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Selection in breeding programs can be done by using phenotypes (phenotypic selection),

pedigree relationship (breeding value selection) or molecular markers (marker assisted

selection or genomic selection). All these methods are based on truncation selection,

focusing on the best performance of parents before mating. In this article we proposed

an approach to breeding, named genomic mating, which focuses on mating instead

of truncation selection. Genomic mating uses information in a similar fashion to genomic

selection but includes information on complementation of parents to be mated. Following

the efficiency frontier surface, genomic mating uses concepts of estimated breeding

values, risk (usefulness) and coefficient of ancestry to optimize mating between parents.

We used a genetic algorithm to find solutions to this optimization problem and the results

from our simulations comparing genomic selection, phenotypic selection and the mating

approach indicate that current approach for breeding complex traits is more favorable

than phenotypic and genomic selection. Genomic mating is similar to genomic selection

in terms of estimating marker effects, but in genomic mating the genetic information and

the estimated marker effects are used to decide which genotypes should be crossed to

obtain the next breeding population.

Keywords: breeding, complex traits, genomic selection, phenotypic selection, genome-wide markers

1. INTRODUCTION

Selection is an evolutionary phenomenon that affects the phenotypic distribution of a population.
From a breeding point of view, truncation selection means breeding from the best individuals
(Falconer et al., 1996). Breeders have been selecting on the basis of phenotypic values since
domestication of plants and animals; this is called phenotypic selection (PS). More recently,
breeders have substantially used the pedigree-based prediction of breeding values (BV’s) for the
genetic improvement of complex traits (Henderson, 1984; Gianola and Fernando, 1986; Crossa
et al., 2006; Piepho et al., 2008); which is refereed to as breeding value selection.

Since the invention of the polymerase chain reaction by Mullis in 1983, the enhancements
in high throughput genotyping (Lander et al., 2001; Margulies et al., 2005; Metzker, 2010) have
transformed breeding pipelines through marker-assisted selection (MAS) (Lande and Thompson,
1990), marker assisted introgression (Charcosset and Hospital, 1997), marker assisted recurrent
selection (Bernardo and Charcosset, 2006), and genomic selection (GS) (Meuwissen et al., 2001;
Isidro et al., 2016). The latter use genome-wide markers to estimate the effects of all genes or
chromosome positions simultaneously (Meuwissen et al., 2001) to calculate genomic estimated BV’s
(GEBVs), which are used for selection of individuals. This process involves the use of phenotypic
and genotypic data to build prediction models that would be used to estimate GEBV’s from genome

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
https://doi.org/10.3389/fgene.2016.00210
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2016.00210&domain=pdf&date_stamp=2016-11-29
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:da346@cornell.edu
https://doi.org/10.3389/fgene.2016.00210
http://journal.frontiersin.org/article/10.3389/fgene.2016.00210/abstract
http://loop.frontiersin.org/people/376578/overview
http://loop.frontiersin.org/people/377092/overview


Akdemir and Sánchez Genomic Mating

wide marker data. It has been proposed that GS increases the
genetic gains by reducing the generation intervals and also by
increasing the accuracy of estimated BV’s. However, many factors
are involved in the relative per unit of time efficiency of GS and its
short and long time performance (Daetwyler et al., 2007; Jannink
et al., 2010).

Some optimized parental contribution calculation schemes
have been proposed to balance the gain from selection and
average inbreeding and co-ancestry (Wray and Goddard, 1994;
Brisbane and Gibson, 1995; Meuwissen, 1997; Meuwissen et al.,
2001; Sonesson et al., 2012; Clark et al., 2013). Approaches that
seek for an optimal subset of mates among potential male and
female candidates have been formulated from an animal breeding
perspective in (Allaire, 1980; Jansen andWilton, 1985; Kinghorn,
1998) and in subsequent articles (Kinghorn and Shepherd,
1999; Fernández et al., 2001; Berg et al., 2006; Kinghorn, 2011;
Pryce et al., 2012; Sun et al., 2013). Researchers (Kinghorn and
Shepherd, 1994; Hayes et al., 1998; Shepherd and Kinghorn,
1998) have used mate selection to maximize predicted merit of
progeny in a simulated animal breeding scenarios. The mate
selection in these articles involved two components (i) a mate
selection index (MSI), (ii) a mate selection algorithm to be used
to find the mating set which maximizes the MSI. These strategies
were termed look ahead mate selection (LAMS) schemes, as
they involved mate selection among predicted progeny (Hayes
et al., 1998), and they encompass consideration of within-cross
variance (Shepherd and Kinghorn, 1998). Although there are
great parallels between these works and the current one, the
MSI in these papers used a pedigree based co-ancestry matrix
and additive genetic value estimates based on this matrix and
observed phenotypes. The novelty in this article was the use of
genomic data in terms of markers to obtain estimates of BV’s,
estimates of Mendelian effects, and co-ancestries and incorporate
them into a index; the marker effects that are used in these
calculations were estimated with a marker based regression
model of the estimated genetic values of the individuals as in GS.

