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Machine learning (ML) has recently enriched the 
possibilities for predicting clinical events using prog-
nostic and/or predictive variables. Clinical pharma-
cology also benefits from more accurate but often 
increasingly complex ML models. For such models to 
be accepted in practice, it is essential to make them 
reproducible for the analyzing scientist and inter-
pretable for the clinician. When reproducing an ML 
work, we exemplarily show how methods of inter-
pretable ML can support to meet these prerequisites.

Machine	 learning	 (ML)	 has	 become	 increasingly	 im-
portant	in	recent	years,	both	in	medicine	and	in	the	field	
of	clinical	pharmacology.1	This	applies	to	early	phases	of	
drug	development	and	complex	analyses	of	typical	clinical	
trial	data.	ML	methods	promise	a	higher	predictive	value,	
which	may	result	from	the	flexible	analysis	of	nonlinear	
correlations	 or	 higher-	order	 interactions.2	 At	 the	 same	
time,	there	is	a	desire	on	the	clinical	side	that	the	path	to	
good	prediction	should	be	comprehensible	and	transpar-
ent.3	 If	 one	 now	 intends	 to	 reproduce	 such	 a	 predictive	
model,	it	is	immensely	important	to	clarify	the	model’s	ML	
process	and	how	predictions	are	obtained.	This	is	exactly	
what	we	have	approached	when	reproducing	the	results	
of	the	previously	published	original	work	of	Chan	et	al.2	
In	particular,	we	addressed	three	fundamental	questions:	

(1)	what	is	needed	for	reproducible	ML	analyses,	(2)	how	
can	these	methods	be	described	in	a	transparent	and	in-
terpretable	way,	and	(3)	what	else	can	be	predicted	from	
the	original	work?

In	 the	 original	 manuscript,	 Chan	 et	 al.	 introduced	 a	
modeling	platform	based	on	the	OAK	study,	which	allows	
to	 compare	 different	 ML	 methods	 for	 predicting	 overall	
survival.2	 In	brief,	 the	OAK	study	 included	patients	with	
previously	 treated	 non-	small	 cell	 lung	 cancer	 into	 a	 ran-
domized,	open-	label,	phase	III	trial	in	which	they	were	ran-
domly	assigned	to	receive	either	atezolizumab	or	docetaxel	
once	every	3 weeks.4	The	source	data	are	accessible	with	
an	adequate	request	 to	a	clinical	 trials	portal	 (www.vivli.
org)	 and	 the	 original	 work	 also	 provides	 rudimentary	
analysis	code.	Random	seeds	are	set	in	the	analysis	code,	
which	is	essential	for	ML	methods	(e.g.,	random	forests5)	
in	 terms	 of	 reproducibility.	 With	 available	 software	 (ver-
sions)	 and	 helpful	 answers	 upon	 contacting	 the	 authors,	
many	prerequisites	for	reproducible	research	seemed	to	be	
given.	 However,	 the	 practical	 situation	 was	 complicated	
by	 the	 fact	 that	 all	 baseline	 variables	 of	 the	 clinical	 trial	
were	available,	but	not	the	variables	generated	during	the		
follow-	up,	which	would	have	had	to	be	modeled	first	in	a	
separate	preprocessing	step	severely	limiting	reproducibility	
(e.g.,	individual	drug	exposures	retrospectively	derived	by		
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population	pharmacokinetic	modeling	or	parameters	from	
tumor	growth	models	relying	on	measurements	after	 the	
study	baseline).	However,	it	is	this	particular	situation	that	
further	 emphasizes	 the	 importance	 of	 interpretable	 ma-
chine	learning	(IML):	now	we	are	all	the	more	interested	
in	which	variables	(with	different	availability)	contribute	to	
what	extent	and	in	which	way	to	the	prediction.

