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Introduction

Despite many technological advancements in the dynamic 
field of orthopedic sports medicine, emergent data suggest 
that the long-term outcomes following the surgical treatment 
of anterior cruciate ligament (ACL) injuries may not be as 
optimistic as previously thought. There are an estimated 
200,000 ACL injuries annually, of which up to 150,000 are 
treated surgically.1–3 ACL reconstruction (ACLR) has tradi-
tionally been recommended as protective against subsequent 
meniscal injury and cartilage damage, and ultimately  
osteoarthritis.2,4–6 In contrast with a greater than 90% 
 success rate7 and 67% good or excellent outcomes,8 more 
recent publications have found a higher rate of revision 

following ACLR, ranging from 10% to 15%,9 and similar 
rates of radiographic osteoarthritis as with nonoperative 
management at long-term follow-up.10 This has inspired 
many to search for opportunities for improvement in the sur-
gical management of these common athletic injuries.
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Historically considered as an unreliable treatment option 
associated with high failure rates and complications related to 
intra-articular immunogenic reactions,11 some authors have 
again begun to explore ACL repair for certain patients.12–14 
Still others have sought ways to enhance the gold-standard of 
reconstruction.15–18 Both procedures present unique chal-
lenges for which an increasing number of new biologic aug-
mentation and tissue engineering products and techniques 
have been developed. However, while the number of products 
available in this space continues to grow at an exponential 
rate, there is little guidance available regarding optimal indica-
tions, and often insufficient evidence to support their use.

This article reviews the principles of tissue engineering as 
applied to orthopedic sports medicine, including the biologi-
cal, biomechanical, and materials science factors involved in 
various bioaugmentation strategies, with a focus on improv-
ing outcomes following the surgical treatment of ACL inju-
ries with repair or reconstruction. Two of the authors (J.D.L. 
and A.R.H.) searched PubMed/MEDLINE with the terms 
“anterior cruciate ligament,” “surgery,” “repair,” “recon-
struction,” “biologic,” and “augmentation,” combined with 
the Boolean operators “AND” and “OR.” A final search was 
performed on 1 October 2019.

Principles of tissue engineering in 
surgical treatment of ACL tears

Cellular elements

The optimal cellular response following surgical treatment 
varies depending on the procedure performed. Successful 
healing following ligament repair requires the presence of 
cells at the repair site that have the ability to proliferate in 
sufficient numbers and elaborate the extracellular matrix 
(ECM) that gives the ligament its biomechanical properties. 
Healing after ACLR is dependent upon both graft remode-
ling and soft-tissue grafts, for integration of the grafted ten-
don–bone interface.19

Following ACLR, the grafted tendon continues to mature 
and integrate via progressive cellular phases―acute inflam-
matory, revascularization, recellularization, and tissue 
remodeling phases, respectively.20,21 Through the process of 
“ligamentization,” the graft remodels and matures, eventually 
taking on physical and mechanical characteristics that resem-
ble the native ligament more than the original grafted  
tendon.22–25 This begins with neovascularization, followed by 
fibroblast repopulation.24,25 Early fibroblasts are randomly 
arranged and disorganized, and display cellular characteris-
tics that typify high levels of metabolic activity; however, 
with remodeling, these become longitudinally aligned.26 
Disorganized collagen fibrils predominate earlier in the pro-
cess, but these too become longitudinally organized with 
maturation.22,26 When newly formed connective tissue pre-
dominates but has yet to undergo longitudinal reorganization, 
the graft is mechanically weak and prone to failure.27,28

In addition, the tendon–bone interface remains rela-
tively unstable during the healing process. In the native 
ACL, a fibrocartilaginous tissue exists at the bone–liga-
ment interface.29,30 Following ACLR with soft-tissue grafts, 
the bone–tendon junction matures through many of the 
same stages as the graft (i.e. inflammation, proliferation, 
and matrix remodeling), but heals through formation of 
fibrous scar-like tissue that does not undergo substantial 
remodeling.19,31,32 This creates a relative weak point that 
can contribute to rerupture.19,29,32,33