Breeders have used marker assisted breeding to stack genes
using complementary crosses when the trait of interest is
regulated by only a few loci. For complex traits, on the other
hand, there is a scarcity of methods available to breeders. Both
of PS and GS focus on improvement by truncation selection,
mainly ignoring the role of mating and complementation as an
evolutionary force (Figures 1, 2). For this reason both PS and GS
are, in a sense, inefficient for improving complex traits in the long
term.Methods that seek only a balance between genetic gains and
inbreeding are incomplete because they ignore the variances in
the genetic values; measures of gain do not completely capture
the full potential of a mate pair.

This paper proposes genomic mating (GM) as an alternative
to GS. Genomic selection focuses on best performance of
parents before mating, while GM includes information on
complementation of parents to be mated and thereby is more
sustainable in the longer term (Figure 1). Our method is
inspired by the GS and the classical mate selection based
on pedigrees (Kinghorn, 1998; Kinghorn and Shepherd, 1999;
Kinghorn, 2011). In the remaining of this article, we assume
that a high density marker data is available for the current

breeding population from which the co-ancestry coefficients can
be calculated, and that there is no pedigree information. In view
of the reducing genotyping costs, mostly incomplete or non-
existing pedigrees in plant populations, this assumption is a
reasonable one.

2. METHODS

It is widely accepted that short term gains from selection
increases with increased selection intensity. However, increasing
selection reduces the genetic variability, which increases the rates
of inbreeding and co-ancestry and may reduce gains in the long
term run. Most of the selection in plant breeding are designed
to maximize genetic gain but some approaches try to balance the
gain from selection and variability. We will give a brief review of
these approaches since they relate to the mating theory.

2.1. Current Methodology
Many authors (Goddard, 2009; Jannink, 2010; Sonesson et al.,
2012; Clark et al., 2013; Sun et al., 2013) have expressed the
importance of reducing inbreeding in PS and GS for long-
term success. They argued that GS is likely to lead to a more
rapid decline in the selection response unless new alleles are
continuously added to the calculation of GEBVs, stressing the
importance of balancing short and long term gains by controlling
inbreeding in selection.

Let A be a matrix of pedigree based numerator relationships
or the additive genetic relationships between the individuals in
the genetic pool (this matrix can be obtained from a pedigree
of genome-wide markers for the individuals) and let c be
the vector of proportional contributions of individuals to the
next generation under a random mating scheme. The average
inbreeding and co-ancestry for a given choice of c can be defined
as r = 1

2 c
′Ac. If b is the vector of GEBV’s, i.e., the vector of BLUP

estimated BV’s of the candidates for selection. The expected gain
is defined as g = c′b. Without loss of generality, we will assume
that the breeder’s long term goal is to increase the value of g.

In Wray and Goddard (1994), Brisbane and Gibson (1995),
and Meuwissen (1997) an approach that seeks minimizing the
average inbreeding and co-ancestry while restricting the genetic
gain is proposed. The optimization problem can be stated as

minimize
c

r = c′ A2 c

subject to c′b = ρ

c′1 = 1

c ≥ 0,

(1)

where ρ is the desired level of gain.
This problem is easily recognized as a Quadratic optimization

problem (QP). There are many efficient algorithms that solves
QP’s so there is in practice little difficulty in calculating the
optimal solution for any particular data set. Recently, several
allocation strategies were tested using QP’s in (Goddard, 2009;
Schierenbeck et al., 2011; Pryce et al., 2012). It is easy to
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FIGURE 1 | Diagram for the different breeding approaches. Phenotypic selection (PS) and genomic selection (GS) are truncation selection methods, and

genomic mating (GM) is the mating approach. Arrows indicate the different stages in a breeding cycle. In PS, starting with a set of parents as breeding material,

selection is performed based on phenotypes.

FIGURE 2 | Additive genetic variance and gains by selection after random mating compared to gains by selection after random mating optimal

mating. The parents and progeny for the random mating populations have the same allele frequencies and therefore the same additive genetic variance. If parents are

mated with optimal mating the result is an increase in the additive genetic variance. This is pronounced as larger gains and maintains additive genetic variability for as

the breeding progresses.

extend these formulations to introduce additional constraints as
positiveness, minimum-maximum for proportions, minimum-
maximum for number of lines (cardinality constraints).

Some authors recommended mate selection approaches that
also seek a balance between gain and inbreeding from an animal
breeding perspective (Allaire, 1980; Jansen and Wilton, 1985;
Kinghorn, 1998). Simple methods such as sequential selection

(Pryce et al., 2012) or linear programming (LP) (Jansen and
Wilton, 1985; Weigel and Lin, 2000) have been used to find
mate designs to avoid more-related pairs and find less-related
pairs. Some approaches example the use of genome-wide marker
information (Fernández et al., 2001; Pryce et al., 2012; Sun
et al., 2013), but these approaches mainly deal with the restricted
case of mating after evaluation of breeding population and
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selection. Kinghorn, in a series of articles (Kinghorn, 1998;
Kinghorn and Shepherd, 1999; Kinghorn, 2011), describes an
algorithmic approach that separates the optimization and the
objective function for the mate selection approach and therefore
can be used for a wide array of optimization criteria (MSI) with
hard and soft constraints. The MSI recommended by Kinghorn
(1998) involves calculation of the merit of potential calves as half
of the sire’s breeding value plus half the dam’s breeding value
minus a weighted penalty on the estimated progeny inbreeding
coefficient. The method in Pryce et al. (2012) uses a similar
MSI based on phased haplotypes. These sources also introduce
a number of constraints related to constraints on reproduction
or resources. The optimization criteria in these papers have the
same flavor as the quadratic optimization problem in Equation
(1) and is expected to give similar solutions with the parental
contributions approach for large breeding populations. We agree
with these previously recommended approaches in the sense
that mate selection is an optimization problem. However, we
use markers, genomic prediction models and estimates of these
models from phenotypic experiments (as the training data
becomes available) and include a genomically estimated additive
variance term for each mate pair; therefore the optimization
problem in the recent paper is a related but different one; for
instance, our criterion is neither linear nor quadratic.

