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Abstract

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated 

surface is an important step to derive biophysical variables from TOA radiance data, e.g., as 

observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models 

(RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. 

Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution 

of each input variable to the output variance. We determined the impacts of the leaf-canopy-

atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. 

The leaf and canopy RTM PROSAIL was coupled with the atmospheric RTM MODTRAN5. 

Because of MODTRAN’s computational burden and GSA’s demand for many simulations, we 

first developed a surrogate statistical learning model, i.e., an emulator, that allows approximating 

RTM outputs through a machine learning algorithm with low computation time. A Gaussian 

process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance as a 

function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified 

the driving variables of emulated TOA radiance along the 400–2500 nm spectral range at 15 

cm–1 (between 0.3–9 nm); overall, the vegetation variables play a more dominant role than 

atmospheric variables. This suggests the possibility to retrieve biophysical variables directly from 

at-sensor TOA radiance data. Particularly promising are leaf chlorophyll content, leaf water 

thickness and leaf area index, as these variables are the most important drivers in governing 
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TOA radiance outside the water absorption regions. A software framework was developed to 

facilitate the development of retrieval models from at-sensor TOA radiance data. As a proof 

of concept, maps of these biophysical variables have been generated for both TOA (L1C) and 

bottom-of-atmosphere (L2A) Sentinel-2 data by means of a hybrid retrieval scheme, i.e., training 

GPR retrieval algorithms using the RTM simulations. Obtained maps from L1C vs L2A data are 

consistent, suggesting that vegetation properties can be directly retrieved from TOA radiance data 

given a cloud-free sky, thus without the need of an atmospheric correction.

Keywords
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atmosphere radiance data; PROSAIL; MODTRAN; retrieval; Sentinel-2

1 Introduction

Retrieving spatially-explicit vegetation biophysical variables from space is one of the 

main goals of optical remote sensing, and one of the objectives of international space 

programs such as NASA Earth Observation Systems or the European Copernicus 

satellites constellation [1,2]. Particularly, with the Sentinel-2 (S2) constellation an 

unprecedented inflow of optical data emerged for vegetation monitoring applications with 

an optimized balance between high spatial, spectral and temporal resolution [3]. The 

land surface reflectance for retrieval of biophysical variables is estimated from these 

satellite observations through atmospheric corrections [4,5]. However, accurate atmospheric 

correction strategies need exact atmospheric variables from the satellite data itself e.g., 

[6,7] or from external meteorological sources such as AERONET [8] or ECMWF [9]. 

As the retrieval is based on all kinds of assumptions regarding the model used and the 

retrieval method applied this step remains challenging, with potentially large uncertainties 

in the derived atmospheric characteristics and error propagation into surface reflectance 

[10]. To avoid the limitations of retrieving biophysical variables from surface reflectance 

data, some studies have demonstrated the possibility to determine biophysical variables 

directly from at-sensor top-of-atmosphere (TOA) radiance, [11–15] without the necessity to 

go through the atmospheric correction process [11,12]. The downside of these approaches, 

however, is that they are not straightforward; they require a sound physical understanding 

on the factors determining the at-sensor spectral TOA radiance, e.g., as studied in [16–18]. 

It implies that biophysical variables retrieval from TOA radiance data have so far been 

restricted to experimental studies. With the purpose of democratizing these approaches to the 

broader community, what is lacking is a freely available, streamlined and generic processing 

framework that enables to automate retrieval applications directly from TOA radiance data.

At-sensor spectral TOA radiance is the combination of radiometric effects from surface 

reflectance, atmospheric effects and target surroundings convolved with the sensor spectral 

and spatial response functions [19]. Consequently, the identification of the key input 

variables that drive TOA radiance is a first mandatory step to retrieve biophysical variables 

directly from at-sensor TOA radiance data. Once having the drivers along the spectral 

range identified, it opens the door to develop dedicated TOA radiance retrieval algorithms 
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for optical sensors such as S2, taking into account the wavelength-dependent role of the 

atmospheric factors. These drivers can be theoretically identified by means of coupled 

surface-atmosphere radiative transfer models (RTMs).

Optical RTMs provide a physical interpretation of light interactions within a medium, e.g., 

leaf, canopy and atmosphere, and are based on solving the radiative transfer equation. To 

exploit at-sensor TOA radiance from vegetated surfaces, we need to consider three scales: 

(1) leaf, (2) canopy and (3) atmosphere; which are associated to two groups of RTMs: 

vegetation and atmospheric RTMs. Vegetation RTMs study the relationship between leaf and 

canopy biophysical variables and reflectance, absorbance and scattering mechanisms. The 

two most widely used models are the leaf model PROSPECT [20], and the canopy model 

SAIL [21]. The coupling of these two models, named PROSAIL, has been used for over 30 

years in sensitivity and retrieval studies [22,23]. Atmosphere RTMs study the interaction of 

radiation with the atmosphere, on its way to the surface, and reflected back to the sensor. 

MODTRAN is among the most widely used RTM for atmospheric simulation and correction 

due to its accurate simulation of the coupled absorption and scattering effects [24,25]. 

Accordingly, the coupling of PROSAIL with MODTRAN allows assessing the leaf, canopy, 

and atmosphere variables [11] that drive the observed at-sensor TOA radiance [26,27].

Enabling identifying and quantifying the role of leaf-canopy-atmosphere variables in 

determining TOA radiance requires a rigorous sensitivity analysis that takes all interactions 

into account. Such systematic analysis can be achieved by means of a global sensitivity 

analysis (GSA) [28]. GSA provides information on how the variation of model output 

is produced by the variation of model input variables individually and globally through 

interactions with each other [29]. Hence, GSA enables to identify the influential and 

non-influential input variables for a model output, e.g., TOA radiance along the 400–

2500 nm spectral range. The drawback of GSA methods is that they are computationally 

expensive and complex because of the required large number of model evaluations [28]. 

This is an important issue when coupled vegetation-atmosphere RTMs are used, since the 

computational burden of such coupled models can be substantial [19,30]. To overcome this 

computational burden it has been proposed to make use of emulation [31–33]. Emulators are 

statistical models that approximate the input-output results of an RTM by means of machine 

learning [32], and this at a fraction of the RTM computational cost. This technique has been 

earlier proven successful in GSA studies of advanced physical models in various domains to 

enable identifying driving variables [19,32,34–37], and will be further explored in this work.

Having entered the era of the Sentinels, the opportunity arises to develop retrieval algorithms 

directly from S2 L1C data, i.e., at-sensor TOA radiance data. Accordingly, the pursued 

approach is as follows: first an emulator from a surface-atmosphere model is developed as 

an approximation of the original RTMs in order to identify the variables through a GSA of 

TOA radiance in the entire visible and near infrared (VNIR) to shortwave infrared (SWIR) 

spectral range at a spectral resolution of 1 nm. Based on these GSA results, biophysical 

variables retrieval strategies applicable directly to an at-sensor TOA radiance dataset will be 

developed. From past experiences where different retrieval methods have been compared for 

S2 data at TOC scale [38], the so-called hybrid retrieval methods, i.e., where RTM data is 

used for training machine learning methods, are particularly promising in terms of accuracy 
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and processing speed [2,39]. Here, the developed retrieval algorithms should eventually 

be applicable to S2 L1C products, thereby avoiding the uncertainties of the atmospheric 

correction process [40].

Altogether, this study boils down to the following objectives: (1) to develop emulators 

to approximate the coupled PROSAIL-MODTRAN RTMs for a set of input variables 

and TOA radiance output; (2) to apply the emulator into a GSA in order to identify the 

driving variables; and finally, as a proof of concept, (3) develop hybrid retrieval models 

for biophysical variables from S2 L1C (TOA radiance) and L2A (bottom-of-atmosphere 

reflectance) data. All these objectives have been tackled with an in-house developed 

software framework that is made freely available to the community.

