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Machine learning (ML) has recently enriched the 
possibilities for predicting clinical events using prog-
nostic and/or predictive variables. Clinical pharma-
cology also benefits from more accurate but often 
increasingly complex ML models. For such models to 
be accepted in practice, it is essential to make them 
reproducible for the analyzing scientist and inter-
pretable for the clinician. When reproducing an ML 
work, we exemplarily show how methods of inter-
pretable ML can support to meet these prerequisites.

Machine learning (ML) has become increasingly im-
portant in recent years, both in medicine and in the field 
of clinical pharmacology.1 This applies to early phases of 
drug development and complex analyses of typical clinical 
trial data. ML methods promise a higher predictive value, 
which may result from the flexible analysis of nonlinear 
correlations or higher-order interactions.2 At the same 
time, there is a desire on the clinical side that the path to 
good prediction should be comprehensible and transpar-
ent.3 If one now intends to reproduce such a predictive 
model, it is immensely important to clarify the model’s ML 
process and how predictions are obtained. This is exactly 
what we have approached when reproducing the results 
of the previously published original work of Chan et al.2 
In particular, we addressed three fundamental questions: 

(1) what is needed for reproducible ML analyses, (2) how 
can these methods be described in a transparent and in-
terpretable way, and (3) what else can be predicted from 
the original work?

In the original manuscript, Chan et al. introduced a 
modeling platform based on the OAK study, which allows 
to compare different ML methods for predicting overall 
survival.2 In brief, the OAK study included patients with 
previously treated non-small cell lung cancer into a ran-
domized, open-label, phase III trial in which they were ran-
domly assigned to receive either atezolizumab or docetaxel 
once every 3 weeks.4 The source data are accessible with 
an adequate request to a clinical trials portal (www.vivli.
org) and the original work also provides rudimentary 
analysis code. Random seeds are set in the analysis code, 
which is essential for ML methods (e.g., random forests5) 
in terms of reproducibility. With available software (ver-
sions) and helpful answers upon contacting the authors, 
many prerequisites for reproducible research seemed to be 
given. However, the practical situation was complicated 
by the fact that all baseline variables of the clinical trial 
were available, but not the variables generated during the 	
follow-up, which would have had to be modeled first in a 
separate preprocessing step severely limiting reproducibility 
(e.g., individual drug exposures retrospectively derived by 	
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population pharmacokinetic modeling or parameters from 
tumor growth models relying on measurements after the 
study baseline). However, it is this particular situation that 
further emphasizes the importance of interpretable ma-
chine learning (IML): now we are all the more interested 
in which variables (with different availability) contribute to 
what extent and in which way to the prediction.

If we want to describe ML procedures in an interpreta-
ble fashion, this is generally possible from two perspectives. 
First, the procedure can be monitored during the model-
ing process itself. For example, this could mean to describe 
how hyperparameters are determined. In their supplemen-
tary materials, Chan et al. show coefficient solution paths 
together with the optimal estimated coefficients selected 
by the tuning parameter λ in least absolute shrinkage and 
selection operator (Lasso) regression or by the optimal 
boosting step number in boosting regression.2 It is also 
conceivable from this perspective to visualize, for exam-
ple, how the number of split candidates of a random for-
est is determined. However, these metrics can only hardly 
be interpreted in a clinical sense; nevertheless, they can of 
course be reassuring if they match with the original analy-
sis when reproducing this analysis. The second perspective, 
on the other hand, looks at the influence of predictor vari-
ables on the prediction itself. Whereas new methods for in-
terpretability are published at breakneck speed,3 we restrict 
ourselves here first for illustration to two catchy and intu-
itive methods, the variable importance (synonym: feature 
importance) and the partial dependence plots (synonym: 
marginal means, predictive margins, and marginal effects).