By solving the QP in Equation (1) for varying values of ρ,
or using the similar criteria in the mate selection approaches,
we can trace out an efficient frontier curve, a smooth non-
decreasing curve that gives the best possible trade-off of genetic
variance against gain. This curve represents the set of optimal
allocations and it is called the efficiency frontier (EF) curve in
finance (Markowitz, 1952) and breeding literature.

The implementation of PS in our simulations did not use
any genotypic information or pedigrees. Basically, it referred to
selecting the individuals with best observed phenotypes to be
parents in the next generation. Results elsewhere (Forni et al.,
2011) indicate that there would be no significant differences
between PS andGS if a pedigree frommany generations is used in
pedigree based estimation of BV’s . In addition, there are methods
to combine pedigrees with marker based relationship matrices
(Legarra et al., 2009; Meuwissen et al., 2011) which would result
in a yet another selection approach.

Based on the selection intensity the best individuals were
determined in each step based on their phenotypic values and
a random mating was employed among these individuals to
determine the mates. On the other hand, GS used GEBVs
obtained from models that are updated by phenotypic values
every two cycle using only the most current genotypic and
phenotypic data. The selection of parents in each cycle was done
according to the GEBVs and the selection intensity. The mate
assignment was at random as in PS. Efficient GS referred to
the selection of parents in each cycle using the optimal parental
contribution proportions obtained by solving the optimization
problem in Equation (1). The specific solution in each cycle
was selected among the Pareto optimal solutions along the EF
curve by setting ρ to the 90th percentile of the GEBVs in
the current population (we have decreased ρ if a gradually if
the solution was dominated by a single parent). The mates

for next cycle were assigned using the optimal contribution
proportions.

2.2. Optimal Genomic Mating
There are several alternative measures of inbreeding based on
mating plans (Leutenegger et al., 2003; Wang, 2011). In this
article, we have used a measure derived under the infinitesimal
genetic effects assumption proposed byQuaas (1988) and Legarra
et al. (2009). A measure of gain, i.e., the total expected breeding
value of the progeny, can also be calculated from the results of
the same authors (Quaas, 1988; Legarra et al., 2009). However, in
our belief, the expected value by itself is not a good measure of
possible gains since it carries no information about the variability
of BV’s among full-sibs. Therefore, we have derived a measure
called the risk of a mating plan (this is related to the concept
of “usefulness”) by increasing the expected of the progenies by
a small amount (the intensity is controlled by the parameter
λ1) proportional to their expected variance (standard deviation)
calculated under the infinitesimal effects assumption.

Combining the measures of inbreeding and risk into one leads
to the formulation of the mating problem:

minimize
P32

r(λ1, λ2, P32) = −Risk(λ1, P32) + λ2 ∗ Inbreeding(P32)

(2)
where λ2 ≥ 0 is the parameter whose magnitude controls the
amount of co-ancestry in the progeny, and the minimization is
over the space of the mating matrices P32 construction of which
is described in detail below. λ1 controls allele heterozygosity
weighted by the marker effects and λ2 controls allele diversity.
When λ1 = 0 the risk measure is the same as total expected gain.

Now, we give the details of how the measures Risk(λ1) and
Inbreeding are defined in this paper. First, we make the following
assumptions: (a) Diploid behavior at meiosis, (b) Uncorrelated
genes distribution, (c) Absence of allelic interactions, (d) No
multiple alleles at those loci controlling the character, (e) No of
genotype-environment interaction.

Let b = (b′1, b
′
2, b

′
3)

′ denote the vector of genetic effects
corresponding to the parents and progeny, where b1 and b2 are
the genetic effects of the N parents and b3 are the genetic effects
of theNc progeny. Let the pedigree based numerator relationship
matrix for the individuals in b be A and this matrix is partitioned
as

A =





A11 A12 A13

A21 A22 A23

A31 A32 A33





corresponding to the partitions of b. Suppose, we also have the
markers for the parents in the second partition, and u2 = Ma
whereM is the matrix of minor allele dosages, coded as 0, 1, and
2. LetMc be theN×mmarker allele frequency centered incidence
matrix and a be the vector of marker effects. Variance-covariance
of b2 can be written as

Var(b2) = σ 2
b

McM
′
c

k
= σ 2

bG
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with G, the genomic relationship matrix, defined as
McM