The most widely explored cellular elements in the treat-
ment of ACL ruptures include stem cells and platelet thera-
pies. A population of perivascular tissue-specific stem cells 
resides in the septum between the two bundles of the ACL 
with fibroblastic potential, which may indicate an innate heal-
ing capacity.34 Nevertheless, the limited bioavailability of 
these cells combined with the fact that under current Food and 
Drug Administration (FDA) regulations ex vivo expansion is 
not permitted has limited their overall use thus far.35 As an 
alternative, mesenchymal stem/stromal cells (MSCs) have 
been widely explored in musculoskeletal medicine. Compared 
with ACL-derived stem cells, MSCs have shown a relative 
ease of isolation, multipotency, and relatively high prolifera-
tive capacity.36,37 These multipotent tissue-adherent cells have 
the ability to differentiate into osteogenic, adipogenic, and 
chondrogenic lineages.38 MSCs have also been shown to have 
fibroblastic capacity, and may therefore also have a role in ten-
don and ligament healing.39–41 Yet, the FDA restrictions on ex 
vivo expansion also apply to MSCs.35 Therefore, most of the 
clinical work involving MSCs is limited to the use of bone 
marrow aspirates and similar products that meet the standards 
of minimal manipulation, but which provide a highly variable 
and unreliable source of stem cells.27,42–45

In addition to MSC bioaugmentation in ACLR, evidence 
has been presented in the orthopedic sports medicine litera-
ture regarding the utility of platelet-rich plasma (PRP) in 
soft-tissue healing. PRP is an autologous blood product 
which has long been implemented in the treatment of degen-
erative cartilage as well as tendon lesions due to its multiple 
growth factors and bioactive molecules allowing for tissue 
healing and vasculogenesis.46–48 Due to its availability and 
ease of harvesting, PRP is a versatile healing agent that can 
be utilized through intra-articular injections or through scaf-
folding aimed at increasing graft healing. PRP has many 
potential benefits in ACL surgery, including anti-inflamma-
tory properties, growth factors, and bioactive substances.

Andriolo et al.49 conducted a systematic review to examine 
the utility of PRP in ACL graft ligamentization and inflamma-
tory modulation, and identified limited evidence from multiple 
studies to support a positive impact on accelerating the graft 
maturation process and incorporation, but significant variability 
regarding dose and concentration. This was investigated in a 
preclinical study by Fleming et al.,50 which sought to answer 
whether an increasing platelet concentration in an ECM scaf-
fold would improve graft biomechanical properties and/or 
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decrease cartilage damage after ACLR. The study consisted of 
55 minipigs randomized into five treatment groups: untreated 
ACL transection, conventional ACLR, and reconstructions with 
physiologic (1×) and supraphysiologic (3× or 5×) concentra-
tions of PRP. Biomechanical properties, anteroposterior knee 
laxity, graft histology, and cartilage integrity were measured at 
15 weeks after surgery. Grafts treated with physiologic concen-
tration (1×) of platelets resulted in an increased stiffness over 
control (p = .03), yet there was no significant increase in graft 
linear stiffness at 3× or 5× ECM-platelet composite groups. 
Mean macroscopic cartilage grades were determined using bun-
dle orientation and crimp appearance. According to cartilage 
grading, there was significantly improved cartilage appearance 
in the bio-enhanced ACL when compared to control, but there 
was no difference among the 1×, 3×, or 5× groups.

Growth factors

Growth factors have been shown to both play an important 
role in differentiation of tendons and ligaments during devel-
opment and the healing process following injury by increas-
ing cellularity and volume of tissue at repair sites. Broadly, a 
growth factor can be defined as a protein that affects cell 
migration, proliferation, and differentiation.51 Growth fac-
tors have short half-lives and diffuse slowly through the 
ECM to act locally.52 Cell proliferation, ECM synthesis, vas-
cularization, as well as mechanical properties can be dramat-
ically influenced by the presence of growth factors.53,54

While the exact signaling mechanisms involved in liga-
ment development and repair have yet to be completely 
characterized, many growth factors known to have mito-
genic effects on musculoskeletal tissues have been exten-
sively investigated. In studies involving the roles of growth 
factors in ACL tissue engineering, epidermal growth factor 
(EGF), fibroblast growth factor (FGF), growth and differen-
tiation factor (GDF), insulin-like growth factor (IGF), plate-
let-derived growth factor (PDGF), and transforming growth 
factor-beta (TGFβ) have all been shown to increase 

cell proliferation, fibroblastic differentiation, and/or matrix 
production Table 1.55–57 In particular, TGFβ may help pre-
vent graft deterioration and enhance osseous ingrowth at the 
tunnel wall.58–60