Variable importance (VI) indicates the relevance of a 
single predictor variable for the overall accuracy of the pre-
diction (or vice versa the prediction error). This importance 
metric can be determined independently of the type of the 
(ML) model and thus also allows for comparing different 
methods directly. The idea behind this is that the predic-
tion error increases after permutation of the values in the 
predictor variable.5 It is straightforward that the prediction 
error will increase more for an important variable than for 
less important ones if the relationship between predictor 
and outcome is broken down. Figure 1a shows which vari-
ables in which order contribute how much to the prediction 
for the Lasso regression, boosting, and random survival 
forests examined as examples adapted from the original 
manuscript.2 In principle, a cutoff in variable importance 
could also be used for preselecting predictors for another 
subsequent model, however, this is not done here. For our 
comparison to the original manuscript, it is also interesting 
to see which variables in our set of predictor variables are 
now predictively important. For example, the top six pre-
dictor variables of the random survival forests are clinically 
well-known and expected variables to influence prognosis 
in lung cancer.

This VI plot illustrates the extent, but not the direc-
tion, in which the predictor influences the prediction. 
This marginal effect of a predictor on the outcome can 
be determined via the partial dependence plot6 from a 
previously fitted model. Although linear models yield 
linear relationships, it can be more complex for nonlin-
ear or nonparametric methods, such as random forests. 
For the top eight variables from the random survival 
forest, Figure 1b shows how the outcome prediction is 
influenced by alternating the influence variable on the 
x-axis. In addition to the functional relationship (curve 
shape), this also shows the strength in predicting the 
outcome. Consistent trajectories are desirable when 
pursuing reproducible results, which must also appear 
plausible from a clinical point of view. In a clinically 
plausible manner, higher risks resulted from histologic 
classification as squamous, higher burden of disease 
(ECOG status [Eastern Cooperative Oncology Group]), 
more metastatic sites, higher levels of lactate dehydro-
genase (LDH), or lower albumin levels. All these consid-
erations of predictive values can describe ML methods 
more transparently and be additionally considered 
during reproduction—but they are not basic require-
ments (such as, e.g., the use of identical software algo-
rithms and random seeds).

“The ultimate aim of artificial intelligence (and ML) is 
prediction,”2 this thought has become particularly clear to 
us once again during reproduction. The relevant question is 
what one wants to achieve with a predictive model. It can 
be regarded as a good proof-of-principle, if tumor-growth-
metrics (derived under treatment during the follow-up) 
are also predictive for overall survival (in the follow-up), in 	
addition to effect measures for those treatments. This is well-
demonstrated by the original paper. In practice, however, the 
clinician would like to know (based on patient information 
at baseline only) what the prognosis of a patient would be 	
under the various available treatment options. This is partic-
ularly interesting if different patients respond differently to 
available treatment options (i.e., if so-called heterogeneous 
treatment effects [HTEs] exist). This means that there are 
treatment effect modulators that determine how individ-
ual responses to available treatment options T may differ.7 
Consequently, we are not only interested in the average 
treatment effect (population mean), but in the conditional 
average treatment effect (CATE) in the individual patient 
given his or her covariates Z. Because we can only observe 
the outcome under one treatment in a patient, we consider 
the predicted potential outcomes Y* to estimate CATEs. In 
formula notation for our two treatments, this results in the 
following:

(1)
ĈATEi=E

(
Y ∗

i |Z= zi,T =atezolizumab
)
−E

(
Y ∗

i |Z= zi,T =docetaxel
)
.
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F I G U R E  1   (a) Variable importance from random survival forest (square: ■), boosting Cox regression (circle: ●), and least absolute 
shrinkage and selection operator (Lasso) Cox regression (triangle: ▲; scaled to 100% of most relevant variable, respectively). Of note, 
permutation variable importance considered both categorical and continuous variables. Vertical dashed lines indicate the top six and top eight 
predictors in the random survival forest, respectively. (b) Partial dependence plots of the top eight predictors from the random survival forest. 
Of note, the same packages and functions were used as in the original manuscript of Chan et al.2 Abbreviations: ECOG, Eastern Cooperative 
Oncology Group; TC123/TC23/TC3, Group indicators for patients with programmed death-ligand 1 (PD-L1)-expression of at least 1%/5%/50%
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Among the many possible modeling methods,8 the 
so-called split model approach appears intuitively un-
derstandable. One develops a prognostic model M in 
each of the two subgroups of patients under atezoli-
zumab and docetaxel (M1 and M2, respectively). For 

each patient under any allocation, the CATE can then 
be determined from the difference in predictions of 
ĈATEi = Y ∗

i
(M1) − Y ∗

i
(M2) , where Y ∗

i
 represents the in-

dividual risk for mortality. Equation 1 thus shows the in-
dividual differences in expected risks associated with the 