If	we	want	to	describe	ML	procedures	in	an	interpreta-
ble	fashion,	this	is	generally	possible	from	two	perspectives.	
First,	 the	procedure	can	be	monitored	during	 the	model-
ing	process	itself.	For	example,	this	could	mean	to	describe	
how	hyperparameters	are	determined.	In	their	supplemen-
tary	materials,	Chan	et	al.	show	coefficient	solution	paths	
together	 with	 the	 optimal	 estimated	 coefficients	 selected	
by	the	tuning	parameter	λ	in	least	absolute	shrinkage	and	
selection	 operator	 (Lasso)	 regression	 or	 by	 the	 optimal	
boosting	 step	 number	 in	 boosting	 regression.2	 It	 is	 also	
conceivable	 from	 this	 perspective	 to	 visualize,	 for	 exam-
ple,	how	the	number	of	split	candidates	of	a	random	for-
est	is	determined.	However,	these	metrics	can	only	hardly	
be	interpreted	in	a	clinical	sense;	nevertheless,	they	can	of	
course	be	reassuring	if	they	match	with	the	original	analy-
sis	when	reproducing	this	analysis.	The	second	perspective,	
on	the	other	hand,	looks	at	the	influence	of	predictor	vari-
ables	on	the	prediction	itself.	Whereas	new	methods	for	in-
terpretability	are	published	at	breakneck	speed,3	we	restrict	
ourselves	here	first	for	illustration	to	two	catchy	and	intu-
itive	methods,	 the	variable	 importance	(synonym:	feature	
importance)	 and	 the	 partial	 dependence	 plots	 (synonym:	
marginal	means,	predictive	margins,	and	marginal	effects).

Variable	 importance	 (VI)	 indicates	 the	 relevance	 of	 a	
single	predictor	variable	for	the	overall	accuracy	of	the	pre-
diction	(or	vice	versa	the	prediction	error).	This	importance	
metric	can	be	determined	independently	of	the	type	of	the	
(ML)	model	and	thus	also	allows	for	comparing	different	
methods	directly.	The	 idea	behind	 this	 is	 that	 the	predic-
tion	error	increases	after	permutation	of	the	values	in	the	
predictor	variable.5	It	is	straightforward	that	the	prediction	
error	will	increase	more	for	an	important	variable	than	for	
less	 important	 ones	 if	 the	 relationship	 between	 predictor	
and	outcome	is	broken	down.	Figure 1a	shows	which	vari-
ables	in	which	order	contribute	how	much	to	the	prediction	
for	 the	 Lasso	 regression,	 boosting,	 and	 random	 survival	
forests	 examined	 as	 examples	 adapted	 from	 the	 original	
manuscript.2	In	principle,	a	cutoff	 in	variable	importance	
could	also	be	used	 for	preselecting	predictors	 for	another	
subsequent	model,	however,	this	is	not	done	here.	For	our	
comparison	to	the	original	manuscript,	it	is	also	interesting	
to	see	which	variables	in	our	set	of	predictor	variables	are	
now	predictively	important.	For	example,	the	top	six	pre-
dictor	variables	of	the	random	survival	forests	are	clinically	
well-	known	and	expected	variables	to	influence	prognosis	
in	lung	cancer.

This	VI	plot	illustrates	the	extent,	but	not	the	direc-
tion,	 in	 which	 the	 predictor	 influences	 the	 prediction.	
This	marginal	effect	of	a	predictor	on	the	outcome	can	
be	determined	via	 the	partial	dependence	plot6	 from	a	
previously	 fitted	 model.	 Although	 linear	 models	 yield	
linear	relationships,	it	can	be	more	complex	for	nonlin-
ear	or	nonparametric	methods,	such	as	random	forests.	
For	 the	 top	 eight	 variables	 from	 the	 random	 survival	
forest,	Figure 1b	shows	how	the	outcome	prediction	 is	
influenced	by	alternating	the	influence	variable	on	the	
x-	axis.	In	addition	to	the	functional	relationship	(curve	
shape),	 this	 also	 shows	 the	 strength	 in	 predicting	 the	
outcome.	 Consistent	 trajectories	 are	 desirable	 when	
pursuing	reproducible	 results,	which	must	also	appear	
plausible	 from	 a	 clinical	 point	 of	 view.	 In	 a	 clinically	
plausible	manner,	higher	risks	resulted	from	histologic	
classification	 as	 squamous,	 higher	 burden	 of	 disease	
(ECOG	status	 [Eastern	Cooperative	Oncology	Group]),	
more	metastatic	sites,	higher	 levels	of	 lactate	dehydro-
genase	(LDH),	or	lower	albumin	levels.	All	these	consid-
erations	of	predictive	values	can	describe	ML	methods	
more	 transparently	 and	 be	 additionally	 considered	
during	 reproduction—	but	 they	 are	 not	 basic	 require-
ments	(such	as,	e.g.,	the	use	of	identical	software	algo-
rithms	and	random	seeds).