Angiogenesis and osteogenesis are integral to tendon–
bone healing following ACLR. If perfusion is delayed fol-
lowing a reconstruction, the grafted tendon may degenerate.19 
If tendon–bone healing is suboptimal, biomechanical 
strength of the grafted tendon may be sacrificed.27 Vascular 
endothelial growth factor (VEGF) and bone morphogenetic 
protein 2 (BMP2) have both been studied in ACLR. VEGF 
has been shown to stimulate angiogenesis as well as act as a 
chemotactic agent for macrophages and granulocytes.61 In 
animal studies, VEGF was shown to promote angiogenesis 
in the grafted tendon following ACLR.62 VEGF has been 
shown to exhibit a synergistic effect on tendon healing in 
concert with TGFβ.63 In a study assessing ACL healing, 
VEGF was found to promote angiogenesis that aided in the 
healing process.64

BMP2 has been shown to induce MSC proliferation, osteo-
genic differentiation, chondrogenic differentiation, as well as 
collagen production.65–68 BMP2 has demonstrated beneficial 
effects in fracture healing in multiple studies.69,70 An impor-
tant aspect in the healing process of ACLR with soft-tissue 
grafts is the integration of the grafted tendon within its bone. 
BMP2 has improved healing of the tendon–bone interface 
through improved osseous ingrowth.71 Despite the enthusiasm 
surrounding these findings, these discoveries have proven dif-
ficult to implement in a clinically meaningful way.72

A challenge arises in that there are generally few cells at 
the repair sites with tendons and ligaments that preclude the 
growth factor ability to sufficiently improve strength or stiff-
ness. With the recent advances in biomaterials and molecular 
biology, more investigators are incorporating growth factors 
into biomaterials for controlled release or using gene therapy 
techniques to upregulate cellular production of growth fac-
tors. The combined delivery of growth factors with stem 
cells at the time of surgery and maintenance at the repair/

Table 1. Growth factors with functional relevance to the bioaugmentation of anterior cruciate ligament repair and reconstruction.

Growth 
factor

Functional roles

Cell proliferation Collagen synthesis ECM production Neovascularization Cell migration

EGF + + − − −
FGF + + + + −
IGF1 + + − − +
GDF + − − − +
PDGF + + + + +
VEGF − − − + +
TGFβ + + − − −
BMP2 + + − − −

ECM: extracellular matrix; EGF: endothelial growth factor; FGF: fibroblast growth factor; GDF: growth differentiation factor; IGF: insulin-like growth 
factor; PDGF: platelet-derived growth factor; VEGF: vascular endothelial growth factor; TGF: transforming growth factor; BMP: bone morphogenetic 
protein.
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reconstruction is likely to be a key element in the next gen-
eration of targeted bioaugmentation techniques.19,27

Scaffolds

A scaffold is an artificial structure capable of supporting 
three-dimensional tissue formation that allows cell attach-
ment and migration, delivery of biochemical factors, and dif-
fusion of vital cell nutrients and expressed products.51 An 
ideal scaffold possesses the following characteristics:73

1. Three-dimensionality and high porosity with an 
interconnected pore network for cell growth and flow 
transport of nutrients and metabolic waste;

2. Biocompatibility and bioresorbability with a control-
lable degradation and resorption rate to match cell/
tissue growth in vitro and/or in vivo;

3. Suitable surface chemistry for cell attachment, pro-
liferation, and differentiation;

4. Mechanical properties to match those of the tissues at 
the site of implantation.

A variety of biologically and synthetically derived materi-
als have been explored as scaffold materials, with variable 
bioinductive and mechanical properties.40 As summarized in 
Table 2, some popular scaffolds have been developed pri-
marily to contribute mechanical stability to the repair or 
reconstruction construct,86 though it is important to note that 

Table 2. Scaffolds used in the bioaugmentation of anterior cruciate ligament repair and reconstruction.