′
c

k
where

k =
∑m

j= 1 2pj(1 − pj) is twice the sum of heterozygosities of the

markers (VanRaden, 2008).
Following Quaas (1988) and Legarra et al. (2009), let P be a

matrix containing the transitions from ancestors to offspring.We
will refer P as the mating or parentage matrix. Then, we can write
b = Pb + ψ where ψ is the vector of Mendellian samplings and
founder effects with a diagonal variance D. In particular, using
only the rows of P corresponding to the b3 the relationship is
written as

b3 =
[

P31 P32 P33
]





b1
b2
b3



 + ψ3

which can also be stated as a regression equation of the form
b3 = (I − P33)

−1(P31b1 + P32b2 + ψ3) (Quaas, 1988). The
variance-covariance matrix of b3 is given by

Var(b3) = (I − P33)
−1(P31A11P

′
31 + P32GP

′
32 + P32A21P

′
31

+ P31A12P
′
32 + D3)(I − P33)

′−1. (3)

The variances caused by Mendelian sampling in D3 are related to
inbreeding in the parents via

var(ψ) ∝ (1/2− (F1 + F2)/4)

where F1 and F2 are the inbreeding coefficients of the two
parents which can be extracted from the diagonals of G. The
variance-covariance formula reduces to

Var(b3) = P32GP
′
32 + D3

if all the founders are genotyped (no P31), and a relatively simple
mating strategy is assumed where founders are the only parents
and no back-crossing is allowed (P33 = 0). This is the assumption
made for the remainder of this paper and in this case P32 is
a Nc × N matrix (Nc children from N parents) with each row
having two 1/2 values at positions corresponding to two distinct
parents or only a value of 1 at the position corresponding to
the selfed parent. All the other elements of this matrix are zero.
Nevertheless, one can easily imagine situations where some of the
founders are not genotyped or when some of the progeny also
have progeny, then the formula in Equation (3) will be relevant.
If some founders are not genotyped but a pedigree is available
relating them to the rest of the founders then the variance-
covariance for the founders, Var(b1, b2), can be calculated using
the relationship matrix in Legarra et al. (2009). Furthermore,
construction of the mating matrices for more complex mating
plans is described in Quaas (1988).

Var(b3) gives us the expected variance-covariance of the
progeny given thematingmatrix P32 and the realized relationship
matrix G of the parents. This can be used as to measure the
expected genetic diversity of a mating plan: we can use a measure
in line with the inbreeding term in Equation (1) by

Inbreeding(P32) = 1′Nc
Var(b3)1Nc = 1′Nc

(P32GP
′
32+D3)1Nc . (4)

We also need a measure for genetic gain. A simple measure of
gain for a given mating plan expressed in P32 can be constructed
from the expected value of b3:

E(b3) = P32Ma

and an overall measure can be written as

Gain(P32) = 1′Nc
E(b3).

Finally, we want to complement the measure “gain” with a
measure of within cross-variance for the genetic levels of children
of the parent pairs. Suppose the organism under study is diploid.
We can re-code the markers matrix M coded as −1, 0, and 1
into a N × m matrix M∗ using the information in the marker
effects vector a such that markers are coded as the number of
beneficial alleles as 0, 1, or 2. This is achieved by first obtaining
marker effects estimates and then using the sign of the estimates
to determine what is a beneficial allele. We can also obtain a
related marker effects vector a∗ by replacing the original marker
effects by the effects of the beneficial alleles (a∗ = |a|) so that
we have Ma = (M∗ − 1N×m)a

∗. For a given parent pair, we
can calculate the vector expected number of beneficial alleles
of the children of these parents using a transition vector p as
µ = E(m) = p′M∗. In addition, for each locus we can calculate
the variance for the number of beneficial alleles from the number
of alleles the parents have and put them in a vector which we will
denote by σ p = (σp1, σp2, . . . , σpm). Calculation of elements of
σ p from the coding in M∗ can be as in Table 1. We define risk
measure for this parent pair as

Risk(λ1) = (p′M∗ + λ1 ∗









√
σp1√
σp2
...√
σpm









− 1m)
′a∗

where λ1 ≥ 0 is the risk parameter and m is the number of
markers. The risk of a mating plan (which is expressed in P32) is

TABLE 1 | Expected values and variances.

Parent 1 Parent 2 Expected number Variance of number

of beneficial alleles of beneficial alleles

1 1 2 0

1 0 1.5 0.25

0 1 1.5 0.25

1 −1 1 0

−1 1 1 0

0 0 1 0.5

0 −1 0.5 0.25

−1 0 0.5 0.25

−1 −1 0 0

Calculation of mean number and variance of the beneficial alleles of progeny at each locus

from the beneficial allele code (−1, 0, 1) of the parents at the same locus.
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the sum of all the risk scores for all mate pairs in that plan which
we will denote by Risk(P32, λ1).

If the risk parameter λ1 is set to zero then we have

Risk(P32, λ1 = 0) = 1′Nc
E(b3) = 1′Nc

P32Ma.

The magnitude of λ1 is related to the desire of the breeder to
take advantage of within cross variances and encourages mating
parents that are heterozygotes at quantitative trait loci (QTL).

In this sense, the efficient mating problem can be stated as an
optimization problem as follows:

minimize
P32

Inbreeding(P32) = 1′Nc
(P32GP

′
32 + D3)1Nc

subject to Risk(P32, λ1) = ρ.
(5)

In the above optimization problem, we are trying to minimize the
inbreeding in the progeny while the risk is set at the level ρ ≥ 0.
In the remainder of this paper, we will use the the equivalent
formulation of the mating problem in Equation (2).

