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Abstract

We consider how a signalling system can act as an information hub by multiplexing informa-

tion arising from multiple signals. We formally define multiplexing, mathematically character-

ise which systems can multiplex and how well they can do it. While the results of this paper

are theoretical, to motivate the idea of multiplexing, we provide experimental evidence that

tentatively suggests that the NF-κB transcription factor can multiplex information about

changes in multiple signals. We believe that our theoretical results may resolve the apparent

paradox of how a system like NF-κB that regulates cell fate and inflammatory signalling in

response to diverse stimuli can appear to have the low information carrying capacity sug-

gested by recent studies on scalar signals. In carrying out our study, we introduce new

methods for the analysis of large, nonlinear stochastic dynamic models, and develop

computational algorithms that facilitate the calculation of fundamental constructs of informa-

tion theory such as Kullback–Leibler divergences and sensitivity matrices, and link these

methods to a new theory about multiplexing information. We show that many current models

such as those of the NF-κB system cannot multiplex effectively and provide models that

overcome this limitation using post-transcriptional modifications.

Author summary

Cells use signalling systems to pass on information arising from their ever-changing envi-

ronment to their processing units. These biochemical networks regulate the transmission

of multiple signals within the noisy and complex cellular environment, controlling

whether to turn on or off processes of cell defence, death, division, and others. The ques-

tion of how they actually achieve that becomes particularly critical given that many dis-

eases occur when signalling systems malfunction. In this paper, we develop methodology

and computational tools for simulating, measuring and analysing the ability of signalling

systems to transmit multi-dimensional signals. We specifically focus on the capacity of

signalling systems to simultaneously transmit multiple signals, such as temperature
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changes, presence and concentration of cytokines, viral and bacterial pathogens or drugs,

through a single noisy, dynamic signalling system. We argue that a signalling system can

act as an information hub, sending information in a multiplexed fashion rather similar to

the way in which telecommunications networks send multiple signals over a shared

medium by combining them into one.

Introduction

Signalling systems provide a very important example of cellular information systems since

they transmit information arising from inside and outside the cell to the cell’s processing units.

For example, it is generally believed that the nuclear factor kappa-light-chain-enhancer of acti-

vated B cells (NF-κB) system uses the information from a large number of input signals (see

Fig 1(a)) to regulate gene transcription of more than 500 genes in a highly versatile way [1, 2].

NF-κB regulates cell fate and inflammatory signalling in response to diverse stimuli, including

changes in temperature [3], viral and bacterial pathogens, free radicals, cytokines, and growth

factors [2]. Thus, we have a situation where both the input signal that encodes information

about the cell’s environment, and the gene response are multi-dimensional. Such a system is

often referred to as an information hub.

This raises the question of to what extent this process is mediated through the signalling

system itself which may have a single transcription factor, rather than through multiple other

parallel pathways that also provide information to the genome. Can such a signalling system

on its own effectively regulate a relationship between multidimensional inputs and responses

that can robustly and reliably modulate decision-making of the claimed versatility without

using other pathways? This is the central question we consider here.

Fig 1. Multiplexing signals through signalling systems. (a) Cells constantly receive a multitude of different signals in

which signalling systems respond by (directly or indirectly) modulating the expression of a number of target genes.

These target genes activate or not various pathways of the cell which leads to completely different cell outcomes from

cell survival to apoptosis or mitosis. In order for this decision making to be reliable and robust, signalling systems need

to have the capacity to multiplex a variety of simultaneously arising signals. (b) Multiplexing is defined as the ability of

the signalling system response to identify which of the input signals have changed. In broad terms, strong multiplexing

is evident by the probability distributions of the signalling system response in a population of single cells being

significantly different for the different regimes of the multi-dimensional signal. On the contrary, poor multiplexing

leads to response distribution that are very similar for different signals.

https://doi.org/10.1371/journal.pcbi.1008076.g001
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We consider this question in terms of multiplexing which we define as follows. We suppose

that our system has multiple input signals S1, . . .Ss and consider how the system responds to

changes in them. These signals might, for instance, be changes in temperature or other physi-

cal parameters (e.g. pressure or humidity), changes in the level and/or timing pattern of an

activator (e.g. tumor necrosis factor-α (TNFα), interleukin 1β (IL-1β), and Lipopolysaccha-

rides (LPS) for NF-κB), and/or drug treatments (e.g. Diclofenac for NF-κB). We say that a sig-

nalling system can multiplex these input signals S1, . . .Ss if one can reliably determine which of

these input signals have changed using only the multidimensional response of the target genes

(see Fig 1(B)). It is this response that will regulate downstream responses of the cell and there-

fore the multiplexing capacity is directly measuring a key aspect of how effectively the cell can

respond to the multiple inputs.

So far as we are aware this is a new approach and consequently an immediate question is

whether there is any experimental evidence that this is the case. We address this below and

present some tentative evidence for it. This is useful because it provides useful context to our

discussion and gives some helpful insights but we must emphasise that this evidence is very far

from proving such a point even though it is highly suggestive.