Material Product Manufacturer Structural Bioinductive Results

Biologically derived
  Human dermis 

ECM
GraftJacket Wright 

Medical
++ + No ACL-specific results or outcomes

Increased load-to-failure force in biomechanical cadaveric 
Achilles tendon (Barber et al.)74

Positive effect on graft incorporation on postoperative 
MRI following massive RCR (Bond et al.)75

Allopatch 
HD

MTF Biologics + + Limited relevant clinical or preclinical data available

Dermaspan Biomet ++ + Limited relevant clinical or preclinical data available
 Collagen Integra LifeSciences + + Limited relevant clinical or preclinical data available

TissueMend Stryker ++ + No ACL-specific results or outcomes
Superior stiffness in biomechanical testing compared with 
GraftJacket (Song et al.)76

Zimmer 
Patch

Zimmer + + No ACL-specific results or outcomes
Durable graft in RCR repair augmentation (Badhe et al.)77

Regeneten Smith & 
Nephew

− ++ No ACL-specific results or outcomes
Rapid recovery and significant ASES pain score 
improvement for partial-thickness RCR (Schlegel et al.)78

 Silk SeriACL Serica 
Technologies

++ + Silk scaffold supported collagen growth and maintained 
stability without generating immune response (Altman 
et al.)79

Higher tensile strength than collagen; promotes adult 
stem cell growth (Altman et al.)80

Synthetically derived
  Polyethylene 

terephthalate 
(PET)

Leeds-Keio Xiros ++ − No ACL-specific results or outcomes
Superior clinical results following augmented 
subscapularis transposition (Tanaka et al.)81

Poly-Tape Yufu Itonaga ++ − Limited relevant clinical or preclinical data available
  Poly-l-lactic 

acid
X-repair Medtronic + − No ACL-specific results or outcomes

25% increase in RCR repair strength over control in 
animal model (Koh et al.)82

  Polyurethane 
urea

Artelon Artimplant + − No ACL-specific results or outcomes
Superior healing and higher patellar tendon repair 
strength in animal model (Gersoff et al.)83

Some concern about adverse intra-articular reactions in 
hand surgery in human subjects (Robinson and Muir)84

 SportMesh + − No ACL-specific results or outcomes
Significant clinical improvement in augmented 
degenerative subscapularis repairs (Petriccioli et al.)85

ACL: anterior cruciate ligament; ASES: American Shoulder and Elbow Surgeons; ECM: extracellular matrix; RCR: rotator cuff repair; MRI: magnetic reso-
nance imaging; PET: positron emission tomography.
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longer-term evaluations of clinical outcomes with this tech-
nique remain limited. Several examples include GraftJacket 
(collagen; Wright Medical, Arling, TN, USA), Integra (col-
lagen; LifeSciences Corporation, Plainsboro, NJ, USA), 
TissueMend (collagen; Stryker Orthopedics, NJ, USA), and 
Zimmer Patch (collagen; Tissue Science Laboratories; 
Covington, GA, USA). Others were designed to optimize 
and enhance the healing process:86,87 Regeneten (collagen; 
Smith & Nephew, Andover, MA, USA), X-repair (poly-
l-lactic acid; Synthasome, CA, USA), and Artelon (polyure-
thane urea; Artimplant, AB, Sweden).

The functional role of tendons and ligaments is supported 
by a highly organized structure of type I collagen. The collagen 
that develops in the repair and remodeling stages of tendon and 
ligament healing is less organized than that in the uninjured 
tissue, resulting in inferior mechanical properties and an 
increased risk for reinjury.88,89 Accordingly, multiple collagen-
based products have been examined as scaffolds to enhance 
mechanical stability.90–92 While collagen has the advantage of 
acting as a biocompatible scaffold, several studies have dem-
onstrated a lack of mechanical strength beyond 6 weeks.92,93 
Similar to collagen, silk has the advantage of being biocompat-
ible and demonstrates adequate tensile strength. Silk is also a 
biodegradable material that undergoes proteolytic degradation 
within 2 years. The major drawbacks associated with silk 
include limited cell adhesion and immunogenic responses to its 
sericin coating.40 In contrast, hyaluronic acid lacks the mechan-
ical properties of collagen- and silk-based products, but is a 
biocompatible component of the ECM.37 Similarly, chitosan, a 
biocompatible polysaccharide that can come in sponge or 
hydrogel form, is chemically modifiable and has antimicrobial 
properties. Chitosan too, lacks mechanical strength and experi-
ences limited cell adhesion.94 Alginate is another biocompati-
ble polysaccharide that has the ability of encapsulating cells. It, 
too, lacks mechanical strength.95 Poly-l-lactic acid is a bio-
compatible, biodegradable material that has been used in dis-
solvable stitches and other implants. It achieves better cell 
adhesion than other material and has a slow degradation rate. 
Its drawbacks include that it is biologically inert and creates an 
acidic degradation byproduct.96