“The	ultimate	aim	of	artificial	 intelligence	(and	ML)	is	
prediction,”2	this	thought	has	become	particularly	clear	to	
us	once	again	during	reproduction.	The	relevant	question	is	
what	one	wants	to	achieve	with	a	predictive	model.	It	can	
be	regarded	as	a	good	proof-	of-	principle,	 if	 tumor-	growth-	
metrics	 (derived	 under	 treatment	 during	 the	 follow-	up)	
are	also	predictive	for	overall	survival	(in	the	follow-	up),	in		
addition	to	effect	measures	for	those	treatments.	This	is	well-	
demonstrated	by	the	original	paper.	In	practice,	however,	the	
clinician	would	like	to	know	(based	on	patient	information	
at	baseline	only)	what	the	prognosis	of	a	patient	would	be		
under	the	various	available	treatment	options.	This	is	partic-
ularly	interesting	if	different	patients	respond	differently	to	
available	treatment	options	(i.e.,	if	so-	called	heterogeneous	
treatment	effects	 [HTEs]	exist).	This	means	 that	 there	are	
treatment	 effect	 modulators	 that	 determine	 how	 individ-
ual	responses	to	available	treatment	options	T	may	differ.7	
Consequently,	 we	 are	 not	 only	 interested	 in	 the	 average	
treatment	effect	(population	mean),	but	in	the	conditional	
average	 treatment	 effect	 (CATE)	 in	 the	 individual	 patient	
given	his	or	her	covariates	Z.	Because	we	can	only	observe	
the	outcome	under	one	treatment	in	a	patient,	we	consider	
the	predicted	potential	outcomes	Y*	to	estimate	CATEs.	In	
formula	notation	for	our	two	treatments,	this	results	in	the	
following:

(1)
ĈATEi=E

(
Y ∗

i |Z= zi,T =atezolizumab
)
−E

(
Y ∗

i |Z= zi,T =docetaxel
)
.
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F I G U R E  1  (a)	Variable	importance	from	random	survival	forest	(square:	■),	boosting	Cox	regression	(circle:	●),	and	least	absolute	
shrinkage	and	selection	operator	(Lasso)	Cox	regression	(triangle:	▲;	scaled	to	100%	of	most	relevant	variable,	respectively).	Of	note,	
permutation	variable	importance	considered	both	categorical	and	continuous	variables.	Vertical	dashed	lines	indicate	the	top	six	and	top	eight	
predictors	in	the	random	survival	forest,	respectively.	(b)	Partial	dependence	plots	of	the	top	eight	predictors	from	the	random	survival	forest.	
Of	note,	the	same	packages	and	functions	were	used	as	in	the	original	manuscript	of	Chan	et	al.2	Abbreviations:	ECOG,	Eastern	Cooperative	
Oncology	Group;	TC123/TC23/TC3,	Group	indicators	for	patients	with	programmed	death-	ligand	1	(PD-	L1)-	expression	of	at	least	1%/5%/50%
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Among	 the	 many	 possible	 modeling	 methods,8	 the	
so-	called	 split	 model	 approach	 appears	 intuitively	 un-
derstandable.	 One	 develops	 a	 prognostic	 model	 M	 in	
each	 of	 the	 two	 subgroups	 of	 patients	 under	 atezoli-
zumab	 and	 docetaxel	 (M1	 and	 M2,	 respectively).	 For	

each	 patient	 under	 any	 allocation,	 the	 CATE	 can	 then	
be	 determined	 from	 the	 difference	 in	 predictions	 of	
ĈATEi = Y ∗

i
(M1) − Y ∗

i
(M2)	,	where	Y ∗

i
	represents	the	in-

dividual	risk	for	mortality.	Equation 1	thus	shows	the	in-
dividual	differences	in	expected	risks	associated	with	the	