To address the question of what aspects of the system enable such multiplexing we will

introduce a quantity, called the multiplexing capacity, which measures the ability of a noisy sig-

nalling system to multiplex a set of signals. Using this we demonstrate that while current mod-

els cannot multiplex effectively, biologically natural modifications of them can. We believe this

indicates general principles behind biological design.

The underlying concepts that we use are connected to important tools involved in systems

identification, sensitivity analysis and information geometry such as the Fisher Information

Matrix (FIM) and the Kullback-Leibler divergence [4] and we introduce and calculate a new,

but related, sensitivity matrix s that characterises the multiplexing capacity. While sensitivity

analysis [5–7] is an extensive area for deterministic dynamics (e.g. [8, 9]) it is less well devel-

oped for stochastic systems (e.g. [10–16]). Since it is crucial in our discussion that we take

account of realistic levels of stochasticity for the systems we consider, calculating the relevant

quantities for complex high-dimensional stochastic systems such as those considered here is

therefore a significant mathematical challenge. To overcome this, in the numerical computa-

tions we use the pcLNA method [17] that allows fast and accurate computation of key infor-

mation theoretic quantities, such as Kullback-Leibler divergences and the Fisher Information

matrix, for stochastic dynamical systems.

Given that NF-κB has complex oscillatory dynamics, an obvious hypothesis is that it is this

dynamical behavior of the system that allows it to act as an information hub. However, we will

use our theoretical tools to provide evidence that this is not the case and show that the NF-κB

system described by current models cannot multiplex effectively even though it has complex

oscillatory dynamics. On the other hand, we will demonstrate how to modify a stochastic

model of NF-κB so as to overcome this inability to multiplex. In particular, we show that addi-

tional regulated states of NF-κB, which might include differential post-translational modifica-

tions and/or differential hetero- and homo-dimerisation, can enable such multiplexing and

that the oscillatory dynamics can greatly enrich the multiplexing capacity in this modified

model.

Recent important papers studied the information flow through biochemical systems such as

the nuclear factor-κB (NF-κB), calcium (Ca2+), and extracellular signal-regulated kinase

(ERK). The focus was on measuring how much information is being carried by the signalling

systems in terms of the mutual information I(S, R) and the capacity of the channel S! P(R|S)

[4] where S is the input signal and P(R|S) the probability distribution of a response R. For

example, for NF-κB the signal S was the level of TNFα stimulation and R was the level of
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transcription factor in the nucleus at one or more timepoints. In summary, the channel capac-

ity was estimated to be around 1 bit for static scalar observations in response to one-dimen-

sional stimuli [18–22], about 1.5 bits when the dynamical behaviour of the system response is

considered [21] and up to 1.7 bits when cell-to-cell heterogeneity is accounted for [23]. A

number of recent studies support this core observation and report similar low channel capaci-

ties [24–29]. The stochastic models that we use reproduce these relatively low levels of mutual

information between TNFα level and total transcription factor abundance and also agree with

that of the stochastic model in [30]. On the other hand, the modified versions allow signifi-

cantly greater mutual information for multidimensional inputs.

The logic of our discussion is as follows: Firstly, we discuss some tentative experimental evi-

dence suggesting that NF-κB does multiplex. Then we introduce a method for quantifying the

ability of a given stochastic model to multiplex and show that current models are poor at this.

We suggest how one can modify the models so as to enable better multiplexing and relate this

to known mechanisms in signalling systems. In particular, we provide a modified model that is

able to reproduce the behaviour of the simpler of the two multiplexing experimental systems

we discuss. We finally discuss how these results relate to the low information capacity found in

previous studies. Our analysis gives important insight into how multiplexing can work in a sig-

nalling system, however we are not claiming that our model is a true representation of the real

biology of those systems.

Does NF-κB multiplex?

To illustrate the above characterisation of multiplexing we consider some experimental evi-

dence. We ask if, by monitoring the response of a set of genes that are direct NF-κB targets

(Sect. 5 in S1 Appendix), we can reliably determine the state of a multidimensional input sig-

nal. We firstly consider the response of three important genes, EGR1, COX-2 (PTGS2) and IL-

8 (CXCL-8), to pulses of varying length, repeated every 100 minutes at two temperatures, 37˚C

and 40˚C and ask if, from the response of these genes, we can determine the temperature and

pulsing length. EGR1 regulates the response to growth factors, DNA damage, and ischemia,

preventing tumor formation by activating p53/TP53 and TGFB1. COX-2 is responsible for

production of inflammatory prosta-glandins. We include the chemokine gene IL-8 (CXCL-8)

to distinguish temperature at 30mins but there are a small number of other NF-κB target

genes such as NUAK2, NFKBIA, TNFAIP3 (A20) that could have been used instead (see [3]).