The remainder of this paper is structured as follows. Section 2 gives a further insight 

into S2 mission with specifications about instrument characteristics and its atmospheric 

correction (Sen2Cor) and biophysical retrieval algorithms. Section 3 presents the software 

framework, RTM configurations and toolboxes used to conduct the emulation, GSA and the 

TOA retrieval performance assessment strategy. This is followed by presenting the results 

in Section 4 which are discussed in a broader context (Section 5). Section 6 concludes this 

paper.

2 The Sentinel-2 Mission

Sentinel-2 (S2) is a satellite mission part of the European Commission’s Copernicus 
programme, with the goal of monitoring vegetation, soil and inland and coastal water areas 

for supporting agro-ecosystems applications [3]. Developed by the European Space Agency 

(ESA), S2 mission consists of a constellation of two satellites (S2A and S2B) that enables 

a global revisit time below 5 days. S2’s optical instrument-the MultiSpectral Instrument 

(MSI)-covers a wide swath (290 km) with high spatial resolution (10–60 m) in 13 spectral 

bands from the visible and NIR (VNIR) to SWIR spectral range. Further mission technical 

characteristics are summarized in Table 1 and Figure 1 for band configuration.

The S2 MSI data is freely available from Copernicus Open Access Hub. From mid 2018 

onwards, two reflectance products are provided: L1C and L2A. The L1C product refers 

TOA reflectances (i.e., TOA radiance normalized by incident solar irradiance). The L2A 

product refers to bottom-of-atmosphere (BOA) reflectance, which is achieved by means 

of the Sen2Cor atmospheric correction scheme (version 2.4.1) [5]. Sen2Cor processing 

scheme is based on state-of-the-art algorithms that include cirrus cloud correction and 

scene classification [43,44]. Sen2Cor relies on the Dark Dense Vegetation algorithm for the 

retrieval of aerosol type (rural/continental by default) and optical thickness value at 550 nm 

(AOT550) [45]. The Atmospheric Pre-corrected Differential Absorption (APDA) algorithm is 

implemented for the retrieval of columnar water vapor (CWV) [46]. Derivation of surface 

reflectance is achieved from the atmospheric inversion of a set of look-up tables generated 

with the libRadtran atmospheric RTM [47]. Sen2Cor achieves uncertainties around 0.03 for 

the AOT550 and 0.3 gocm–2 for the CWV, which are propagated to absolute errors of <0.05 

in surface reflectance [48–50]. These errors, nevertheless, should not hamper the retrieval 
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of biophysical variables from L2A reflectance data, e.g., as successfully demonstrated by 

[51,52].

3 Materials and Methods

The general work flow is presented in Figure 2. In order to analyze the feasibility of 

retrieving biophysical variables from TOA radiance, we performed three parallel studies. 

First, a GSA using an emulator was carried out to determine the relative influence of 

each biophysical and atmospheric variable in the TOA radiance signal. Secondly, a set of 

synthetic test scenarios were generated to assess the performance of biophysical variables 

retrieval under controlled conditions. Three different retrieval scenarios were implemented: 

(1) ideal surface reflectance data (i.e., without errors from atmospheric correction), (2) 

TOA radiance, and (3) realistic surface reflectance data (i.e., affected by error propagation 

from atmospheric correction). Finally, retrieval strategies were applied to a real S2 data 

at L1C (TOA radiance) and L2A (BOA reflectance). A detailed description of the used 

processing tools and simulated datasets is provided in Sections 3.1 and 3.2. The used GSA 

and emulation algorithms are described in Sections 3.3 and 3.4. Further information about 

the implemented method for retrieving the various biophysical variables from the simulated 

data and evaluating their accuracy is described in Section 3.5. The method to assess the 

performance on a real S2 image is then described in Section 3.6.

3.1 Developed Toolboxes for Automated Processing

This work was conducted within the in-house developed ARTMO GUI framework. 

Automated Radiative Transfer Models Operator (ARTMO) [53] is a Matlab scientific 

software package that provides tools and toolboxes for running a suite of leaf, canopy and 

atmosphere RTMs and for post-processing applications such as retrieval. The toolboxes used 

in this work are briefly explained below.

• Atmospheric Look-up table Generator (ALG) [19] is an independent software 

tool that can be plugged into ARTMO and allows generating and analyzing 

LUTs based on a suite of atmospheric RTM, i.e., MODTRAN, 6SV, libRadtran.

• A new so-called “TOC2TOA” toolbox has been developed to enable coupling 

surface reflectance simulations with atmospheric simulations, i.e., to reach TOA 

radiance data. The TOC2TOA toolbox couples the atmospheric transfer functions 

with canopy reflectance simulations or observations to enable TOA radiance 

data, thereby ensuring that consistent geometry at canopy and atmosphere is 

preserved. Either canopy LUTs, surface reflectance data, e.g., from a field 

spectroradiometer, or a BOA reflectance image can be coupled with atmospheric 

transfer functions to enable uppscaling to TOA radiance data. In this version 

(1.0), the coupling assumes a Lambertian and homogeneous surface according to 

the formulation proposed in [54].

• The Global Sensitivity Analysis (GSA) toolbox [55] calculates a global 

sensitivity analysis on RTMs. The GSA toolbox enables to identify key driving 

input variables as well as non-influential input variables across the spectral 

range of spectral outputs. The main limitation of GSA is that it requires many 
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simulations, and is thus limited by the processing speed of the model under study 

[32].

• To speed up GSA run-time, the GSA toolbox can be coupled with the Emulator 

toolbox [31,32]. This toolbox enables the evaluation of machine learning 

regression algorithms on their capability to approximate RTM outputs as a 

function of input variables.

• The machine learning regression algorithms (MLRA) toolbox [56] is one of 

ARTMO’s retrieval toolboxes. The MLRA toolbox contains over 20 MLRAs that 

can be trained and validated with either experimental or RTM data. Afterwards, a 

selected model can be applied to an image for mapping applications.

3.2 Description of Simulated Datasets

The training and performance assessment of biophysical parameters retrieval from at-sensor 

TOA radiance is based on simulated data of surface reflectance and TOA radiance. The 

use of RTMs allows us to test the retrieval accuracy under controlled conditions. On 

the one hand, surface reflectance datasets are based on the combination of PROSPECT-4 

[20] and SAIL [21] RTMs, also known as PROSAIL. PROSPECT-4 is one of the most 

widely used RTMs that simulates leaf optical properties. The model calculates directional-

hemispherical reflectance and transmittance measured from 400 nm to 2500 nm at 1 nm 

spectral sampling. SAIL solves the radiative transfer equation for scattering and absorption 

of four upward/downward fluxes at the canopy scale. In combination with PROSPECT-4 

leaf optical properties, SAIL provides top-of-canopy (TOC) reflectance in the 400–2500 

nm spectral range at 1 nm sampling. On the other hand, MODTRAN5 [24,57] was chosen 

to simulate the radiative transfer in the atmosphere at 15 cm–1 (0.3–9 nm in the covered 

spectral range of 400–2500 nm). MODTRAN has been extensively used for remote sensing 

applications such as atmospheric correction [6,7,58]. It solves the RT equation with an 

accurate simulation of the coupled absorption/emission and scattering effects by molecules 

and particulate matter in a multilayered spherically symmetric atmosphere [59,60]. With 

the application of the interrogation technique developed in [54], MODTRAN can generate 

the following output atmospheric transfer functions: Atmospheric path radiance (L0), direct/

diffuse at-surface solar irradiance (Edir/dif), direct/diffuse target-to-sensor transmittance 

(Tdir/dif), and spherical albedo (S).

The generation of the simulated datasets (analysis, reference and retrieval) is represented in 

Figure 3 and further described in the paragraphs below.

