role it plays in disease. This would allow for us to
not only further exploit the ERVK envelope as a molecular
target for novel immunotherapies, but to also gain new
insights into the nature of the pathophysiology of various
diseases with which the activated provirus is associated.
This emphasizes the need for an ERVK Proteome Map,
as it would lend itself as a valuable tool in recognizing
and identifying ERV proteins as potential therapeutic
targets.
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