We use microarrays and RT–qPCR data to monitor the expression of these genes around

the peak times of nuclear NF-κB at 0, 30, 130, 230 and 430 minutes (Fig 2a). We see that, if we

know the expression levels of these genes at these times we can determine which of these mul-

tiple experiments was carried out (Fig 2b). Monitoring the gene expression at 30 minutes

enables the identification of 5 distinct input signal combinations (unstimulated and the four

combinations in the table) and also one additional one if observations at 130 minutes are

included. This suggests that just from monitoring these three genes we obtain at least 2 bits of

information.

There are two substantial caveats to this observation. Firstly, a potential criticism is that the

genes discussed might also be regulated by independent parallel pathways. However, we note

that in Fig 2(b) we have restricted to very early observations at 30 minutes when the involve-

ment of other pathways is unlikely. Secondly, we are using data from cell population assays

such as microarrays rather than single cells where stochastic effects are important. However,

the expression difference in the table are more than two logs so the overlap of the correspond-

ing expression distribution should be small.
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Despite these two caveats these results are highly suggestive and motivate a careful consid-

eration of single cell multiplexing. Further information supporting these ideas is contained in

Section 5 and Fig K in S1 Appendix.

Results

Decision-making and KL divergence

We now develop a mathematical approach that enables us to quantify multiplexing. We use

this to show why current tightly coupled models of NF-κB cannot multiplex effectively and

then explain how to modify these so that multiplexing is enabled.

Suppose we have s signals S1, . . ., Ss which in turn define the vector signal S = (S1, . . ., Ss).
Consider a change in the signal from a base value S0 to S = S0 + δS where the change has size

η = kδSk. We ask whether, the response R has the capacity to distinguish which components

of the signal have significantly changed i.e. to identify which components of δS are�O(η). If

it can we say the system can multiplex.

Mathematically the question of using the stochastic response R, which has probability dis-

tribution PS(R) = P(R|S), to distinguish input signals is related to hypothesis testing. If a change

in input signal occurs (say from S0 to S = S0 + δS) and we wish to determine if the ith

Fig 2. Gene expression can identify different experimental conditions. (a) (Left Column) The expression of the gene

EGR1 in normal (37˚C) and high (40˚C) temperature and under continuous or pulsed TNFα treatment with pulses

repeated every 100 minutes. The pulse length is 5 minutes except in the bottom row where the pulse length is indicated

in the legend. (Middle Column) As Left Column except that the gene is COX-2 (PTGS2). (Right Column) As the first

two rows of the Left Column except that the gene is IL-8 (CXCL-8). (b) A table showing which gene expression

combinations identify which pairs of the input signal. The letters E, C and I indicate the genes EGR1, COX-2 and IL-8

respectively. The plus symbol (+) indicates high expression at 30 minutes and the minus symbol (-) indicates low

expression at this time. Thus E+I− indicates that EGR1 is highly expressed at 30 minutes and IL-8 is then at a low level,

which implies that the system is pulsed with 5 minute pulses and the temperature is 37˚C. The symbol +130 indicates

high expression at 130 minutes.

https://doi.org/10.1371/journal.pcbi.1008076.g002
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component was changed using only R, we need to be able to evaluate the hypothesis that R
comes from PS rather than from a distribution of the form PS0 where S0 is any perturbation of

S0 with the same ith component as S0. By the Neyman-Pearson lemma, the most powerful test

of this hypothesis for a given false-positive error rate α is a test of the form λ(R)� uα where

lðRÞ ¼ log
PSðRÞ
PS0 ðRÞ

is the log-likelihood ratio and the choice of α determines what threshold uα to use. The PS-
mean of the log-likelihood ratio is by definition the Kullback–Leibler (KL) divergence,

DKL(PSkPS0), of PS and PS0 distributions. The larger is the likelihood ratio, the more evidence

we have in favour of signal S and against S0.

Multiplexing capacity

If DKL is too small then the most powerful test is expected to fail and hence other tests will not

fair any better. Furthermore, as we wish to check whether the response R has the capacity to

distinguish S from any signal S0 that has the i-th signal unchanged, we study how large is the

minS02Sði;0Þ
DKLðPSjjPS0 Þ where Sði;0Þ is the set of all such S0 signals. However, as S tends towards

S0 thus decreasing the length l = l(S) = kS − S0k, this quantity decreases like l2, and therefore

we scale it and define

Dði;S0Þ

KL ¼ min
S

lðSÞ� 2 min
S02Sði;0Þ

DKLðPSjjPS0 Þ: ð1Þ

The larger Dði;S0Þ

KL is, the easier it is to detect the change in the ith component.

To apply this so as to detect changes in any component of the signal S we consider

MXðS1; . . . SsÞ ¼ min
i¼1;...;s

Dði;S0Þ

KL : ð2Þ

The larger this multiplexing capacity MX(S1, . . .Ss) is, the better the system at multiplexing the

signals S1, . . .Ss (see also Sects. 2.1-2.4 in S1 Appendix).