The first dataset (further referred to as analysis) functions to train an emulator that allows 

running a GSA to evaluate the relative contribution into TOA radiance of various leaf-

canopy and atmospheric properties. Thus, this dataset combines PROSAIL and MODTRAN 

into a database of TOA radiance spectra. The first step was to generate the LUT of 

directional reflectance (ρ) derived from the combination of the PROSPECT-4 and SAIL. 

A set of 10,000 samples of the six input leaf-canopy variables were distributed according 

to a Latin Hypercube Sampling (LHS) distribution [61] (see Table 2). The hot-spot, soil 

brightness coefficient, and the sun-target senor geometry variables have been excluded from 
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the analysis in order to facilitate the coupling between the vegetation and atmospheric 

RTMs. Simulations were carried out in the 400–2500 nm spectral range at 1 nm sampling.

The second step involves generating MODTRAN simulations. The analysis dataset contains 

10,000 MODTRAN simulations sampled with a LHS distribution (see Table 3). These 

simulations were carried out in the same spectral range as PROSAIL simulations with a 

sampling of 15 cm–1 (0.3–9 nm in the covered spectral range of 400–2500 nm). Input 

variables were selected so that they have an impact in the entire wavelength range (400–

2500 nm) and include typical variability [8,62–64] in: (1) the AOT550; (2) the spectral 

dependency of the extinction coefficient, through the Ångström exponent; (3) the phase 

function, through the HG asymmetry parameter; (4) the single scattering albedo; and 

column-integrated concentrations of (5) ozone (O3C) and (6) vapor (CWV).

The surface (PROSAIL) and the atmospheric (MODTRAN) simulations were randomly one-

to-one combined (10’000 simulations) and propagated to TOA radiance following Equation 

(1) with the Lambertian and homogeneous surface assumption:

L = L0 + EtotT tot ρ
π(1 − Sρ) (1)

where Ttot = Tdir + Tdif is the total target-to-sensor transmittance and Ttot = Edir cos θil + 

Edif is the total at-surface irradiance for a solar zenith angle θil. Here, the 1 nm sampling 

surface reflectance (ρ) was interpolated by cubic splines to the MODTRAN wavelength grid. 

For the sake of simplicity, the spectral dependency of all terms in the Equation (1) has been 

omitted. A random subset of 1000 cases is then used to train an emulator for further GSA 

calculation.

The second dataset (further referred to as reference) aims at representing realistic S2 

observations over land surfaces for broad atmospheric conditions and is used for validation. 

The reference dataset is divided into three subsets to validate the retrieval strategies under 

three different scenarios (see Figure 3): (1) retrieval from an ideal surface reflectance 

data, (2) retrieval from TOA radiance, and (3) retrieval from surface reflectance after a non-

perfect atmospheric correction. The first subset (reference_toc) corresponds to a reference 

surface reflectance dataset composed of a random subset of 5000 samples extracted from 

the analysis dataset previously described in Table 2. This scenario should be taken as 

the ideal case, since there are no radiometric perturbances due to atmospheric scattering 

and absorption. This surface reflectance data is combined with other 5000 MODTRAN 

simulations to create the second subset of reference TOA radiance (reference_toa). This 

second scenario refers to the goal of this paper i.e., to validate the performance of retrieving 

biophysical variables directly from TOA radiance. In this case, MODTRAN simulations 

were run with varying conditions of CWV, O3C, AOT550 and aerosol type with an LHS 

distribution (see Table 4) and in the same spectral range and sampling as in the analysis 
dataset. With respect the aerosol type, the following 9 models were included: MODTRAN’s 

rural, urban and navy-maritime (with 3 air mass values identifying coastal to strong land 

influence), and OPAC’s continental (clean, average and polluted) and urban [62].
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Both the reference_toc and the reference_toa subsets were convolved by S2 instrument 

spectral response function (ISRF, fc) for each spectral channel c (1 to 13) [42] following 

Equation (2):

Lc = ∫ L ⋅ fcdλ
∫ fcdλ (2)

The third subset (reference_atm) aims to represent surface reflectance spectra obtained 

after a non-perfect atmospheric correction as would be from Sen2Cor algorithm. Instead 

of implementing an atmospheric correction process on the reference_toa subset, the 

reference_toc subset was perturbed in order to reproduce the expected error propagation 

from the Sen2Cor algorithm [50]. Accordingly, the reference_atm surface reflectance spectra 

(patm) is created from the reference_toc spectra (ρtoc) following Equation (3):

ρatm = ρtoc + ερ (3)

where ερ is the expected wavelength-dependent error from Sen2Cor shown in Figure 4.

Finally, the third dataset (further referred to as retrieval) is used to train the retrieval 

algorithms for each of the biophysical variables (see Section 3.5). The retrieval 
dataset consists of two subsets of surface reflectance (retrieval_toc) and TOA radiance 

(retrieval_toa), both generated with the same process as for the construction of the reference 
dataset. Regarding the retrieval_toc subset, this is constructed from the remaining 50% 

samples from the analysis dataset that were not used in the reference_toc subset. The 

TOA radiance subset uses a new set of 5000 MODTRAN simulations with the same input 

variables as in Table 4 but only using MODTRAN’s rural aerosol type. In this way, the 

retrieval of biophysical variables from TOA will carry along errors due to uncertainties in 

aerosol optical properties.

3.3 Global Sensitivity Analysis (GSA)

In order to identify the driving vegetation and atmospheric variables having an impact on 

TOA radiance, we first conducted a global sensitivity analysis (GSA) of the TOA radiance 

simulations from the analysis dataset. Most GSA methods are variance-based methods, 

which decomposes the variance of the model output into fractions that can be attributed to 

inputs or sets of inputs [28,65]. While the Sobol’ method [66] pioneered in developing a 

variance-based GSA method, a modified version was proposed by [67], which proved to be 

effective in identifying the so-called Sobol’s sensitivity indices. These indices quantify both 

the main sensitivity effects (first-order effects: Si, i.e., the contribution to the variance of the 

model output by each input variables) and total sensitivity effects (STi, i.e., the first-order 

effect plus interactions with other input variables) of input variables. This method has been 

applied here. A description according to [68] is given below.

Formally, we have a model y = f (x), where y is the model output, and x = [x1, x2,..., xk]T is 

the input feature vector. A variance decomposition of f (·) as suggested by Sobol [66] is:
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V(y) = ∑
i = 1

k
V i + ∑

i = 1

k
∑

j = i + 1

k
V ij… + V 1, …, k′ (4)

where x is rescaled to a k-dimensional unit hypercube Ωk, Ωk = x ∣ 0 ≤ xi ≤ 1, i = 1, …, k ; 

(y) is the total unconditional variance; Vi is the partial variance or ‘main effect’ of xi on 

y and given by the variance of the conditional expectation Vi = [ (y|xi)]; Vij is the joint 

impact of xi and xj on the total variance minus their first-order effects. Here, the first-order 

sensitivity index Si and total effect sensitivity index STi are given as [28]:

Si = V i
V(y) = V E y ∣ xi

V(y) (5)

and:

STi = Si + ∑
j ≠ i

Sij + … = E V y ∣ x ∼ i
V(y) , (6)

where x~i, denotes variation in all input variables and xi, Sij is the contribution to the 

total variance by the interactions between variables. Following Saltelli et al. (2010) [67], 

to compute Si and STi, two independent input variable sampling matrices P and Q of 

dimensions N × k are created, where N is the sample size and k is the number of input 

variables. Each row in matrices P and Q represents a possible value of x. The variable 

ranges in the matrices are scaled between 0 and 1. The Monte Carlo approximations for 

(y), Si and STi are defined as follows [67,69]:

V(y) = 1
N ∑

j = 1

N
f(P)j

2 − f0
2, f0 = 1

N ∑
j = 1

N
f(P)j, (7)

and:

Si = 1
N ∑

j = 1

N f(Q)j f PQ
(i)

j − f(P)j

V(y)
(8)

and:

STi = 1
2N ∑

j = 1

N f(P)j − f PQ
(i)

j
2

V(y)
, (9)

where … is the estimate; f0 is the estimated value of the model’s output; we abused notation 

by defining f (P) as all outputs for row vectors in P; PQ
(i) represents all columns from P 

except the ith column which is from Q, using a radial sampling scheme [70]. Matrices are 

generated with an LHS of size N × 2k where P and Q are the left and right half of this 

matrix, respectively [67]. In order to compute Si and STi simultaneously, a scheme proposed 

by [29] was used, which reduced the model runs to N(k+2).
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3.4 Emulation

Instead of entering the computationally expensive coupled PROSAIL-MODTRAN into 

GSA, we used an emulated version of these coupled models. Emulation is a statistical 

learning technique used to estimate model simulations when the model under investigation 

is too computationally costly to be run many times [71]. The basic idea is that an emulator 

uses a limited number of simulator runs, i.e., input-output pairs (corresponding to training 

samples), to train a machine learning regression algorithm (MLRA) in order to infer the 

values of the complex simulator output given a yet-unseen input configuration. These 

training data pairs should ideally cover the multidimensional input parameter space using a 

space-filling sampling algorithm, e.g., LHS. Once the emulator is built, it is not necessary to 

perform any additional runs of the model; the emulator computes the output that is otherwise 

generated by the RTM.

When it comes to emulating RTM spectral outputs, however, the challenge lies in delivering 

a full spectrum. This implies that the MLRA should be able to generate multiple outputs to 

reconstruct a full spectral profile, which is not a trivial task. For instance, the contiguous 

spectral profile between 400 and 2500 nm consists of over 2000 bands when binned to 1 

nm resolution. Only some MLRAs can obtain multi-output models, but that typically lead 

to highly complex models with long training time and certain risk of overfitting because 

of model over-representation, e.g., as with neural networks. A workaround solution was 

developed that enables the regression algorithms to cope with large spectroscopy datasets by 

taking advantage of the so-called curse of spectral redundancy, i.e., the Hughes phenomenon 

[72]. Since spectroscopy data usually shows a great deal of collinearity, it implies that such 

data can be compressed to a lower-dimensional space through dimensionality reduction 

techniques such as principal component analysis (PCA) [73]. Accordingly, spectroscopy 

data can be converted into components, which are only a fraction of the original amount 

of bands, and implies that the multi-output problem is greatly reduced to a number of 

components that preserve the spectral information content (see also [74–77]). Afterwards, 

the components are then reconstructed again to spectral data [31–33,36,77].

In earlier RTM emulation evaluation studies [31–33], various MLRAs were analyzed on 

their predictive performance. In each of these studies Gaussian processes regression (GPR) 

[78] was evaluated as the top performing one. Although its superior performance went 

somewhat at the expense of processing speed as opposed to other MLRAs, it runs numerous 

times faster than the original RTM [31–33]. GPR is a probabilistic kernel method, and 

has been widely used for retrieval of biogeophysical variables and emulation applications 

[79–81]. Kernel methods in machine learning owe their name to the use of kernel functions 

[82–84]. These functions quantify similarities between input samples of a dataset. Similarity 

reproduces a linear dot product (scalar) computed in a possibly higher dimensional feature 

space, yet without ever computing the data location in the feature space.

GPR generalize Gaussian probability distributions in function spaces [78]. The prediction 

and the predictive variance of the model for new samples are given by:
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f xq = ∑
i = 1

n
ik xi, xq (10)

V f xq = k xq, xq −∗⊤ K + σn2I ∗
−1

(11)

where k(·, ·) is a covariance (or kernel function), * is the vector of covariances between 

the query point, xq, and the n or training points, and σn2 accounts for the noise in the 

training samples. As one can see, the prediction is obtained as a linear combination of 

weighted kernel (covariance) functions, the optimal weights given by w = K + σn2I −1f(x). 
Many different functions can be used as kernels for [85]. We used the automatic 

relevance determination squared exponential kernel for GPR, which has a separate 

length hyperparameter for each input dimension. Stochastic gradient descent algorithms 

maximizing the marginal log-likelihood are employed, which allow optimizing a large 

number of hyperparemeters in a computational effective way.

Based on experience from earlier emulation exercises [32,33], the TOA radiance data was 

first compressed into 20 PCA components. The GPR emulator was trained with 70% of the 

1000 samples and the remaining dataset was kept for validation. Goodness-of-fit statistics 

were calculated to assess the emulator’s capability to generate accurate TOA radiance data: 

the Pearson’s correlation coefficient (R2) and root-mean-square error (RMSE) are calculated 

according to Equations (12) and (13):

R2 =
n ∑

i = 1

n
Xref, i ⋅ Xret, i − ∑

i = 1

n
Xref, i ⋅ ∑

i = 1

n
Xret, i

n ∑
i = 1

n
Xref, i

2 − ∑
i = 1

n
Xref, i

2
n ∑

i = 1

n
Xret, i

2 − ∑
i = 1

n
Xret, i

2 , (12)

and:

RMSE = 1
n ∑

i = 1

n
Xref, i − Xret, i

2, (13)

where Xref,i, and Xret,i are respectively the reference and retrieved values.

Finally, the trained GPR emulator was imported into the GSA toolbox. In the GSA toolbox, 

the number of emulations executed was (N(k+2), where N represents the number of samples 

and k the number of input variables. We chose 1000 runnings per variables. This led to 

14,000 runnings to compute the GSA sensitivity indices. The GSA results provide insights 

into the role of the driving variables at TOA as observed by a satellite sensor. Based on these 

insights, hybrid retrieval schemes were developed for retrievable biophysical variables, as 

described below.
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3.5 Hybrid Retrieval Schemes

When it comes to selecting a biophysical variable retrieval method for processing large 

images such as Sentinel-2 (S2), it requires models that are fast, robust and easily applicable. 

Based on a systematic comparison of parametric, non-parametric and RTM-inversion 

retrieval methods taking both accuracies and run-time into account [86], it was concluded 

that hybrid retrieval schemes, i.e., machine learning methods trained by RTM simulations, 

can achieve both accurate and fast estimates. Regarding the used MLRA, similar as in 

emulation, GPR was evaluated as a powerful method for mapping applications [38,39,87]. 

Starting with Equation (10), we used a scaled Gaussian kernel function:

k xi, xj = vexp − ∑
b = 1

B xi
(b) − xj

(b) 2

2σb
2 + δij ⋅ σn2, (14)

Regarding retrieval, three important properties of the method are worth stressing here. First, 

the obtained weights w after optimization gives the relevance of each spectrum xi (see 

[88] for extended equations). The predictive mean is essentially a weighted average of the 

vegetation biophysical parameter values associated with the training samples closest to the 

test sample. Second, the inverse of σb, represents the relevance of band b. Intuitively, high 

values of σb, mean that relations largely extend along that band hence suggesting a lower 

informative content. These features have been extensively studied in [87,88] and proved to 

be valuable for gaining insight into relevant bands. Third, and particularly of interest for 

mapping applications, a GPR model provides not only a per-pixel prediction, but also an 

uncertainty (or confidence) level for the prediction. Hence, uncertainty intervals are directly 

delivered along with the variable estimates, which enables to assess the model transferability 

in space and time [86,88].

We assessed the performance on biophysical variable retrieval on the three reference 

scenarios previously described in Section 3.2. The MLRA retrieval toolbox was first used 

to train and to validate an MRLA from the retrieval datasets and then to apply the trained 

model to retrieve biophysical variables from the reference datasets. Based on experience 

from earlier retrieval exercises [32,33], the two retrieval databases were split into 70% for 

the training and 30% for the validation of the GPR retrieval algorithms. The retrieval_toc 
dataset was used to train and validate one GPR model for the retrieval of biophysical 

variables from surface reflectance. The retrieval_toa was instead used for the retrieval 

from TOA radiance. Goodness-of-fit statistics were calculated to assess the GPR models’ 

capability to retrieve accurately biophysical variables. The error difference between the 

reference and the retrieved biophysical variables is calculated for each of the 5000 samples 

in the reference database and the histogram plotted. In addition, Pearson’s correlation 

coefficient (R2) and root-mean-square error (RMSE) are calculated.