More recently, strategies have been implemented to miti-
gate the inherent weaknesses of these scaffolds and maxi-
mize their strengths. The use of ultraviolet (UV) light and 
chemical reagents to create a cross-linked design has been 
shown to improve the mechanical properties of collagen 
scaffolds.97 Unfortunately, the mechanical strength achieved 
with these techniques remain less than ideal.90,98 A collagen–
silk composite was shown to enhance the mechanical 
strength of the material to near-native ligament levels, but 
has yet to be examined in clinical trials.99

Mechanical stimuli

It is well documented that movement and dynamic loading 
are integral to maintaining the necessary mechanical proper-
ties of ligaments and tendons. Mechanical stimuli generate a 

host of changes in cellular functionality, tissue properties, 
and regenerative reactions, resulting in changes in cell dif-
ferentiation and ECM production.100 Even in the absence of 
growth factors, MSCs have been shown to differentiate into 
fibroblast-like cells in response to mechanical stimuli. 
Increases in cell density as well as type I and type III colla-
gen were demonstrated in MSC-loaded collagen constructs 
exposed to mechanical stimuli.101 The exact timing, strength, 
and direction of mechanical stimuli required for optimal cel-
lular response is the subject of ongoing research.43 A particu-
larly interesting study found that mechanical stimuli initiated 
immediately after MSC-seeding impaired generation of type 
I collagen and fibronectin, while stimuli in the form of 45° 
rotations or static tension applied following growth factor-
induced peak stem cell proliferation led to increased  
generation.102 Studies have shown that cells respond to 
mechanical stimuli by initiating integrin-mediated focal 
adhesions and cytoskeleton deformation.103,104

Mechanical factors that encompass stiffness of the sub-
strate, surface topography, and extracellular forces can all 
have significant effects on cellular function and activation of 
specific pathways.40 In order to determine the optimal mechan-
ical stimulation regimen for a specific tissue, research must be 
directed toward understanding the mechanical pathways 
involved in the development and maintenance of that native 
tissue. Further investigation is required to determine what, if 
any, mechanical stimulation is required prior to implantation 
of bioengineered tissue replacements in vivo, where they will 
be subjected to physiological mechanical forces.

Surgical augmentation strategies

The decision to incorporate bioaugmentation into surgical 
treatment should be targeted at overcoming specific biologi-
cal or biomechanical obstacles. The indiscriminate use of bio-
augmentation is not likely to contribute to a successful 
intervention and will be costly.27,42 The surgical treatment of 
ACL ruptures provides a useful example of this principle, as 
repair and reconstruction each present unique biological and 
biomechanical challenges. In the setting of repair, the surgical 
construct is weakest at the time of surgery. Thus, one goal of 
augmentation might be to provide an appropriate mechanical 
environment for the early healing of the ligament during its 
weak stage. In addition, the harsh intra-articular environment 
of the knee in which repair site is bathed in synovium with 
poor access to vascularly delivered cells and growth factors 
must be overcome. By contrast, the goals of bioaugmentation 
in the setting of reconstruction may be directed toward 
achieving better tunnel healing, graft incorporation, and neo-
vascularization, as well as possibly enhancing stability during 
the weakest phase of remodeling and ligamentization.

Augmentation of ACL repair

In order to overcome the harsh intra-articular environment of 
the knee in which the ACL repair site is bathed in synovial 
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fluid with poor access to the cells and growth factors required 
for healing, some authors have examined ways in which 
these elements can be incorporated at the repair site at the 
time of surgery and maintained long enough to contribute to 
healing. Some of the earliest approaches utilized hyaluronic 
acid carriers105 and collagen-based matrices14,106–109 
Interestingly, the effectiveness of collagen scaffolds appears 
to be enhanced by the presence of platelets.107–110 The addi-
tion of PRP to collagen-based scaffolds in platelet concentra-
tions similar to whole blood may also deliver and maintain 
beneficial growth factors like PDGF, TGFβ, and VEGF, that 
are beneficial for ligament healing.50,111 In animal studies, 
ACL repair augmentation with collagen scaffolds seeded 
with MSCs has shown a superior regenerative capacity over 
isolated repair and repair with the collagen patch alone.112