The risk measure for each mate pair is calculated as the sum
of the estimated breeding value for the progeny plus λ1 times
the expected standard deviation of the BV’s of the progenies of
this pair. When λ1 is set to zero, only the expected BV’s for the
progenies are taken into account. If λ1 > 0, then the variation
expected in the progenies enters the picture and the pairs that
have higher expected variance among their progenies will have
higher risk values among mate pairs that have same expected
breeding value. Keeping everything else constant the effect of an
increased variance for the progenies of a mate pair is increasing
the chances that one of the progenies of this mate pair will have a
high breeding value compared to themean value of the progenies.
For instance, if we assume a normal distribution for the breeding
value of the progenies of a mate pair, about 16% of the progeny
will have breeding value higher than one standard deviation
above the mean, i.e., mate pairs that have high variance have the
potential to produce progenies with high BV’s. However, since the
distribution is symmetric around the mean, the same mate pair
will have equal chances of producing progenies with low BV’s.
Therefore, we named our measure as “risk”. We note also that
other measures of expected variance have been proposed (Zhong
and Jannink, 2007) and these can be used instead of the one
we have proposed above. For example, it is possible to calculate
this variance by simulating progenies and their expected BV’s for
parent pairs, and one can easily include information about the LD
in these simulations. Our choice of the measures of inbreeding
and risk are driven by computational efficiency in order to keep
the optimization over the mates feasible. In the next section, we
give some examples of GM; we provide a procedural form of the
GM algorithm used in these examples by Procedure 1.

The differences between the expressions in Equation (1)
(which can be written in the current context by replacing A
with G as c′Gc) and the current criterion in Equation (2) should
be quite noticeable: c is the vector of parental contribution
proportions and P32 is the mating matrix that leads to progeny
and this reflects the shift of focus to selection of mates rather
than providing only proportions but leaving the mating problem

unanswered. Given P32 proportion of parental contributions can
be calculated, however there is no way of obtaining an optimal
P23 from the knowledge of c. This focus shift also leads to
the introduction of the diagonal matrix D3 for the variances
in progeny caused by Mendelian sampling of the alleles in the
parents in the latter. In addition, a representation of the criterion
in Kinghorn (Kinghorn, 1998) using the current notations is
given byMSI = 1′Nc

P23GP
′
231Nc +λ1′Nc

P23b. Writing ĉ′ = 1′Nc
P23

and MSI = ĉ′Gĉ + λĉ′b, we can see that this and Equation (1)
have the same form and since we can expect these criterion to
give similar results if Nc is large and no other constraints were
imposed.

Procedure 1 Genomic Mating

1: for Each breeding cycle i ∈ (0, 1, 2, 3, . . .) do
2: Let Pi denote the ith population of parents, Mi, Gi be

corresponding markers matrix, the matrix of coancestories.
3: if i is even then

4: obtain the vector of estimated genetic values ĝi for Pi
based on a phenotypic experiment,

5: based on a regression of the estimated genetic values
ĝ on the additive coding of the markers estimate the vector

of additive effects for the markers; b̂i.
6: else

7: b̂i = b̂i−1.

8: Given Nc, λ1 and λ2 find the optimizer of Equation (5)
using the GA described in Procedure 2, denote this by Pi32.

9: Make the crosses indicated by to Pi32 using parents Pi to
obtain Pi+1.

As compared to the quadratic optimization problem in
Equation 1 which admits easy solutions, the optimization
problem in Equation (2) is a combinatorial problem whose
order increases with the number of individuals in the breeding
population and the number of progeny. The list of all possible
mates including self-mates is a list of length Np(Np + 1)/2. The
problem can be stated as selecting Nc elements with replication
from this list. The number of un-orderedNc-tuples of anNp(Np+
1)/2-set is (Np(Np + 1)/2)Nc/Nc!. We have devised a genetic
algorithm to find good solutions for this optimization problem in
reasonable computing time. The optimization procedure that is
used in optimal mating problem is a modified genetic algorithm
(GA) supplemented with tabu search (See Procedure 2).

Genetic algorithms (Holland, 1973; Davis, 1991; Goldberg,
2006) are particularly suitable for optimization of combinatorial
problems. The idea is to use a population of candidate solutions
that is evolved toward better solutions. At each iteration of
the algorithm, a fitness function is used to evaluate and select
the elite individuals and subsequently the next population is
formed from the elites by genetically motivated operations
like crossover and mutation. Tabu search is a search where
most recently visited solutions are avoided by keeping a
track of the previously tried solutions. This avoids many
function evaluations and decreases the number of iterations till
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Procedure 2 Genetic Algorithm

1: lnitialization - Create an initial population of solutions of
desired size, S0. The population of solutions denoted by the
capital letter S are sets, elements of which are particular
mating designs (a list of Nc mate pairs).