3.6 Retrieval of Biophysical Variables from Sentinel-2 L1C and L2A Images

As a proof-of-concept of the developed TOA radiance retrieval algorithms, a S2-A image 

was selected for both the TOA L1C and BOA L2A reflectance products. The chosen image 

was acquired by S2A on 22 August 2018 at 12:56 h (UTC time +2 h) over the area of 
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Barrax (Spain). Barrax is a sparsely vegetated site located in Spain between 38.75°N and 

39.75°N and 1.73°W and 3.00°W. It is predominately flat with a mean elevation of 700 

m above sea level (a.s.l.), although there is some rugged terrain in the northeast reaching 

1185 m a.s.l. For the given location and acquisition date, The image was illuminated with a 

mean SZA of 30.8°. Since the focus here is retrieval over vegetated surfaces, a subset over 

the Barrax agroecosystem was chosen (600 × 600 pixels). This region is characterized by 

large agricultural fields with center pivot irrigation systems. Main crops are wheat, alfalfa, 

rapeseed, sunflower and garlic. In August, the non-irrigated areas are bare soil or senescent 

vegetation. In addition, an AOT at 550 nm of approximately 0.15 was determined from 

the AERONET stations of Aras de los Olmos (at 130 km north-east) and Murcia (100 km 

south-east) at the time of observation.

As described in the section above (Section 3.5), we applied the GPR retrieval algorithms to 

S2 L1C and L2A data for the GSA-identified dominant thus retrievable variables. To do so, 

the S2 L1C TOA reflectance data first had to be converted to TOA radiance data, which is 

done in the SNAP toolbox. In addition, only the 10 m and 20 m bands were used at 20 m 

resolution without the broadband B8 as it is overlapping with B8a (see Figure 1).

Further, in an attempt to make the models better fit to process real S2 data, Gaussian noise 

was added to the retrieval TOC and TOA training datasets. The addition of noise to the 

RTM generated spectral bands has multiple purposes: it simulates errors of radiometric 

calibration, atmospheric noise and residuals from the atmospheric correction, but to some 

extent also bridge between the simplified representation of the RTM and the actual 

radiometric behaviour of the canopy [89]. Generally, noise prevents the retrieval model from 

over-fitting on the training database. However, an accurate quantification of all error terms 

in the sensing process remains difficult [89]. While for the TOC training dataset noise levels 

can be obtained from S2 surface reflectance studies as in [50], for TOA that is not the case. 

After some testing of additive and multiplicative noise levels, eventually, a 2% multiplicative 

Gaussian noise was used. The GPR model development and image processing were done in 

the MLRA toolbox. Finally, to account for the non-vegetated surfaces, 20 distinct bare soil 

spectral signatures were added to the L1C and L2A training datasets.

4 Results

Following the method described in Section 3, we show the results corresponding to: (1) 

the conducted GSA of the leaf-canopy-atmosphere RTM (Section 4.1), (2) the performance 

assessment on the retrieval of biophysical variables from synthetic S2 surface reflectance 

and TOA radiance (Section 4.2), and (3) the proof-of-concept results for the retrieval of 

biophysical variables from real S2 L1C and L2A data.

4.1 Global Sensitivity Analysis Results

A GPR emulator was first developed as approximation of the coupled PROSPECT4-SAIL-

MODTRAN model given 12 input variables and 1000 samples taken from the analysis 
dataset. GPR was used because of superior performances as opposed to other MLRAs [31–

33]. This was also the case here: GPR clearly outperformed competing algorithms such as 

neural networks and kernel ridge regression (results not shown). Training the GPR emulator 
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took less than 3 min. It reached an overall accuracy with RMS errors (RMSE) of 1.06 and 

normalized RMS errors (NRMSE) of 2.39%. When plotting the NRMSE along the spectral 

range, it appears that accuracies are consistent with the exception of the water absorption 

regions around 1400 and 1900 nm where accuracies are somewhat poorer (errors around 

6%) (results not shown). This accuracy is on the same order as earlier published emulators 

[33,90], and can be considered as adequate for subsequent GSA calculations.

Running the GPR emulator into the GSA with 1000 samples per variable took less than 40 

s. In comparison, if the same analysis would have been done by the original coupled RTMs, 

run-time would take on the order of several weeks. The total sensitivity GSA results shown 

in Figure 5 are expressed as relative contributions to output variance for each one of the 

input variables in the TOA spectrum (STi, expressed in %). The figure leads to the following 

observations:

• Generally, the GSA results indicate that atmospheric variables had a weaker 

influence than vegetation variables. Regarding the atmospheric variables, clearly, 

the H2O content had a strong impact in discrete parts of the spectrum, in 

agreement with the location of H2O absorption bands. Relatively small impact 

bands can be found at 820 nm, while stronger impact (over 70% STi) in the 

region of 900–950 nm and 1100–1150 and the largest impact bands (over 

80%STi) between 1350–1450 and between 1800–1900 nm where the H2O 

absorption saturates.

• The aerosol optical properties (extinction, absorption and phase function) were 

the most dominant atmospheric variables. Particularly, the AOT550 and phase 

function (through the Henyey-Greenstein parameter, G) had a relatively strong 

impact (30%STi) in the region of 400 to 500 nm, where the scattering is higher. 

This impact diminishes to a few percents in the range of 500 to 1300 nm and 

with barely any influence after 1300 nm. According to the GSA results, the O3 

seemed not to have a relevant influence over the variance of the TOA radiance 

even at the bottom of the Chappuis absorption band (400–650 nm) where the O3 

absorption is higher.

• Among vegetation variables, at the leaf level, chlorophyll content (Cab) was the 

main driver of TOA radiance in the visible range (450–750 nm) with over 60% 

STi, while dry matter content (Cm) was the main driver in the NIR range (750 

to 1200 nm), 70%. Water content (Cw) had a negligible impact on the visible 

and the NIR but had a considerable impact in the SWIR (1400 to 2500 nm), 

with STi up to 20%. These three variables explain more than the 60% of the 

variance along the visible and NIR spectral range (400–1400 nm). The leaf layer 

variable (N) had a rather weak influence, but it covered the whole spectral range. 

Among canopy variables, LAI is the most dominant variable. It has influence 

along the whole spectral range, but it becomes especially dominant from 1400 

nm onwards. LAI especially dominates the 2000–2400 nm SWIR region with a 

STi of around 80%.

From a practical point of view, the GSA results suggest that it should be perfectly possible to 

retrieve Cab (dominant in the visible), Cw (dominant in the NIR-SWIR) and LAI (dominant 
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in the NIR-SWIR) from TOA radiance data. When interpreting these results in view of S2 

band settings (see Figure 1), we observed that atmosphere has little influence in the SWIR, 

B11 at 1610 nm and B12 at 2190 nm. These bands seem to be particularly appropriate 

for LAI retrieval. At the same time, given the dominance of Cab in the visible, and the 

relatively strong contribution of Cw further in the NIR-SWIR; these regions are well covered 

by S2 bands. It is therefore worthwhile to explore the retrievability of these three biophysical 

variables directly from S2 TOA radiance data.