Human amniotic membrane tissue has been studied in its 
use to improve wound healing, burns, and reduce scarring 
and inflammation associated with ocular repair and perio-
dontal surgery.113,114 More recently, the use of amniotic 
membrane tissue for ligament and tendon repair has been 
explored. The basement membrane of the amnion is the 
thickest in the human body, resulting in high mechanical 
strength, while its ECM acts as a scaffold that facilitates 
stem cell adhesion, proliferation, and differentiation.9 In 
addition, the amnion secretes a variety of growth factors that 
aid in the healing process, including PDGF, IGF, TGFβ, 
EGF, FGF, and also provides a reservoir of pluripotent stem 
cells.9,115 Numerous animal studies have reported success 
with the use of amniotic tissue in tendon repair.116,117 Several 
clinical studies have reported preliminary results for extra-
articular applications, including tendon repair in foot and 
ankle procedures.113,118,119 However, at this time descriptions 
of this technology in the setting of ACL surgery are limited 
to the setting of reconstruction, which is addressed in more 
detail in the following section.

The Bridge-Enhanced ACL Repair (BEAR) procedure 
developed by Murray et al.12 combines suture repair of the 
ligament with implantation of a bioinductive scaffold 
between the two torn ends of the ligament. The BEAR scaf-
fold is made of ECM proteins, including collagen. The scaf-
fold is also unlinked and has a relatively low DNA content, 
which may lead to a decreased immunogenic response to its 
implantation. Autologous blood is added to the scaffold and 
is intra-articularly held in place within the knee where the 
blood cells stimulate the healing process of the ligament.

In the first in-human study, the BEAR technique was 
compared with ACLR with hamstring autograft ACLR in 
pediatric patients. All 10 of the patients in the BEAR group 
showed a continuous ACL or intact graft on magnetic reso-
nance imaging (MRI) at 3- and 6-month follow-up in addi-
tion to increased hamstring strength at 3 months (mean ± SD: 
77.9% ± 14.6% vs 55.9% ± 7.8% of the contralateral side; 
p < .001). The authors concluded that the use of the BEAR 
technique was associated with an adverse event rate low 
enough to warrant a high-volume study.12 At 2 years, there 

were no graft or repair failures. The International Knee 
Documentation Committee (IKDC) subjective scores in both 
groups improved significantly from baseline but were simi-
lar in the BEAR and ACLR groups at 1 and 2 years. An 
IKDC objective score of A (normal) was found in 44% of the 
patients in the BEAR group and 29% of the patients in the 
ACLR group at 2 years. KT-1000 testing demonstrated a 
side-to-side difference that was similar in the two groups at 
2 years. Functional hop testing results were similar in the two 
groups at 1 and 2 years after surgery. Hamstring strength 
indices measured by dynamometer were significantly higher 
at all time points in the BEAR group than in the hamstring 
autograft group with 98.6% versus 56.3% (p < .001).120

The dynamic intraligamentary stabilization (DIS) tech-
nique for ACL repair was developed to provide a mechani-
cal environment that protects the early repair while providing 
mechanical stimuli to promote healing.121,122 However, rela-
tively high rates of complications have been reported with 
DIS alone.14,123,124 Evangelopoulos et al.14 compared the 
results of DIS ACL repair with and without a protective 
bilayer collagen I/III membrane isolating the repair site 
from the synovial environment, thus combining mechanical 
stimulus and scaffolding elements of tissue engineering. 
They observed a significantly higher rate of complications 
in the collagen-free repair-only group (78.8%) compared 
with the membrane group (8.7%) (p = .002), and noted that 
the addition of the collagen membrane was the only inde-
pendent prognostic factor associated with fewer complica-
tions (OR 8.0; 95% CI, 2.02–32.2; p = .003).14 In a preclinical 
laboratory study, Gantenbein et al.41 reported successful 
adherence and proliferation of ACL-derived tenocytes and 
MSCs on porcine collagen bilayer matrix (Chondro-Glide, 
Geistlich Pharma, Wolhusen, Switzerland) and bovine 
biphasic collagen-chondroitin sulfate matrix (Novacart, 
Tetec, Reutlingen, Germany). Future work will likely 
explore ways in which the addition of cellular elements and 
growth factors may be incorporated with scaffolds and 
mechanical stimuli in the next generation of augmentation 
strategies, and which patients are likely to benefit most from 
these techniques.