2: t = 0.
3: Memory for tabu is empty,MemTabut = NULL;
4: repeat

5: t = t + 1,
6: Evaluation -For each solution in St−1 calculate the

criterion value in Equation (5),
7: Selection - Identify the best solutions by the ordering of

criterion values, these are denoted by Et ,
8: Elitism- Let the best solution in Et be st . Put st in St ,
9: Tabu- Update memory for tabu by letting MemTabut =

St−1.
10: repeat

11: Crossover-Randomly pick two solutions in Et .
Recombination of these two solutions are obtained by
summing the frequency distributions of these solutions
and sampling with new solutions using probabilities
corresponding to this combined frequency distribution.

12: Mutation - With a given probability decrease the
frequency of a mate that has positive frequency by some
integer value less than the current frequency of that mate and
increase the frequency of some other mate pair is by the same
amount.

13: if the resulting solution is inMemTabut then
14: eliminate solution
15: else

16: Insert solution into St .

17: until St has Npop solutions.
18: until Convergence is reached
19: Evaluation -For each solution in St calculate the criterion

value in Equation (5),
20: Selection - Identify the best solutions by the ordering of

criterion values, these are denoted by Et ,
21: Elitism- Let the best solution in Et be st . Return st .

convergence, it is especially useful for generating new solutions
toward convergence.

Each point in the solution space of the optimal mating
problem can described by a frequency distribution over the the
set of all possible mate pairs. In our case, the recombination
of two solutions in this GA are obtained by summing the
frequency distributions of these two solutions and sampling
with probabilities corresponding to this combined frequency
distribution. With a given probability of mutation, a mutation
event follows the crossover event and is achieved by decreasing
the frequency of a mate that has positive frequency by some
integer value less than the current frequency of that mate
and increasing the frequency of some other mate pair by
the same amount. In our algorithm, the average magnitude
of change that is allowed during mutation is called mutation
intensity.

It should be noted that the solutions obtained by any GA
or any other evolutionary algorithm may be sub-optimal and
different solutions can be obtained given a different starting
population. Another layer of safety is obtained if the algorithm
is started from multiple initial populations and an island model
of evolution is used where separate populations are evolved
independently for several steps and then the best solutions from
these algorithms becomes the initial solutions to evolutionary
algorithm, this strategy is also partially employed.

We included the minimum number of parents as a parameter:
“minparents” in long term simulations using GM. This allowed
us to run the simulations many times without interference.
Nevertheless, a better approach in practical situations would be
to plot the whole frontier surface and select a solution that has a
good risk to diversity ratio.

3. RESULTS

For a set of 50 simulated lines, we have identified optimal mates
for the progeny at changing values of λ1 and λ2. The frontier
surface is drawn using the optimal mating algorithm (Figure 3).
The coordinates of the points on the curve are the values of
estimated risk, inbreeding and the difference between risk and
gain. for the optimal sets of mates. The blue surface represents the
optimal values of the objective function in Equation (2). Points
below this surface correspond to sub-optimal regions and points
above this surface are unattainable. The points along the surfaces
are the optimal points balancing gain, risk and inbreeding. The
green surface is the expected average genetic value of the progeny
and the orange surface is the value of the cross-variance term,
these two surfaces add up to the blue surface. By changing λ1
and λ2 we move on this surface. Since the points on this surface
correspond the optimal solutions, the breeder should operate on
the surface. The optimal solutions to the mating problem at a few
selected values of λ1 and λ2 is in Figure 3.

Efficient frontier surface is the basis for GM. A feasible mating
plan is one that meets specified constraints. The EF surface allows
breeders to understand how a mating plan’s expected risk vary
with the amount of inbreeding. Most breeders will be willing to
assume a greater inbreeding for a greater risk. However, breeders
differ in the amount of inbreeding they are willing to assume for
a given risk. Breeders who are inbreeding averse require lower
inbreeding for a given amount of risk than breeders who are risk
seekers. It can be seen from Figure 3 that the risk is increasing
in a smooth fashion as λ1 increases. On the other hand, the
corresponding gain decreases at an uneven rate. Therefore, the
difference between the risk and gain increases at an uneven rate.
A reasonable λ1 and λ2 combination can be found by locating the
solution around the point where the gain slows down increasing
as we increase λ2 and speeds up decreasing as we increase λ1.

An optimal mating scheme can be used to increase within
cross variance and to decrease average inbreeding and co-
ancestry while attaining a certain genetic gain. This will lead to
an increased additive variance in the progeny for a given set of
parents when compared to a random mating approach. Since
the gains in a breeding population can be mostly attributed to
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FIGURE 3 | Frontier surface for a simulated population. A marker data was created for 50 genotypes by randomly generating 1000 markers for each genotype.

By introducing independent and identically normally distributed marker effects at 500 of randomly selected the loci we have defined a trait. Three surfaces are given in

the figure. The blue surface represents the optimal values of the objective function in Equation (2). Points below this surface correspond to sub-optimal regions and

points above this surface are unattainable. The points along the surfaces are the optimal points balancing gain, risk and inbreeding. The green surface is the expected

average genetic value of the progeny and the orange surface is the value of the cross-variance term, these two surfaces add up to the blue surface. Although, it is not

possible to determine a best value for the parameters λ1 and λ2, a reasonable region for this particular experiment is marked by a red ellipse, this is the region in

which the rate of increase in inbreeding per unit gain increases sharply and obtaining additional cross variance after this point requires a large decline in gain.

additive variance, this will result in higher expected gains with an
optimal mating scheme as can be seen in Figures 2, 5A,B.