4.2 Biophysical Variables Retrieval

GPR models were developed for the variables Cab, Cw and LAI using the retrieval training 

data with noise added for nine bands at 20 m (without B8). These models were then 

validated against simulated reference data for: (1) the TOC scale, (2) TOA reference data, 

and (3) TOC dataset with noises according to Sen2Cor atmospheric correction errors. At 

the TOC scale, it was no surprise that retrievals against the TOC reference dataset led to 

excellent validation results with for Cab and Cw an R2 of 0.94–0.97 (Table 5). LAI was 

poorer validated, with a R2 of 0.68, due to saturation for higher LAI values, i.e., above 

3. This suggests that the LAI model is suboptimally trained. What is more of importance 

in the context of this study is that results only degrade slightly when upscaling to TOA 

data, thus with the inclusion of atmospheric variables in the LUT. Excellent results are 

again obtained for Cab and Cw (R2 of 0.91–0.95), while poorer yet consistent results 

are achieved for LAI (R2 of 0.62). When moving back to the TOC scale, but now with 

adding noise levels according to Sen2Cor atmospheric correction errors, the results tend to 

degrade further. Given that this exercise is conducted with simulated data, the latter scenario 

is considered closer to reality. Comparison of these results may suggest that retrieving 

biophysical variables directly from TOA radiance data can be more beneficial, however, that 

is yet to be evaluated when applying to real data.

An easy way to gain insight into the functioning of the GPR models at TOC and TOA 

scale is by means of inspecting the sigmas (σb), i.e., the band relevance, of the trained 

GPR models. They have been plotted in Figure 6 for the three biophysical variables. 

The lower the σb is, the more important the band. Accordingly, the σb reveal the most 

important wavelengths with spectral information used for the development of the models. 

The following observations can be made:

• Overall, no systematic differences between TOC and TOA σb can be observed. 

About the same patterns appeared with low σb for the majority of bands. This 

suggests that models can be developed from both TOC and TOA data sources 

with about the same degree of retrieval success.

• A closer inspection towards Cab and LAI reveals that TOA data led to 

considerably higher σb for some bands (i.e., 490, 783 and 865 nm for Cab; 

490 and 740 nm for Cw). This suggests that for these variables the TOA data has 

more difficulty to develop the retrieval algorithms. Conversely, the σb similarity 

between the TOC and TOA bands for the LAI models suggests that the role of 

atmosphere is of marginal importance for LAI retrieval.
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• For all variables, the band in the blue is evaluated as poorly contributing, both 

for TOC and TOA. For TOA this can be explained by the influence of aerosols, 

while at TOC scale this may be rather due to the remaining impact of the 

aerosols in the atmospheric correction. It is also of interest that the SWIR bands 

play an important role for TOC and TOA retrieval algorithms.

Finally, as a demonstration case, we applied the TOC- and TOA-trained GPR models to a 

cloud-free subset of a S2 L1C and L2A imagery over the Barrax region to evaluate the actual 

performance of the models to convert S2 data into maps. The obtained maps are shown in 

Figure 7. At a glance, the similarity between both L1C and L2A maps can be observed; 

for both data levels, reasonable retrievals are obtained. This is encouraging, as it suggests 

that retrievals can be directly obtained from L1C data given a cloud-free sky, but a closer 

inspection is necessary to evaluate the quality of both products. Clearly differences appear. 

For Cab, the L2A product provides a sharper contrast between vegetated and non-vegetated 

surfaces with probably some overestimations. The Cw map looks most similar, while LAI 

is generally underestimated with probably overestimation for L1C over vegetated surfaces. 

These differences are also reflected in the scatter plots shown underneath. They indicate 

that, despite some mismatch for non-vegetated surfaces, Cab and Cw perform alike, for 

Cab a systematic overestimation for the L2A product as compared to the L1C product. On 

the other hand, the LAI L1C and L2A products are more poorly correlated; particularly 

the L1C yielded considerably higher estimates over the green irrigated areas. Yet, it must 

be remarked that both LAI models require improvements. This and other limitations are 

discussed further on.

5 Discussion

Here we discuss the various processing steps that are required to achieve a generic TOA 

retrieval processing chain, i.e., (1) emulation, (2) GSA, and (3) retrieval. These steps have 

been streamlined and automated thanks to the development of some dedicated toolboxes. We 

will therefore close the discussion with prospects for further improvements.

5.1 Emulation of Leaf-Canopy-Atmosphere RTMs

The first objective was to identify the driving variables of vegetated surfaces that shaped 

the TOA radiance reaching an optical sensor in space. To do so, RTMs of leaf, canopy 

and atmosphere were coupled. The coupling process of the leaf-canopy-atmosphere 

RTMs-PROSPECT-4, SAIL and MODTRAN-allowed to simulate LUT of TOA radiance 

data assuming a Lambertian surface. However, because MODTRAN is computationally 

expensive and takes some seconds to run a single simulation, it implies that running 

thousands simulations can take days to weeks. To overcome this computational burden, 

with emulation a bypass was found to speed up the production of simulated TOA radiance 

data [32]. Given the assumption that the emulator approximates the TOA radiance outputs 

of the original leaf-canopy-atmosphere RTMs with sufficient accuracy, it can then be safely 

used for RTM-based applications such as GSA studies. By having the emulator producing 

the simulations quasi instantly, the GSA was processed in the order of seconds. Validation 

against reference data showed that the emulator can reproduce TOA radiance with sufficient 

accuracy (NRMSE errors of 2.4%) for conducting reliable GSA studies [91]. The emulation 
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accuracy is consistent with earlier analysis for the emulation of PROSPECT-4, PROSAIL 

and MODTRAN [90]. Based on this and earlier studies, the following observations can be 

drawn. The accuracy of the emulator depends on the type of the algorithm used, number 

of variables, number of training samples and complexity of the model [32,90,91]. From 

multiple machine learning methods tested such as neural networks and other kernel-based 

methods, in this (results not shown) and earlier studies, Gaussian processes regression 

(GPR) yielded the highest accuracies in approximating the outputs of the original RTM. 

Thereby, accuracies can be improved with adding more training data although that is at the 

expense of processing speed. Typically, training with about 1000 simulations is considered 

as a good trade-off between accuracy and optimizing processing speed, e.g., for GSA 

calculations [33,90].

5.2 GSA

Although earlier sensitivity studies have studied aspects of coupled leaf-canopy-atmosphere 

models along the spectral range e.g., [16,18,92], these are “local” studies sensitivity studies, 

i.e., keeping the majority of variables fixed. With “global” sensitivity analysis (GSA), 

all variables are ranged at the same time and interactions are calculated. Variance-based 

GSA proved to be a powerful tool to determine and study the main drivers that govern 

TOA radiance as observed by a sensor. This becomes extremely relevant in identifying 

retrievable biophysical variables [2,93]. In principle, a high sensitivity value indicates 

that the input variable is responsible for a significant portion of the output variance and 

should thus be possible to retrieve e.g., as recorded by an Earth observing satellite. To 

the best of our knowledge, this is the first time that a GSA was used to decompose the 

full leaf-canopy-atmosphere radiative transfer of TOA radiance into their driving variables 

along the 400–2500 nm spectral range at 1 nm resolution. The most remarkable GSA 

result is the relatively small contribution of the atmospheric variables driving the TOA 

radiance variance. This indicates that the contribution of vegetation variables is much more 

important than the contribution of atmospheric variables. In view of mapping applications, it 

implies that the retrieval of biophysical parameters from TOA radiance should be certainly 

possible. Moreover, small inaccuracies in the atmospheric data do not affect the sensitivity 

of the vegetation variable in the TOA radiance [11]. Regarding the atmosphere drivers, 

H2O concentration is the most dominant variable, but it only appears in the water vapor 

absorption bands; its presence outside these bands appeared negligible as opposed to other 

drivers. In general, optical sensors do not consider these water vapor absorption bands 

for biophysical variable retrieval. O3 concentration has no effect in the GSA, neither at 

the Chappuis band (400–650 nm), where O3 has it absorption bands. Outside the water 

vapour absorption bands, aerosol optical thickness (AOT) is the atmospheric variable with 

the strongest impact on TOA radiance. Its importance is especially relevant at the lower 

part of the spectrum (400–500 nm) as combination of high aerosol absorption/scattering and 

low surface reflectance. This suggests that the retrieval of biophysical parameters would be 

more feasible in clear atmospheric days and further away in the spectrum. These results 

can be related to the ones found by [11,93], who observed that the sensitivities of surface 

reflectance are comparable to the TOA radiance sensitivities, which implies that atmospheric 

variables have a rather weak influence in driving variability of the TOA radiance data. 