Augmentation of ACLR

Targets for augmentation of ACLR include facilitating graft-
to-bone healing, optimizing the ligamentization process, and 
providing additional stability while the graft is transiently 
weak during remodeling. A number of growth factors and 
bioactive molecules are found in several platelet prepara-
tions such as PRP, fibrin clot, and autologous conditioned 
serum.28 Several of these, including PDGF, VEGF, and 
TGFβ, have been implicated in both graft-to-bone healing 
and graft maturation and remodeling. Platelet preparations 
have been the subject of multiple clinical studies attempting 
to augment these processes, but the results remain inconsist-
ent and inconclusive.
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In small prospective randomized controlled studies, local 
administration of PRP gel to the graft and tunnels intraopera-
tively has been associated with superior healing characteris-
tics on postoperative MRIs when compared with 
controls.125–127 Radice et al.125 reported that reconstructions 
augmented with PRP achieved intra-articular segment signal 
homogeneity on T1- and T2-weighted MRI sequences in 
48% of the time required by the control group (p < .001), 
suggesting that PRP may have accelerated the graft matura-
tion process. Vogrin et al.127 found a significantly higher 
level of vascularization on contrast-enhanced MRI in the 
osteoligamentous interface of the PRP group (0.33 ± 0.09) 
when compared with the control group (0.16 ± 0.09) 
(p < .001) at 4–6 weeks. Likewise, Rupreht et al.126 observed 
findings consistent with increased vascular density and 
microvessel permeability in the proximal tibial tunnel at 1 
(p = .019) and 2.5 months (p = .008) postoperatively, suggest-
ing a positive impact on graft-to-bone healing and incorpora-
tion. Seijas et al.128 obtained similar results in a randomized 
trial with nonselective intra-articular administration of PRP 
injected percutaneously into the suprapatellar space follow-
ing portal closure, with significantly higher stages of remod-
eling seen on postoperative MRIs at 4 (p = .003), 6 (p < .001), 
and 12 months (p = .354). By contrast, Orrego et al.129 
observed an isolated enhancing effect on the graft maturation 
process without a difference at the graft–bone interface with 
application of a platelet concentrate intraoperatively. Vadalà 
et al.16 found that direct administration of PRP into both fem-
oral and tibial tunnels was not effective in accelerating graft 
to bone integration or preventing tunnel enlargement. 
Mirzatolooei et al.130 reported no significant difference in 
tunnel widening between PRP injection groups and controls 
on postoperative advanced imaging or any significant differ-
ence in laxity on clinical examination at 3 months. In a rand-
omized controlled trial with 150 patients, PRP administration 
was associated with a reduction in swelling 24 h after sur-
gery, but otherwise no difference in the IKDC scores or radi-
ologic graft healing between PRP and control groups 1 year 
after surgery.131 Komzák et al.132 found no difference in the 
functional scores between test subjects and controls in a 
40-patient prospective study assessing the effect of PRP on 
graft healing.

Given the relative non-specificity and mixed clinical 
results of platelet-based therapies, several authors have con-
sidered alternative more targeted techniques. Iorio et al.133 
conducted a randomized controlled trial with 40 patients 
examining the clinical and radiographic effects of hamstring 
autograft augmentation with nanohydroxyapatite to facilitate 
graft-to-bone healing. Lysholm, Tegner, and IKDC scores, as 
well as KT-1000 arthrometer readings, did not differ signifi-
cantly between the experimental and control groups, though 
radiographic parameters associated with graft strength,  
interface incorporation, and bony remodeling did display a 
tendency toward better results with nanohydroxyapatite aug-
mentation. In two separate randomized controlled trials with 

minimum 2-year follow-up, Mutsuzaki et al.134,135 reported 
superior results following ACLR with calcium phosphate-
hybridized hamstring autograft. Significantly better Lysholm 
scores at 2-year follow-up were seen with calcium phos-
phate-hybridized hamstring autograft (96.9 ± 4.3) compared 
with controls (91.7 ± 13.3), (p = .021), as well as signifi-
cantly less laxity on KT-1000 arthrometer testing at 1 and 
2 years postoperatively (1.0 ± 2.0 mm vs 1.9 ± 1.6 mm 
(p = .023) and 1.6 ± 2.1 mm vs 2.6 ± 2.4 mm (p = .034), 
respectively), and significantly less bone tunnel enlargement 
in both the femur (p = .043) and tibia (p = .042).134 
Subsequently, calcium phosphate hybridization was shown 
to prevent bone tunnel enlargement in anatomic hamstring 
autograft ACLR,135 though the clinical ramifications of this 
finding remain uncertain.