Figures 4A,B show the results from simulations for the study
of the long term behavior of PS, GS, and GM. Starting from
2 founders we have formed a population of 150 (Figure 5A)
and 300 (Figure 5B) genotypes with 1000 single nuceotide
polymorphism (SNPs) at 3 chromosomes each and carried this
population through 200 generations of random mating and
100 generations of phenotypic selection based on a complex
trait (300 QTL at random locations on each chromosome)
with 0.5 heritability generated based on the infinitesimal model.
Starting from this initial population, we have simulated 10
rounds of PS, and 20 rounds of GS and GM (assuming
one cycle of PS and two cycles of GS and GM per year).
For GS and GM, the marker effects were estimated from
data once per year. The results of 10 replication of this
simulation with selection intensity 10% (PS1, GS1) and 20%
(PS2, GS2) for PS and GS; Efficient GS (GSeff); and GM
with λ2 = 0, 5, 10 (GM1, GM2, GM3). In this simulation
study, there is a clear advantage of using GM as a breeding

method since the gains attained by this method are higher as
compared to the other methods, especially in the long run (see
Figures 5A,B).

4. DISCUSSION

In this article, we have proposed a mating methodology for
breeding based on optimal genomic determination of mating
plans. In GS, the breeding value is predicted using a statistical
model based on phenotypes and whole genome marker data
(obtained within an experiment that is repeated in every few
cycles, blue arrows in Figure 1 selection is based on GEBVs. Our
approach can be contrasted with the selection approach where
only proportional contributions of parents to the progeny that
balances gain and inbreeding are sought. A major novelty in GM
approach as compared to the other methods (Kinghorn, 1998;
Shepherd and Kinghorn, 1998) is the utilization of a genomically
estimated within cross-variances (usefulness) in the objective
function along with genetic gains and inbreeding. Although
similar to GS in its information requirements, our approach
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FIGURE 4 | Optimal solutions for a simulated population. Optimal solutions to the mating problem at a few selected values of λ1 and λ2 are in (A–D). The list of

mates and the number of crosses for each mate is given along the figures. The first two coordinates are used to display the genetic relationships of the lines using the

first two principal components, the third coordinate displays the BV’s of the parents. Each parent is represented by a vertical bar. The lines between the vertical bars

represent the matings and the size of the points on the bars are proportional to the number of crosses between that parent and any other. Since the mating algorithm

is discrete and the number of genotypes contributing to the next generation increase starting from one as we increase the λ2, we can identify a point to operate on

this surface by slowly increasing the λ2 until a desired minimum number of genotypes are included in the solution.

offers more complete utilization of the genotypic and phenotypic
information.

We did not explore any alternatives to our mating
optimization algorithm, but similar evolutionary algorithms like
differential evolution, particle swarm, tabu search, and simulated
annealing or hill climbing methods like the exchange method
can be useful to solve this problem. As stated by other authors
Kinghorn (2011) and Pryce et al. (2012), the mate selection
problem has two independent components: a mate selection
index (MSI), i.e., the optimization function and a mate selection
algorithm that can be used to optimize the MSI. In our article,
we have provided new approaches to both of these components:
First, the MSI we have used differed from previous authors and
included terms for gain, variance and inbreeding, and secondly,
we have adopted a genetic algorithm that can find good solutions.
The objective function that we have proposed only uses additive
marker effects, but would be desirable to extend the objective
function to include effects and variances related to dominance,
and interactions.

As opposed to the continuous parentage contribution
proportions solutions in the GSmethod, thematingmethod gives
discrete solutions. That is to say, the solutions of the mating
algorithm are the list of parent mates of the progeny (Figure 4).
Additionally, while using GS method, there is no real guideline
for choosing an optimal solution among the possibilities on the
frontier curve. Conversely, since the mating algorithm is discrete
and the number of genotypes contributing to the next generation
increase starting from one as we increase the λ2, we can identify
a point to operate on this surface by slowly increasing the λ2
until a desired minimum number of genotypes are included in
the solution. This is the method we have used in our long term
simulations.

We claim that GM uses genomic information more
completely than the recently proposed GS and reinforces
mating complementary individuals. In an scenario where a set
of individuals with their markers and related marker effects are
given in a breeding population, the GM approach gives a list of
mates that should be crossed for obtaining the next breeding
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FIGURE 5 | The long term behavior of PS, GS, Efficient GS and GM. Starting from 2 founders we have formed a population of 150 (A) and 300 (B) genotypes

with 1000 SNPs at 3 chromosomes each and carried this population through 200 generations of random mating and 100 generations of phenotypic selection based

on a complex trait (300 QTL at random locations on each chromosome) with 0.5 heritability generated based on the infinitesimal model. Starting from this initial

population, we have simulated 10 rounds of PS, and 20 rounds of GS and GM (assuming one cycle of PS and two cycles of GS and GM per year). For GS and GM,

the marker effects were estimated from data once per year. The results of 10 replication of this simulation with selection intensity 10% (PS1, GS1) and 20% (PS2,