Obviously, this is only valid given a cloud-free sky.
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Both leaf and canopy variables drive the TOA radiance along the 400–2500 nm spectral 

range outside the water vapour absorption bands. The leaf variable that has the greatest 

contribution to the TOA radiance spectrum explains more than 50% of the variance in the 

whole spectrum. Chlorophyll content (Cab) has a dominant impact in the visible region but 

disappears throughout the red edge as the wavelengths become too large for chlorophyll 

absorption [94]. Dry matter content (Cm) is dominant in the NIR (750–1200 nm) and water 

content (Cw) in the SWIR (1400–500 nm). The results are very similar to the ones found by 

[93]. Regarding the canopy variables, the most important one was the leaf area index (LAI), 

especially in the visible range and SWIR, and less important in the NIR, also found in other 

studies [32,93]. A limitation in the conducted study is that soil brightness coefficient was not 

included in the GSA. As demonstrated in earlier studies [91], this variable also exerts some 

influence of a few percent, about equally spaced along the spectral range. The variables that 

shows hardly any sensitivity, e.g., N, can be safely kept to default values in order to simplify 

and speed up the GSA [91]. From a retrieval point of view, the GSA result determines which 

of TOA radiance input variables are the most relevant, and thus suitable for retrieval directly 

from TOA radiance. Given the dominance of Cab, Cd and Cw at the leaf scale and LAI at 

the canopy scale, in principle, these variables are retrievable from at-sensor TOA radiance 

data, as has been shown before [11].

5.3 TOC and TOA Retrieval Models

When it comes to the developed TOC and TOA retrieval models, the relevant bands as given 

by the GPR band sigmas (σb) (Figure 6) are supposed to be in agreement with the obtained 

GSA results (Figure 5). The bands with lowest σb are expected to fall within regions of high 

sensitivity towards the targeted variable.

• Regarding the Cab models, the most relevant bands (low σb) for both TOC and 

TOA fall within the visible region which is justified by the high sensitivity of 

Cab. The STi rapidly declines when entering the red edge, which is also observed 

by the higher sigmas. Of interest hereby are the relatively high importance of the 

two SWIR bands, even though the GSA results show Cab has no influence there. 

This has to be interpreted by indirect co-varying relationships between LAI and 

Cab. After all, Cab absorption only occurs when leaves are available (which in 

turn reduce the role of soil background). The amount of leaves is controlled by 

LAI [53,87].

• Regarding the Cw models, the most relevant bands for both TOC and TOA are 

found in the 1610 and 2190 nm SWIR bands. These are regions where Cw plays 

an important role. Further, the σb band ranking suggest that also the visible bands 

are of importance, which can be again attributed to co-varying relationships with 

other leaf properties such as Cab and the amount of leaves, i.e., LAI [53,87].

• Regarding the LAI models, relevant bands are found all throughout the spectra 

with lowest σb in the red (665 nm), and especially in the two SWIR bands. This 

is again in agreement with the GSA results where LAI is dominant in the SWIR.

We subsequently applied the TOC and TOA models to S2 L1C and L2A subsets for 

mapping applications over the Barrax agricultural site. The obtained maps merely serve 
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as proof of concept to demonstrate that retrievals can be directly obtained from L1C 

TOA radiance data, i.e., without the need for an atmospheric correction. While results 

are encouraging, it must be pointed out that the models are still premature to make them 

produce accurate estimates for each pixel. Validation against ground truth data and fine 

tuning of the models is still required, e.g., accounting for the diverse variability of non-

vegetated surfaces present in a S2 image, yet that is considered as beyond the scope of this 

work. Here we merely present the streamlined processing framework for the development of 

vegetation properties retrieval models applicable to at-sensor TOA data made available to the 

community. In this respect, in view of applying the presented tools for mapping applications, 

there are some opportunities for improvements that deserve to be mentioned:

• Obtained maps from L1C and L2A data are surprisingly consistent given that 

no optimization steps were applied. Yet, it must be remarked, the images were 

acquired on a clear-sky summer day for a flat surface, making that the role 

of atmosphere is predominantly homogeneous and predictable. Obviously the 

retrieval from TOA data will be more challenging in a more rugged terrain and in 

atmospheric heterogeneous conditions, e.g., haze, clouds and shadowing effects. 

With the offered toolboxes (ALG, TOC2TOA, GSA, retrieval) these effects can 

be studied, and specific retrieval strategies developed.

• The TOC and TOA models were trained by simulated data using RTMs that deal 

with spectral variability of homogeneous vegetated surfaces. Although 20 soil 

spectral signatures were added to the training, that is definitely not enough to 

cover the natural variability of non-vegetated surfaces at S2 spatial resolution 

for complete images. For instance, the models are not trained for water bodies 

and man-made surfaces. Ideally, spectral variability of all kinds of non-vegetated 

surfaces should be added to the training dataset. Similarly, most likely the model 

performs poorly over heterogeneous vegetated surfaces such as forests.

• Another way how to further optimize the training LUT for operational mapping 

is by using sample distributions that reflect reality more, e.g., normal or log-

normal distributions for key variables. A more refined LUT may be necessary 

to mitigate the drawback of the LAI saturation. It is expected that by refining 

the LUT, e.g., excluding unrealistic situations the LAI model will be greatly 

improved, e.g., that saturation only occurs at higher LAI (>6). This is also 

the strategy in the official S2 vegetation algorithms as found within the SNAP 

toolbox [95].

• There are some aspects of the obtained maps from L1C and L2A data that 

require clarification. For instance, the fact that L2A-retrieved Cab is more 

pronounced than the one from L1C might indicate that the atmosphere has still 

some impact on the Cab. Indeed, aerosol properties have some influence in the 

AOT (although according to the GSA results this influence is residual <5%). The 

same holds for LAI, since LAI is also sensitive to the visible part (not only in the 

SWIR). Regarding Cw, their similarities in the obtained L1C vs L2A maps can 

be explained from the GSA, since Cw is mostly impacting in the SWIR range, 

where outside the water absorption bands the atmosphere has little influence. In 
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this respect, it can be understood that Cw achieves the same performance from 

L1C or from L2A data.

• As a final remark, the TOA reflectance to TOA radiance conversion as well the 

Sen2Cor TOA (L1C) to BOA (L2A) conversion is done with routines based on 

the libRadtran RTM. These differences may lead to discrepancies as compared 

to the here used MODTRAN routines. For instance, the S2 processing uses the 

Thuillier [96] solar irradiance, while MODTRAN uses the Kurucz [97]. The 

role of using different atmospheric RTMs in atmospheric correction and in TOA 

radiance biophysical variables retrieval is yet to be investigated.

Given these topics for improvements, it would be premature to apply the obtained models 

into an operational context, but that is also not the aim of this study, as here the tools 

have been created to facilitate the developments of hybrid (i.e., RTM-based) TOA retrieval 

algorithms. It is foreseen that in follow-up studies the processing chain will be applied for 

dedicated TOA-based mapping applications.

5.4 ARTMO Toolboxes

The retrieval of vegetation properties from at-sensor TOA radiance data was made possible 

thanks to the development of two new toolboxes integrated within the ARTMO framework: 

ALG and TOC2TOA. These toolboxes allow to streamline RTM simulations and do the 

coupling between canopy simulations and atmosphere RTMs. ALG generates look-up tables 

based on a suite of atmospheric RTMs (6SV, MODTRAN and Libratran) [19]. ARTMO 

already allowed to run vegetation RTMs in a forward and inverse direction at the leaf and 

canopy level. With the TOC2TOA toolbox the coupling with atmospheric LUTs has been 

made possible. Yet, here only the first version of the TOC2TOA toolbox has been presented, 

and new utilities and improvements are considered; e.g., (1) to take adjacency effects into 

account [17], (2) to couple surface with atmosphere for non-Lambertian surfaces [14], and 

(3) to add the possibility to couple atmospheric models with water RTMs.