F I G U R E  2   (a) Waterfall plot of heterogeneous treatment effects (HTEs)9 as individual differences for the predicted mortality to 
atezolizumab or docetaxel in a random survival forest. In particular, the predicted mortality is the difference in the average aggregated 
cumulative hazard (i.e., values lower than zero indicate individual benefit for atezolizumab). (b) Surrogate model (“fit-the-fit”) as a 
regression tree of the most influential predictors for this outcome. Predicted individual responses below the median are highlighted in 
gray. (c) Modified upset plot10 to visualize subgroup effects in dependence of most of those influential predictors for HTEs. On the left, 
situations for subgroup generation are indicated by plus and minus for the states of a binary variable, whereas the absence allows both 
options. Subgroup effects are represented by a forest plot, in which a solid line indicates the overall treatment effect for the comparison of 
atezolizumab versus docetaxel (i.e., values lower than zero indicate benefit for atezolizumab). When considering sample sizes in subgroups 
on the right, atezolizumab patients are indicated in black. Abbreviations: ECOG*, binary indicator for at least level 2 performance according 
to Eastern Cooperative Oncology Group; TC3*, binary indicator for programmed death-ligand 1 (PD-L1)-expression of at least 50%; LDH*, 
binary indicator for lactate dehydrogenase (LDH) levels of at least 459 [units/L]; Met*, binary indicator for at least four metastatic sites
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two treatments-positive values of CATE illustrate higher 
risks under atezolizumab (estimated with M1), whereas 
negative values reflect a higher risk under docetaxel (es-
timated with M2). A modified waterfall plot9 can clar-
ify the distribution and also make the prediction for 
an individual patient therein apparent to the clinician 
(Figure 2a).

In addition, HTE modeling is also an ideal showcase 
to demonstrate how the complex CATE estimates can 
be made interpretable. For this purpose, a so-called sur-
rogate model can be fitted downstream, which considers 
the estimated CATEs as the new dependent variable and 
the set of original predictors of the respective patients as 
independent variables. Naturally, “fit-the-fit” is a synony-
mously used term. For this purpose, one can, for example, 
develop a regression tree and use it to identify import-
ant variables (with associated cutoffs) that trigger the 
complexly determined individual probability of success 
(CATE) under atezolizumab and docetaxel (Figure  2b). 
We see that atezolizumab is generally superior on average 
and for the clear majority of patients. The few explana-
tory variables identified from a (pruned) regression tree 
primarily reveal how much a patient in the respective 
tree branch will benefit from atezolizumab. If these vari-
ables are taken to define subgroups, for example, a differ-
ential prognosis depending on them may help to classify 
the outcome clinically. A modified upset plot10 visualizes 
these relationships in the form of a familiar forest plot 
(Figure 2b). In patients without high programmed death-
ligand 1 (PD-L1)-expression, moderate LDH levels, and 
less than five metastatic sites, atezolizumab appears to be 
less beneficial than in the reverse case, where the bene-
fit of atezolizumab appears to be increased for a higher 
ECOG performance status indicating a larger burden of 
disease. It should also be noted that all of the presented 
procedures were used to illustrate the ML models; perfor-
mance measures for internal and external validity were 
outside the scope of this commentary.

As a conclusion, it is fundamentally important to make 
ML methods interpretable in order to enhance their com-
prehensibility and thus acceptance in clinical practice, 
but also to facilitate reproducibility as a confirmatory step 
along the way. In our re-analysis of a manuscript based on 
clinical trial data, we have clarified basic principles and 
exemplified which methods can be used for each purpose. 
It would be desirable if such methods were used routinely. 
This is a fundamental step toward the implementation of 
such procedures, for example, as decision support in clin-
ical practice with all the legal and ethical implications. 

With the constantly growing number of possible methods 
of IML, we like to highlight that further developments can 
be particularly useful if they are developed together with 
clinicians, are intuitively understandable, and can be ap-
plied independently of the model’s nature.
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