As with repair, the exposed nature of the intra-articular 
portion of the ACLR graft has led some authors to specu-
late that the addition of a scaffold may improve the efficacy 
of bioaugmentation with growth factors and platelet prepa-
rations. For instance, porous collagen scaffold carriers may 
reduce plasmin-mediated degradation of fibrin in PRP.136 
Berdis et al.137 recently reported results for 109 knees  
in 101 adolescent patients in whom hamstring ACLR was 
performed with bioaugmentation with PRP contained in  
a porous bovine collagen matrix carrier (TenoMend; 
Exactech, Ramsey, NJ, USA). A total of 132 patients (92%) 
returned to their preinjury level of competition, while 7 
patients sustained a reinjury necessitating revision surgery 
(5%). They felt that these results compared favorably with 
the 25% rate of reinjury and revision among pediatric and 
adolescent athletes reported elsewhere in the literature.137,138 
One patient evaluated with second-look arthroscopy for a 
new injury at 7 months after the initial reconstruction dem-
onstrated complete ligamentization and neovascularization 
of the graft (Figure 1). As noted above, augmentation with 
amnion-based matrices may provide an alternative to col-
lagen scaffolds that already contain beneficial growth fac-
tors and bioactive substances.116 Woodall et al.139 recently 
described a technique for augmentation of soft-tissue 
ACLR using Amnion Matrix Thick graft (Arthrex, Naples, 
FL, USA). Lavender and Bishop140 have taken this a step 
further, adding a bone marrow composite graft to the tun-
nels and injecting the amnion-wrapped graft with bone 
marrow concentrate, and finally augmenting the construct 
with a suture tape brace. A small clinical trial to assess 
ACLR augmented with an amnion wrap and bone marrow 
aspirate was registered in September 2017,141 but otherwise 
no outcomes have been reported for these reconstruction 
bioaugmentation techniques.

Internal brace augmentation

Although knee bracing postoperatively has been used in an 
effort to provide appropriate stability and prevent reinjury 
after the surgical treatment of ACL injuries,142,143 there has 



8 SAGE Open Medicine

recently been increased attention on suture augmentation or 
internal bracing in the repair and reconstruction of many 
ligaments.144–146 Suture tape augmentation has also been 
used in the setting of ACL repair147,148, reconstruction149 and 
even as a method of revising reconstructions.150 Such con-
structs have been proposed to confer additional stability dur-
ing healing (in the case of repair) and while the graft weakens 
during ligamentization (in the case of reconstruction).

Conclusion

While the diversity and availability of new biological tech-
nologies in orthopedic sports medicine surgery continues to 
increase, the literature remains inconclusive regarding the 
optimal indications for their implementation. The results of 
long-term follow-up have led to increasing recognition of the 
limitations in the surgical treatment of common athletic inju-
ries like ACL tears, and bioaugmentation may offer some 
solutions in this regard. Nevertheless, bioaugmentation must 
not be regarded as a panacea in this regard. The high level of 
public awareness surrounding biological treatments related 
to their use by professional athletes may also be contributing 
to unreasonable expectations regarding the regenerative 
capacity of these interventions.151 As with many interven-
tions, bioaugmentation strategies seem to show the most 
promise when implemented with a targeted approach, in 
order to address specific biological problems. The surgeon 
must also maintain realistic expectations regarding the capa-
bility of these technologies, and not lose sight of additional 
factors that may contribute to adverse outcomes in some 
patients. For example, bioaugmentation will never overcome 
problems with extremity alignment, which should instead be 
addressed through osteotomies.

Increasingly, the results of clinical work utilizing bioaug-
mentation with ACL repair and reconstruction provide valu-
able information about the ways in which the four principles 

of tissue engineering (cells, growth factors, scaffolds, and 
mechanical stimuli) can be combined into targeted interven-
tions to overcome specific biological challenges. While 
much of the current clinical work in this field has employed 
one or two of the core tissue engineering principles, the next 
generation of bioaugmentation strategies will increasingly 
combine elements of all four. More research will be required 
to further elucidate which of these approaches show the most 
promise and greatest therapeutic advantage.
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