Characterising multiplexing via the sensitivity matrix

While we cannot calculate this quantity in general, we can find an elegant solution in terms of

the Fisher Information Matrix (FIM) when the changes in the signal are small, that is the third

order terms and above are negligible. That is, we will calculate DKL(PSkPS0) up to terms that are

O(max{kS − S0k3, kS − S0k
3, kS0 − S0k

3,}).

In our context, the FIM I at S0 has entries

I ij ¼ EPS0
ð@ i‘ � @ j‘Þ ¼ � EPS0

ð@
2

ij‘Þ

where ℓ(S;R) = log P(R|S) is the log–likelihood function, @iℓ denotes the partial derivative with

respect to the ith component Si and @
2

ij is the corresponding second derivative. These deriva-

tives are evaluated at S0.

The FIM measures the sensitivity of PS(R) to a change δS in the signal S because, up to

terms that are O(kδSk3) (see Sect. 2.1 in S1 Appendix),

DKLðPS0þδS
ðRÞ k PS0

ðRÞÞ ¼
1

2
δST I δS:

PLOS COMPUTATIONAL BIOLOGY Multiplexing signalling information flow

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008076 August 3, 2020 6 / 18

https://doi.org/10.1371/journal.pcbi.1008076


Multiplexing sensitivity matrix. One can associate to the FIM I an s × s matrix s that sat-

isfies I ¼ sTs and certain optimality properties described in [17] (Sect. 2.5.2 in S1 Appendix).

For j = 1, 2, . . ., s, we call the entries sij of the matrix s, the principal coefficients of sensitivity of

the response R to the j-th signal Sj.
The multiplexing sensitivity matrix s describes the ability of the signalling system to multi-

plex at least locally in the following way. If sj, j = 1, . . ., s, are the columns of s, then

1. si1 ;...;ik denotes the linear subspace of Rs
spanned by the vectors si1 ; . . . ; s ik , and

2. n = n(i|i1, . . ., ik) denotes the component of si normal to the linear subspace si1 ;...;ik i.e. si = u

+ n with u in si1 ;...;ik and n orthogonal to si1 ;...;ik . If i1, . . ., ik include all indices except j we use

the notation n(i|j 6¼ i) for n(i|i1, . . ., ik).

Firstly, up to third order terms (see Sect. 2.4 in S1 Appendix),

Dði;S0Þ

KL ¼ k nðijj 6¼ iÞ k2=2;

and therefore the length of the normal component, n(i|j 6¼ i), determines, at least locally, the

capacity of the response R to distinguish the i-th from the rest of the considered signals. Sec-

ondly, there is an essentially unique reordering of the signal components as Si1 ; . . . ; Sis so that

if vk = kn(ik|i1, . . ., ik−1)k then v1� � � � � vs and the multiplexing capacities up to third order

terms are

MXðSi1 ; . . . SikÞ ¼ v2
k=2 ð3Þ

for all k = 1, . . ., s. All of these quantities can be rapidly calculated using the QR decomposi-

tions of submatrices of s made up from the relevant columns of s (see Sect. 2.4 in S1

Appendix).

This ordering of the set of signals provides a way to choose an optimal subset that can mul-

tiplex. That is, we can use the ordering i1, . . ., is and the associated multiplexing capacities

MXðSi1 ; . . . ; SikÞ, k = 1, . . ., s, to identify the subset of signals with the largest number of ele-

ments, k, that has multiplexing capacity MXðSi1 ; . . . ; SikÞ � m, for m an appropriate threshold

(e.g. the minimum DKL level for the change to be detectable in a given system of interest, see

also Sect. 2.4.1 in S1 Appendix).

Multiplexing capacities of a model

In regulatory and signalling systems, the values of two parameters, say ~y j and ~yk, may differ by

an order of magnitude or more. Therefore, when discussing sensitivities it is usually not appro-

priate to consider the absolute changes in the parameters ~y j, but instead to consider the relative

changes. A good way to do this is to introduce new parameters yj ¼ log ~y j because absolute

changes in θj correspond to relative changes in ~y j. Then, for small changes d~y j to the parameters,

dyj ¼ d
~y j=

~y j and so the changes δθj are scaled and non-dimensional. When discussing the mul-

tiplexing capacities of a model below we will always use these scaled parameters θj and hence-

forth when we refer to parameters θi we mean these scaled parameters and we drop the tilde.

As mentioned above the typical situation is where the signals Si change the parameters θj,
j = 1, . . ., s, of the model so that θ = θ(S). In this case we show in Sect. 2.5.3 in S1 Appendix

how one can relate the multiplexing capacity of the signals to the multiplexing capacity of the

parameters. For the latter we regard the parameters as signals and calculate their multiplexing

capacities MXm ¼ MXðyi1 ; . . . ; yimÞ where the parameters θi have been reordered so that for all
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m< s, MXðyi1 ; . . . ; yimÞ < MXðyi1 ; . . . ; yimþ1
Þ. We call these the multiplexing capacities of the

model.