F I G U R E  2  (a)	Waterfall	plot	of	heterogeneous	treatment	effects	(HTEs)9	as	individual	differences	for	the	predicted	mortality	to	
atezolizumab	or	docetaxel	in	a	random	survival	forest.	In	particular,	the	predicted	mortality	is	the	difference	in	the	average	aggregated	
cumulative	hazard	(i.e.,	values	lower	than	zero	indicate	individual	benefit	for	atezolizumab).	(b)	Surrogate	model	(“fit-	the-	fit”)	as	a	
regression	tree	of	the	most	influential	predictors	for	this	outcome.	Predicted	individual	responses	below	the	median	are	highlighted	in	
gray.	(c)	Modified	upset	plot10	to	visualize	subgroup	effects	in	dependence	of	most	of	those	influential	predictors	for	HTEs.	On	the	left,	
situations	for	subgroup	generation	are	indicated	by	plus	and	minus	for	the	states	of	a	binary	variable,	whereas	the	absence	allows	both	
options.	Subgroup	effects	are	represented	by	a	forest	plot,	in	which	a	solid	line	indicates	the	overall	treatment	effect	for	the	comparison	of	
atezolizumab	versus	docetaxel	(i.e.,	values	lower	than	zero	indicate	benefit	for	atezolizumab).	When	considering	sample	sizes	in	subgroups	
on	the	right,	atezolizumab	patients	are	indicated	in	black.	Abbreviations:	ECOG*,	binary	indicator	for	at	least	level	2	performance	according	
to	Eastern	Cooperative	Oncology	Group;	TC3*,	binary	indicator	for	programmed	death-	ligand	1	(PD-	L1)-	expression	of	at	least	50%;	LDH*,	
binary	indicator	for	lactate	dehydrogenase	(LDH)	levels	of	at	least	459	[units/L];	Met*,	binary	indicator	for	at	least	four	metastatic	sites
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two	treatments-	positive	values	of	CATE	illustrate	higher	
risks	under	atezolizumab	(estimated	with	M1),	whereas	
negative	values	reflect	a	higher	risk	under	docetaxel	(es-
timated	 with	 M2).	 A	 modified	 waterfall	 plot9	 can	 clar-
ify	 the	 distribution	 and	 also	 make	 the	 prediction	 for	
an	 individual	 patient	 therein	 apparent	 to	 the	 clinician	
(Figure 2a).

In	addition,	HTE	modeling	 is	also	an	 ideal	 showcase	
to	 demonstrate	 how	 the	 complex	 CATE	 estimates	 can	
be	made	 interpretable.	For	 this	purpose,	a	 so-	called	sur-
rogate	model	can	be	fitted	downstream,	which	considers	
the	estimated	CATEs	as	the	new	dependent	variable	and	
the	set	of	original	predictors	of	the	respective	patients	as	
independent	variables.	Naturally,	“fit-	the-	fit”	is	a	synony-
mously	used	term.	For	this	purpose,	one	can,	for	example,	
develop	 a	 regression	 tree	 and	 use	 it	 to	 identify	 import-
ant	 variables	 (with	 associated	 cutoffs)	 that	 trigger	 the	
complexly	 determined	 individual	 probability	 of	 success	
(CATE)	 under	 atezolizumab	 and	 docetaxel	 (Figure  2b).	
We	see	that	atezolizumab	is	generally	superior	on	average	
and	 for	 the	 clear	 majority	 of	 patients.	The	 few	 explana-
tory	 variables	 identified	 from	 a	 (pruned)	 regression	 tree	
primarily	 reveal	 how	 much	 a	 patient	 in	 the	 respective	
tree	branch	will	benefit	from	atezolizumab.	If	these	vari-
ables	are	taken	to	define	subgroups,	for	example,	a	differ-
ential	prognosis	depending	on	them	may	help	to	classify	
the	outcome	clinically.	A	modified	upset	plot10	visualizes	
these	 relationships	 in	 the	 form	 of	 a	 familiar	 forest	 plot	
(Figure 2b).	In	patients	without	high	programmed	death-	
ligand	 1	 (PD-	L1)-	expression,	 moderate	 LDH	 levels,	 and	
less	than	five	metastatic	sites,	atezolizumab	appears	to	be	
less	beneficial	 than	 in	 the	reverse	case,	where	 the	bene-
fit	 of	 atezolizumab	 appears	 to	 be	 increased	 for	 a	 higher	
ECOG	 performance	 status	 indicating	 a	 larger	 burden	 of	
disease.	It	should	also	be	noted	that	all	of	 the	presented	
procedures	were	used	to	illustrate	the	ML	models;	perfor-
mance	 measures	 for	 internal	 and	 external	 validity	 were	
outside	the	scope	of	this	commentary.