GS2) for PS and GS; Efficient GS (GSeff); and GM with λ1 = 0, 5, 10 (GM1, GM2, GM3). Each thin line represents the genetic gains over cycles by different methods

over a replication of the experiment. The thick lines show the mean improvement for each of the methods over 10 replications. In these simulation studies there is a

clear advantage of using GM as a breeding method.

population and, unlike selection methods, the proposed GM
approach does not exclude the possibility of contribution of
all individuals as parents. A cross-variance term is included in
the objective function along with genetic gains and inbreeding
to account for potential benefits from including mates with
higher estimated genetic variance. To this end, we provide a
method that uses marker effect estimates to estimate within
cross-variances assuming independence among loci and additive
effects. Using simulations, we have compared the long range
performance of GM to PS, GS and an optimal parentage
contribution approach. Results from these simulations point
to the viability and efficiency of genomic mating for breeding
complex traits.

In practice, mating designs will be different in plant and
animal breeding and will reflect the constraints that are related
to many factors such the reproduction properties of the species,
other biological and logistical constraints. In plant breeding,
the most important factors affecting the choices of mating
designs are: (i) the type of pollination (self vs. cross-pollinated),
(ii) control of pollination (natural or artificial, genetic control
of pollination or the presence of male-sterility system), and
(iii) the size of the population required. In animal breeding,
mating designs will reflect (i) the number of males and more
importantly the number of females in the breeding population,
(ii) constraints related the female reproduction. Breeders also
use different hierarchical structures, such as half-, full-sib family,
and individuals within family, in the breeding population. The
simulations herein are limited in terms of reflecting real life
plant and animal breeding scenarios, more research, simulations
and real experiments should be conducted to fully evaluate this
methodology.

The design of training populations for GS models attained
a lot of attention recently (Rincent et al., 2012; Akdemir et al.,

2015; Isidro et al., 2015). This approach is promising because
any gain in accuracy or any reduction in experimental costs that
can be obtained by carefully designing the training populations
will proportionately be realized as gains. It is perceivable to
have two distinct populations, one for the training models and
the other the breeding. However, this is rare. The simulations
in this manuscript have used a single population for breeding
and training GS models akin to many real life realizations
of GS. The point is that the models used for GS and GM
might have different accuracies since they use the most recent
experiments’ data obtained from different populations and this
might affect the accuracies of the models. Therefore, there might
be a component of GM that allows better designs in terms of
model accuracies that is reflected as the higher gains in GM
as compared to GS. We expect such an effect since proposed
method controls inbreeding and co-ancestry in the breeding
population. We have not fully explored segregation of the gains
into such components. Nevertheless, in addition to being useful
for generating a breeding population to be used as a basis
improvement and development of potential varieties, GM can
be useful to provide information on the genetic control of the
character under investigation; provide estimates of genetic gain
and provide information for evaluating the parents used in the
breeding program (Nduwumuremyi et al., 2013).

There is an intrinsic limit to the amount of selfing or crosses
of closely related lines in GM. Although it is hard to imagine
that this is what is done in practice, theoretically, leaving the
decision to a “roulette wheel” assignment of parents as mates
as in the selection approach might lead to too much inbreeding.
For example, if the parental contribution proportion of a parent
is 0.50, then we expect to have 25% obtained by selfing this
parent. Genomic mating allows a better control of inbreeding by
completely controlling who mates with whom.
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It should be pointed out that GS and PS are often used
in conjunction with methods that do seek to optimize the
combination of parents to be mated. The most prominent
case of hybrid breeding, e.g., in maize, where parents from
two opposing heterotic pools are selected to produce the best
hybrids, using estimates of general and specific combining ability.
There is ample literature on this, e.g., Schrag et al. (2009) and
Technow et al. (2012). The main concern of the current article
is improvement of complex traits by recurrent crosses for out-
crossing plants as in mass selection to increase the frequency of
desirable genes in the base population. Selection of mates from
heterotic groups or pools of inbred lines are related problems,
however they are outside the scope of this article.

In our examples, we assumed an infinitesimal model for
the simulated trait with many small effects throughout the
genome (300 QTL on each of the 3 chromosomes and the
effects were generated from a zero centered normal distribution);
we have only made use of the ridge regression (rr-BLUP)
model to estimate the marker effects. But the reader should
note that the results will be always affected by the features of
simulated data. Trait architecture and prediction model will be
important components that will affect the relative performance
of GM. It is also known that in genomic prediction many
sparse methods like Bayesian lasso, etc,... would benefit for
traits controlled by few QTL, while rr-BLUP (or equivalently
G-BLUP) favors traits without major gene. Moreover, in
many breeding programs, the interest is on improvement of
multiple traits at the same time. Marker effects estimated
based on the trait of interest as well as other correlated
traits can be integrated into an objective function. We did
not explore any of these scenarios since they would not fit
into the scope of this current article. These are important
issues that we hope to address with subsequent research and
publications.

Finally, It should be clear from our discussions we understand
that breeding is a complex human endeavor influences by an

enourmous number of factors and we do not intend to propose
GM as a replacement of PS, GS or any other accepted and widely
used breeding principles. Genomic mating should be seen as an
additional informative tool for breeders providing suggestions
about design and management of their breeding programs, yet
from another perspective.
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