Knowing the multiplexing capacities of a model is important because, using equation (15)

of Sect. 2.5.3 in S1 Appendix, we can tell how well the system can multiplex any signals chang-

ing these parameters. In particular,

1. if the MXm very rapidly decrease with m then the system is not able to multiplex through

these parameters; and

2. if MXðyi1 ; . . . ; yimÞ is large and there are signals S1, . . ., Sr which change the parameters

yi1 ; . . . ; yim in that yij ¼ yijðS1; . . . ; SrÞ, then these signals will have good multiplexing prop-

erties provided the matrix d θ(S) (which is the derivative of θ with respect to S evaluated at

the base value of S) is well conditioned (e.g. if detd θ(S) is not too small or big).

Tightly coupled models of NF-κB cannot multiplex effectively

One might expect that a dynamical system with many parameters, such as NF-κB (see Fig

3(a)), would have the flexibility to multiplex effectively. However, it has been observed that for

a large class of deterministic models of regulatory and signalling systems of the sort that we are

considering, the deterministic analogue of the FIM for the model parameters has rapidly

decreasing eigenvalues s2
i [8, 31–35]. A similar result was shown for stochastic models of the

circadian clock in [17, 36]. This implies that the effects of changing different parameters are

highly correlated making it hard to recognise which parameter was changed.

We see in Fig 4(a) that such a rapid decline in the eigenvalues of the FIM I is the case for

the base model considered here. They decay with an exponential rate and the second singular

value is already less than 1% of the first one.

Fig 3. Diagrams of the base NF-κB model in [48] and its modification mNF-κB model. (a) The main reactions

following a TNFα stimulus according to the model in [48] (base model); (b) The main reactions of the mNF-κB model

following a TNFα stimulus, and when the modification signal S2 is constantly transmitted. For the m2NF-κB model, the

S2 signal controls NF-κB modification jointly (AND logic) with the TNFα signal through the active IKK molecules

(dashed line).

https://doi.org/10.1371/journal.pcbi.1008076.g003
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But I ¼ sTs and therefore the eigenvalues of the FIM I are the squares of the singular val-

ues σi of s (Sect. 2.3 in S1 Appendix). Consequently the singular values σi of s rapidly decrease

and, since v1� � �vk� σ1� � �σk for all k� s with equality when k = s (Theorem 3.3.2 of [37], see

Sect. 1 in S1 Appendix) the same is true for the multiplexing capacities MXðSi1 ; . . . SijÞ ¼ v2
j =2,

Fig 4. Comparisons of the multiplexing capacities and sensitivities of the base NF-κB and mNF-κB models. (a)

The singular values σi of the FIM for the base model and the much larger singular values for the mNF-κB model. (b)

The multiplexing capacities MXðyi1 ; . . . ; yi9 Þ ¼ v2
j =2 of the base and mNF-κB models. The parameters with the largest

multiplexing capacities correspond to the scaled version of the parameters TNFKB (total amount of NF-κB molecules)

and TNFα dose for the base model and TNFKB, pd1 (reverse modification rate of NF-κB) and S2 (signal; treated as

parameter here) for the mNF-κB model. (c) The principal sensitivity coefficients of the mNF-κB model. Larger values

indicate higher sensitivity of the mNF-κB model to changes in the value of the corresponding parameter. (d,e)

Realisations (n = 1000) of the pcLNA distributions of the base and mNF-κB model respectively at three times chosen to

correspond to the first three peaks of the deterministic limit (O!1) of the model. In each case the 6 clusters

correspond to different scaled parameter values which are either the scaled base value θ0 or the scaled parameter vector

θ0 + δVj, j = 1, . . ., 5 (δ = 0.1) where V1, . . ., V5 are the eigendirections of the FIM corresponding to the 5 largest

singular values of each model. Thus each cluster of points corresponds to a different principal component. Notice how

much better the clusters are separated in the mNF-κB model compared to the base NF-κB model. For the mNF-κB

model the base and first three principal component perturbations (black, red, green and blue) are effectively

completely separated.

https://doi.org/10.1371/journal.pcbi.1008076.g004
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j = 1, . . ., k. Using Eq (3) we see that the number of signals that can multiplex well must be

very small. Fig 4(b) shows how fast the multiplexing capacities decrease for our base model

and identifies the parameters through which signals can multiplex more effectively i.e. these

are the parameters that the signals should move if the signals are to be effective.

Increased multiplexing via additional regulated NF-κB states

Regulation of the NF-κB pathway is enabled by multiple post-translational modifications that

control the activity of the core components of NF-κB signaling. In particular, the RelA NF-κB

subunit undergoes reversible modifications such as phosphorylation, ubiquitination, and acet-

ylation that can affect its transcriptional functions [38–44]. Indeed many modification sites in

RelA have been identified as having either an enhancing, inhibitory, or modulatory effect on

NF-κB transcriptional activity in a gene-specific manner [38–41, 43]. A further potentially reg-

ulated step that could differentially control individual gene expression is the hetero- and

homo-dimerisation of the NF-κB Rel proteins [45, 46]. Therefore, in considering the nature of

biological mechanisms that could underlie multiplexing of information by the NF-κB system,

it is natural to consider modifications that create additional regulated NF-κB states that can

affect the transcription of NF-κB target genes.