As	a	conclusion,	it	is	fundamentally	important	to	make	
ML	methods	interpretable	in	order	to	enhance	their	com-
prehensibility	 and	 thus	 acceptance	 in	 clinical	 practice,	
but	also	to	facilitate	reproducibility	as	a	confirmatory	step	
along	the	way.	In	our	re-	analysis	of	a	manuscript	based	on	
clinical	 trial	data,	we	have	clarified	basic	principles	and	
exemplified	which	methods	can	be	used	for	each	purpose.	
It	would	be	desirable	if	such	methods	were	used	routinely.	
This	is	a	fundamental	step	toward	the	implementation	of	
such	procedures,	for	example,	as	decision	support	in	clin-
ical	 practice	 with	 all	 the	 legal	 and	 ethical	 implications.	

With	the	constantly	growing	number	of	possible	methods	
of	IML,	we	like	to	highlight	that	further	developments	can	
be	particularly	useful	if	they	are	developed	together	with	
clinicians,	are	intuitively	understandable,	and	can	be	ap-
plied	independently	of	the	model’s	nature.

ACKNOWLEDGMENTS
This	 publication	 is	 based	 on	 research	 using	 data	 from	
data	contributor	Hoffmann-	La	Roche	that	has	been	made	
available	through	Vivli,	Inc.	Vivli	has	not	contributed	to	or	
approved,	and	is	not	in	any	way	responsible	for,	the	con-
tents	of	this	publication.

CONFLICT OF INTEREST
The	authors	declared	no	competing	interests	for	this	work.

ORCID
Andreas D. Meid  	https://orcid.org/0000-0003-3537-3205	

REFERENCES
	 1.	 Wang	 Y,	 Zhu	 H,	 Madabushi	 R,	 Liu	 Q,	 Huang	 SM,	 Zineh	 I.	

Model-	Informed	 drug	 development:	 current	 US	 regulatory	
practice	 and	 future	 considerations.	 Clin Pharmacol Ther.	
2019;105(4):899-	911.

	 2.	 Chan	P,	Zhou	X,	Wang	N,	Liu	Q,	Bruno	R,	Jin	JY.	Application	of	
machine	learning	for	tumor	growth	inhibition	-		overall	survival	
modeling	 platform.	 CPT Pharmacometrics Syst Pharmacol.	
2021;10(1):59-	66.

	 3.	 Molnar	C.	Interpretable Machine Learning. A Guide for Making 
Black Box Models Explainable.	 https://chris	tophm.github.io/
inter	preta	ble-	ml-	book/;	2019.

	 4.	 Rittmeyer	A,	Barlesi	F,	Waterkamp	D,	et	al.	Atezolizumab	ver-
sus	docetaxel	in	patients	with	previously	treated	non-	small-	cell	
lung	 cancer	 (OAK):	 a	 phase	 3,	 open-	label,	 multicentre	 ran-
domised	controlled	trial.	Lancet.	2017;389(10066):255-	265.

	 5.	 Breiman	L.	Random	forests.	Mach Learn.	2001;45(1):5-	32.
	 6.	 Friedman	 JH.	 Greedy	 function	 approximation:	 a	 gradient	

boosting	machine.	Ann Stat.	2001;29(5):1189-	1232.
	 7.	 Meid	AD,	Ruff	C,	Wirbka	L,	et	al.	Using	the	causal	 inference	

framework	 to	 support	 individualized	 drug	 treatment	 deci-
sions	based	on	observational	healthcare	data.	Clin Epidemiol.	
2020;12:1223-	1234.

	 8.	 Rekkas	A,	Paulus	JK,	Raman	G,	et	al.	Predictive	approaches	to	
heterogeneous	 treatment	 effects:	 a	 scoping	 review.	 BMC Med 
Res Methodol.	2020;20(1):264.

	 9.	 Gewandter	JS,	McDermott	MP,	He	H,	et	al.	Demonstrating	het-
erogeneity	of	treatment	effects	among	patients:	an	overlooked	
but	important	step	toward	precision	medicine.	Clin Pharmacol 
Ther.	2019;106(1):204-	210.

	10.	 Ballarini	NM,	Chiu	Y-	D,	König	F,	Posch	M,	Jaki	T.	A	critical	re-
view	of	graphics	for	subgroup	analyses	in	clinical	trials.	Pharm 
Stat.	2020;19(5):541-	560.

https://orcid.org/0000-0003-3537-3205
https://orcid.org/0000-0003-3537-3205
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