Furthermore, ARTMO incorporates several RTM post-processing toolboxes such as the 

retrieval toolboxes and the Emulation and GSA toolboxes. By combining both toolboxes, 

multiple TOA sensitivity studies or retrieval strategies can be developed and analyzed, e.g., 

for all kinds of atmospheric scenarios. All the presented toolboxes are freely downloadable 

at http://artmotoolbox.com. They can facilitate the interested user to repeat the presented 

study or to conduct related at-sensor TOA radiance studies that involve the processing of 

RTM simulations, sensitivity, emulation or retrieval.

6 Conclusions

This study aimed to quantify the relative importance of key input variables in leaf, canopy 

and atmosphere radiative transfer models (RTM) by using Gaussian process regression as 

emulator. Such models can be used to derive top-of-atmosphere radiance data that can 

be further used to estimate biophysical variables. To do so, the leaf RTM PROSPECT-4 

was coupled with the canopy RTM SAIL and the atmosphere RTM MODTRAN. Because 

MODTRAN is computationally expensive, a bypass was sought by making use of 

emulation. Emulators are statistical constructs that enable to approximate the outputs of 
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the original RTMs, but this is at low computation cost so that large LUTs can be produced 

almost instantly. The emulator subsequently allowed to calculate a global sensitivity analysis 

(GSA) and to identify the driving variables. The GSA total sensitivity index quantified 

that vegetation variables had a more dominant impact than atmosphere variables on TOA 

radiance for atmospheric windows. This finding provides support to develop retrieval 

strategies of biophysical variables such as leaf chlorophyll content (Cab), leaf water content 

(Cw) and leaf area index (LAI) directly from TOA radiance data, e.g., given Sentinel-2 band 

settings.

Accordingly, the coupled leaf-canopy-atmosphere RTMs served to train hybrid retrieval 

models by using the machine learning algorithm Gaussian processes regression for the 

processing of Sentinel-2 TOA radiance data (L1C) and bottom-of-atmosphere reflectance 

data (L2A) given a cloud-free sky. Retrievals of Cab, Cw and LAI were consistent, 

although optimization is still required for operational processing. The maps demonstrate 

the possibility to retrieve biophysical variables directly from at-sensor TOA radiance data 

by means of developing machine learning models, thus without the need of an atmospheric 

correction step, and this in a streamlined and largely automated environment.

Summarizing, to the benefit of the community, the here developed toolboxes enable the 

coupling of leaf-canopy-atmosphere RTMs for any sensor band settings, so they can be 

used for the generation of TOA LUTs for multiple Earth observation applications, e.g., the 

retrieval of surface and atmospheric variables.
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Figure 1. MSI-S2A spectral response function for the 13 spectral bands used by the Ground 
Segment from 15 January 2018 [42].
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Figure 2. Flowchart of the pursued work-flow, divided into the Global Sensitivity Analysis (GSA) 
study (right) and retrieval performance assessment (left).
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Figure 3. Schematic representation of synthetic datasets based on PROSAIL and MODTRAN 
simulations.
The red-dashed and green lines identify the datasets used respectively for Global Sensitivity 

Analysis and Biophysical parameters retrieval.
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Figure 4. Typical error in surface reflectance after Sen2Cor atmospheric correction algorithm.
See Table VIII in [50] for detailed information.
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Figure 5. Total sensitivity (STi) results of TOA radiance using a GPR emulator of a 12 variables 
PROSAIL-MODTRAN model.
See Tables 2 and 3 for the full names of the variables.
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Figure 6. GPR band sigma (σb) for trained models for S2 L2A TOC and L1C TOA data.
The lower the σb, the more important the band in the model development.
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Figure 7. Maps of biophysical variables obtained from L2A (Top) and L1C (Middle) data.
Scatter plots of both maps with gridded color density (Bottom).
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Table 1
MSI/Sentinel-2 sensor characteristics as per [41].

Technical Characteristics Value

Imaging principle Pushbroom-grating

Spectral range [nm] 400–2200 nm

Geolocation accuracy <12.5 m

SNR @Lref 50–175

Radiometric accuracy 3% abs, 1% rel

A/D conversion 12 bits

Coverage Land and coastal areas
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Table 2
Range of vegetation input variables for the PROSAIL LUTs according to Latin 
Hypercube sampling.

SAIL fixed variables: hot spot: 0.01; solar zenith angle: 30°; observer zenith angle: 0°.

Model Variables Units Minimum Maximum

Leaf variables (PROSPECT-4)

N Leaf structure index unitless 1.3 2.5

Cw Leaf water content [g/cm2] or [cm] 0.002 0.05

Cab Leaf chlorophyll content [μg/cm2] 1 70

Cm Leaf dry matter content [g/cm2] 0.002 0.05

Canopy variables (SAIL)

LAI Leaf area index [m2/m2] 0.1 7

LAD Leaf angle distribution [°] 0 90
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Table 3
Range of MODTRAN input variables for the analysis dataset according to Latin 
Hypercube sampling.

MODTRAN fixed geometric variables: solar zenith angle: 30°; viewing zenith angle: 0°. Remaining 

MODTRAN parameters were set to their default values.

Model Variables Units Minimum Maximum

O3C O3 column concentration [amt-cm] 0.25 0.35

CWV Columnar Water Vapour g·cm–2 0.4 4.5

AOT550 Aerosol Optical Thickness at 550 nm unitless 0.05 0.5

G Asymmetry parameter unitless 0.6 1

α Ångström exponent unitless 0.05 2

SSA Single Scattering Albedo unitless 0.85 1
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Table 4
Range of MODTRAN input variables for the reference_toa subset according to Latin 
Hypercube sampling.

MODTRAN fixed geometric variables: solar zenith angle: 30°; viewing zenith angle: 0°. Remaining 

MODTRAN parameters were set to their default values.

Model Variables Units Minimum Maximum

O3C O3 column concentration [amt-cm] 0.25 0.35

CWV Columnar Water Vapour g · cm–2 0.4 4.5

AOT550 Aerosol Optical Thickness at 550 nm unitless 0.05 0.5

Aerosol type 9 types (see text above)
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Table 5

Retrieval performance results against 5’000 LUT reference datasets for biophysical variables retrieval from 

surface reflectance (TOC), TOA radiance (TOA) and surface reflectance with noise levels after atmospheric 

correction (ATM). For the TOC and TOA retrieval datasets 2% Gaussian noise was added, while for the 

TOC-ATM retrieval datasets noises are added according to [50].

Retrieval TOC TOA TOC-ATM

R 2 :

- Cab 0.972 0.948 0.907

- Cw 0.942 0.908 0.813

- LAI 0.684 0.623 0.520

RMSE:

- Cab 3.312 4.586 6.077

- Cw 0.003 0.004 0.006

- LAI 1.120 1.223 1.381

Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.


	Abstract
	Introduction
	The Sentinel-2 Mission
	Materials and Methods
	Developed Toolboxes for Automated Processing
	Description of Simulated Datasets
	Global Sensitivity Analysis (GSA)
	Emulation
	Hybrid Retrieval Schemes
	Retrieval of Biophysical Variables from Sentinel-2 L1C and L2A Images

	Results
	Global Sensitivity Analysis Results
	Biophysical Variables Retrieval

	Discussion
	Emulation of Leaf-Canopy-Atmosphere RTMs
	GSA
	TOC and TOA Retrieval Models
	ARTMO Toolboxes

	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