We consider one of the simplest modifications of the base model that can enable more

effective multiplexing. In this modified model, which we call mNF-κB, the cytoplasmic NF-κB

is reversibly modified by an input signal S2 that is independent to the TNFα signal. For exam-

ple, S2 might be an environmental signal such as temperature or pressure that strongly affects

the activity of a kinase or other molecular processes. Such temperature effects have been stud-

ied extensively for the circadian clock in the context of temperature compensation [47] and

more recently for the NF-κB system [3]. Moreover, in Fig 2 we see substantial temperature

effects on the genes considered there.

The modified form of NF-κB, mNF-κB, competes with the unmodified form for binding of

IκBα but otherwise is subject to the same reactions (see Fig 3(b) and Sect. 3.3 in S1 Appendix).

Importantly, mNF-κB can activate, inhibit, or modulate the transcription of target genes and

their differential expression can potentially reveal the levels of the S2 signal. The mathematical

analysis of the stochastic version of the mNF-κB model confirms this in the following ways.

Firstly, the singular values of the FIM are overall increased, and, importantly, there are now

two large singular values rather than one (Fig 4(a)). Secondly, the multiplexing capacities are

increased substantially in the mNF-κB model with three of them significantly above the second

for the NF-κB model. As explained above in the section “Multiplexing capacities of a model”

and Sect. 2.5.1 in S1 Appendix this means that this model supports multiplexing of three sig-

nals through these three parameters. That the multiplexing capacities are large for the parame-

ters related to the modification confirms that the extra sensitivity arises from the addition of

this modification (see Fig 4(d)).

Note that the results presented in Fig 4 are derived for the probability distributions of sto-

chastic trajectories of the system observed at 9 timepoints (see Sect. 4.9 in S1 Appendix). If

instead only two time-points are considered, that is 10 mins before and at the expected time of

the first peak of nuclear NF-κB concentration, the base NF-κB model is not largely affected,

but the mNF-κB presents a clearly less prominent increase of the singular values (see Fig H in

S1 Appendix). This suggests that while the dynamical behaviour of the system does not in itself

enable higher multiplexing capacity, it can greatly enhance multiplexing in a system that has

the ability to multiplex.

The greater sensitivity of the mNF-κB model compared to the base model is also reflected

in Fig 4(c). We see that the nuclear concentrations of NF-κB are much more affected in the
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mNF-κB model by changes in the signal. This clearly provides much greater ability in modu-

lating gene expression according to different signals (see next section).

In this example we used one of the most simple and generic modifications where an exter-

nal environmental signal such as temperature affects an internal parameter. In Sect. 3.5 in S1

Appendix we also consider another modification where the variation in the internal parameter

is caused by a noisy pathway. Clearly, in this case the multiplexing capacity depends on the

mechanism of this modification pathway and its information carrying effectiveness. Despite

the increased noise levels, the multiplexing capacity of this alternative model can also be signif-

icantly larger than the base model.

Reproducing multiplexing in the EGR1-COX-2 example

To further illustrate multiplexing, we now consider how to modify the signalling system so as

to be able to reproduce the multiplexing behaviour seen in the EGR1-COX-2 gene expression

data in Fig 2. The same principle can be extended to reproduce the expression of the 8 genes

presented in Fig K in S1 Appendix, but this is beyond our scope, and more data will be neces-

sary for validation. Furthermore, we are not claiming that this is the true underlying biological

mechanism but are using this example to illustrate how the NF-κB signalling system can multi-

plex different signals through gene regulation. This is clearly not possible under the structural

constraints of the base model because: (a) the base NF-κB model reacts to pulses of TNFα sti-

muli by nearly identical (forced) oscillations and therefore it cannot explain the difference

between the early and late expression of EGR1 and COX-2, and (b) the differences in the base

model between the response to short and long pulse are extremely small and can hardly

explain the differences in EGR1 early response between the different pulse lengths.

The system is modified to include a reversible modification of NF-κB molecules in the cyto-

plasm. The NF-κB modification is jointly promoted by the TNFα stimulus through the IKK

module and the independent signal S2 (see Fig 3(b)). Pulses of TNFα cause bursts of NF-κB

nuclear translocations, but also higher levels of the modified NF-κB. The reverse modification

is independent of S2 and TNFα. Apart from TNFα promoting the NF-κB modification, this

model which we call m2NF-κB is the same as the mNF-κB model (see Fig 3(b) and Sect. 3 in

S1 Appendix).

The m2NF-κB model postulates that NF-κB activates the transcription of EGR1, which is

inhibited by the mNF-κB, while the reverse regulation is imposed on COX-2. Using our

approach to stochastic simulation outlined next, we can calculate the confidence limits for

COX-2 and EGR1 under the various pulsing protocols (see Fig 5) using n = 1000 trajectories

simulated as described in the next section (see also Sect. 4.6 in S1 Appendix). Fig 5(a) provides

the mean time-trajectories (and 10 samples) at the same times observed using microarray and

qPCR in Fig 2. The introduction of the additional regulatory states of NF-κB allows us to

reproduce the experimentally observed profile.

Stochastic dynamics of NF-κB

The base model used in our analysis is a stochastic reaction network that describes the oscil-

latory response of the NF-κB system under stimulation by TNFα. It is a slight modification of

the system model in [48]. In our version of the model, after adjustments to the rate equations,

concentrations are all expressed in terms of the same volume O, taken to be Avogadro’s num-

ber in the appropriate molar units multiplied by the volume of the cell in appropriate units so

thatO has units L/nM (Sect. 3.3 in S1 Appendix). The original model is written in terms of

nuclear and cytoplasmic concentrations. Clearly, it is straightforward to convert between the

two models (see Sect. 3.3 in S1 Appendix).
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We use the pcLNA stochastic version of this model [17] that allows us to derive analytical

expressions for the FIM and system sensitivity matrix s and to rapidly simulate the system

with high accuracy (see Fig 6 and Sect. 4.2 in S1 Appendix). The stochastic model considered

here converges to the published deterministic model of [48] as O!1. We believe that the

ability of our method to calculate important information-theoretic quantities such as these for

a large fully stochastic model is a significant new development in itself.

The mNF-κB model that includes NF-κB modification is also simulated and analysed using

pcLNA (see Sect. 3.4 in S1 Appendix). For the simulation of downstream genes that are regu-

lated by NF-κB (see next section) we use the Stochastic Simulation Algorithm (SSA) [49]. This

is because the relevant distribution for the gene expression is far from being Gaussian and

therefore it is not appropriate to apply the pcLNA directly to this subsystem. Since this part of

Fig 5. Stochastic simulation of the mNF-κB model II describing the regulation of EGR1 and COX-2 genes for the

same types of TNFα stimulation as in Fig 2. (a) A sample of n = 10 realisations (dots) and the sample mean (straight

line) of simulated trajectories under the different TNFα stimuli (see legend) at the same times (t = 0, 30, 130, 230,

430min) as observations in Fig 2; (b) 95% confidence envelopes of the copy number of (unbound) nuclear NF-κB and

mNF-κB molecules, and EGR1, COX-2 mRNA copies under the different TNFα stimuli derived using stochastic

simulations (n = 1000) under the different TNFα stimuli (see legend). The base model cannot reproduce the observed

sensitivity to the different pulse lengths.

https://doi.org/10.1371/journal.pcbi.1008076.g005
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the system involves relatively few molecules the combined system can be simulated rapidly.

The SSA is also used for comparisons to pcLNA in Fig 6. In Fig 6, we show that pcLNA accu-

rately approximates the SSA simulations of the model in [48], which was calibrated to experi-

mental data.

Capacity of scalar channels

The results above raise the question of whether our models are compatible with the channel

capacity seen in previous publications. We can use the base model to compare its behaviour

with that discussed in [19, 21]. In these papers there was no attempt to control cell size or con-

sideration of the total amount of NF-κB (see also [23] which discusses such issues). We there-

fore allow these quantities to vary with the variation being drawn from a log-Normal

distribution as described in Sect. 4.4 in S1 Appendix.

We study the case where S is the level of the continuous TNFα stimulation (the parameter

dose) and the response R is the level of nuclear NF-κB at q different phases including its first

peaks and troughs. Fig 6(d)(i) shows the estimated capacity as a function of q. We also estimate

the channel capacity for response R the nuclear concentration at t = 30min after initiating con-

tinuous TNFα stimulation (Fig 6(d)(ii)).

Fig 6. The pcLNA stochastic model and the channel capacity of the NF-κB model. (a) The pcLNA model uses the

stability of the probability distributions of stochastic oscillatory systems on the transversal sections, Sx, of a given phase,

x, of the system’s deterministic solution. (b) The pcLNA probability distributions on those transversal sections match

very well the empirical distributions derived by SSA. Here the comparison is done using the Kolmogorov-Smirnov

(KS) test at the first 4 peaks of NF-κB model. The corresponding histograms for two of the largest observed KS values

are also displayed to illustrate the nearly perfect match of the two distributions even in the case of the largest KS

distances recorded here. (c) The pcLNA simulations also match very well the SSA simulations of the NF-κB model

which is much slower (see CPU (average) time for a single simulation). (d) Estimation of the channel capacity using

the pcLNA simulation algorithm with added noise on the Total number of NF-κB molecules.

https://doi.org/10.1371/journal.pcbi.1008076.g006
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The model reproduces the rather limited channel capacity seen in [19, 21] with estimated

carrying capacities in the region of one bit. The exact value is not important because this is

subject to our estimates of O, the total concentration of NF-κB molecules and other parame-

ters derived in [48]. A similar result can be obtained using the model in [30] (see Sect. 4.5 in S1

Appendix). It is worth emphasizing that the limited channel capacity is observed for a scalar

signal and scalar response.

Discussion

Cells present a very different context from that of traditional communications channels.

The genetic and epigenetic information contained in the genome is translated by molecular

interactions into dynamical processes. Described by dynamical interaction networks, these

stochastic dynamical processes effectively move information from one system to another by

regulating the probability distributions of their component molecules. Therefore, it is unclear

whether the classical tools are always the most appropriate and it is likely that a much more

extensive information toolbox is needed. New ideas about stochasticity and information are

needed to understand how cells respond to dynamic environments so as to ensure appropriate

cellular responses with high probability when they are using biochemistry that itself is very

noisy.

Using such information theoretic tools we suggest a new insight into the way in which sig-

nalling systems transmit information. We mentioned above that recent research [19, 21] has

shown that the channel TNFα level! nuclear NFKB abundance has a relatively low channel

capacity. This raises the question of how our results fit with this. To some extent this is

answered by the results in the section entitled “Capacity of scalar channels” where we show

that our systems are tuned so as to reproduce this. Clearly, if we ignore noise and use a deter-

ministic system we can make any such channel have as large a capacity as we want so it is

important in our work to use reasonable levels of stochasticity.

We suggest that there is coherent picture emerging here where although signalling systems

may be rather limited in the way that they transmit any scalar signal (as above for TNFα level),

they are well designed to transmit multi-dimensional signals. There are two main reasons why

when considering information flows in signalling one wishes to consider gene responses that

are multidimensional. The first is that transmitting a signal via multiple receivers enables one

to reduce the effects of noise. The second which is of central concern here is that it enables

complex non-binary decisions. However, to make use of all these dimensions it is necessary

that the input signal S has multiple dimensions because otherwise, if R is d-dimensional, the

mean of P(R|S) is constrained to a 1d curve in d-dimensional space. This would mean that to

obtain multiplexing or higher channel capacity one would have to use changes in the variance

of P(R|S) with S to detect changes which seems very unlikely to be effective. Indeed, to use all d
dimensions one needs dim S� d.

We envisage that in this multidimensional situation it may well be the case that the scalar

channels Si! R each have very low capacity as is the case in [19, 21] but that the full system

S! R is able to multiplex so as to enable complex decisions and has a significantly higher

capacity. Thus, by using multi-dimensionality the system can use multiple low-capacity com-

ponents to produce a high capacity system.

A related issue concerns the role of dynamics in information transfer including the sugges-

tion that dynamic systems such as oscillating ones can transmit greater amounts of informa-

tion compared to static/equilibrium systems [48, 50–55]. Our examples, also suggest why an

oscillating system can use multiplexing to transmit more information than equilibrium sys-

tems. In these we see that signals that affect protein modification states or other aspects such as
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dimerization or binding partners can be good for multiplexing. In an equilibrium system the

probability distribution describing how these states are distributed will be stationary in

time. On the other hand in an oscillatory system these states can have a non-trivial temporal

structure (e.g. oscillating) as catalysts of modifications can be activated and deactivated by

interaction with the oscillations. This suggests a clear advantage for oscillating systems for

information transfer.

Methods

Cell culture and reagents

Experiments were performed on human neuroblastoma SK-N-AS cells cultured in Modified

Eagles Medium supplemented with 1% non-essential amino acids (Sigma-Aldrich) and 10%

foetal bovine serum (Gibco). Cells were maintained in a humidified 5% CO2 incubator at

37˚C.

Microarray and RT-qPCR experiments

SK-N-AS cells were plated at a density of 500,000 cells per dish. Time course experiments were

carried out 24 hours later. Cells were transferred to the three temperatures, 34˚C, 37˚C and

40˚C for 1h and then (at time 0) stimulated with 10ng/ml of TNFα. TNFα was added continu-

ously, for a single pulse of varying durations (2.5, 5, 10, 20, 40 minutes) or as repeated 5 minute

pulses of 60/100/200 minutes intervals. Diclofenac (300, 500 μg/ml; Sigma Aldrich) was added

1.5h prior to TNFα. Measurements were taken at 0, 15, 30, 130, 230 and 430 minutes. Cells

were lysed, total RNA was extracted and RT-qPCR and microarray experiments were per-

formed as described previously [3]. Primer sequences used were COX-2 left—gcaataacgt-

gaagggctgt, right—cgggaagaacttgcattgat, EGR1 left—ttcccttcctcagctgtcac, right—

tgtcctgggagaaaaggttg. Data on the effect of temperature on TNFα-induced gene expression

generated previously were used in this study [3].

Supporting information

S1 Appendix. Supporting results, details of mathematical analysis, and description of the

computational algorithms and the models used in the main manuscript.
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