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Objective: This study aims to evaluate the predictive model based on deep

learning (DL) and radiomics features from contrast-enhanced ultrasound

(CEUS) to predict early recurrence (ER) in patients with hepatocellular

carcinoma (HCC).

Methods: One hundred seventy-two patients with HCC who underwent

hepatectomy and followed up for at least 1 year were included in this

retrospective study. The data were divided according to the 7:3 ratios of

training and test data. The ResNet-50 architecture, CEUS-based radiomics,

and the combined model were used to predict the early recurrence of HCC

after hepatectomy. The receiver operating characteristic (ROC) curve and

calibration curve were drawn to evaluate its diagnostic efficiency.

Results: The CEUS-based radiomics ROCs of the “training set” and “test set”

were 0.774 and 0.763, respectively. The DL model showed increased

prognostic value, the ROCs of the “training set” and “test set” were 0.885 and

0.834, respectively. The combined model ROCs of the “training set” and “test

set” were 0.943 and 0.882, respectively.

Conclusion: The deep learning radiomics model integrating DL and radiomics

features from CEUS was used to predict ER and achieve satisfactory

performance. Its diagnostic efficiency is significantly better than that of the

single model.
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Introduction

The most common primary liver cancer is hepatocellular

carcinoma (HCC) (1). HCCs are the third most common cause

of cancer-related death and ranked sixth in terms of incident

cases (2). Owing to the wide prevalence of hepatitis B, China has

high incidence and mortality rates. Its mortality rate is only

second (3, 4) to lung cancer. Although technologies for the

diagnosis and treatment of HCC are evolving, its 5-year

recurrence rate is as high as 60%–80% (1, 4, 5). Hepatectomy

is a common choice for treating HCC; the 5-year survival rate

was <15% (6). Early recurrence (ER) was defined as the

recurrence occurring after the first year during follow-up; it is

considered to be an important factor affecting the survival rate of

patients (7–9). In clinical practice, there is a need to assess the

risk of ER in order to guide further monitoring and

treatment (10).

Contrast-enhanced ultrasound (CEUS) has the advantages

of high repeatability, non-invasiveness, no radiation, extremely

low incidence of adverse reactions, and no hepatorenal toxicity,

and can reflect the continuous dynamic perfusion of tumor in

real time. It is often used to predict the pathological

characteristics that are related to the risk of ER: size,

microvascular invasion, and differentiation (11–14). In recent

years, CEUS has been tried to predict the ER of HCC before

operation (15, 16), but the effect is not satisfactory. Radiomics is

an emerging research field aiming to use the full potential of

medical images (17). It can be used for high-throughput

extraction of quantitative features such as shape, gray, texture,

and wavelet in medical images (18, 19). Although radiomics is

widely used in the diagnosis and prognosis by computed

tomography (CT) and magnetic resonance imaging (MRI)

(20–22), deep learning has attracted extensive attention given

its high performance in image recognition. In fact, it can

effectively improve the diagnostic accuracy of medical image

interpretation and the objectivity of diagnosis (23, 24). The

combination of DL classification network and radiomics

framework in the integrated system has become an emerging

trend to achieve good performance in clinical tasks (25–27).

However, there are no studies on CEUS-based deep learning

radiomics analysis ER of HCC after hepatectomy. The purpose

of this study was to explore the ability of CEUS-based DL to

predict ER of HCC before operation.
Methods

This retrospective study was approved by the research ethics

committee. Each patient signed written informed consent before

the examination. We collected data from 172 patients with HCC

who underwent complete resection. All 172 patients with HCC

underwent CEUS within 1 week before hepatectomy. Age, sex,
Frontiers in Oncology 02
history of hepatitis B or C, and AFP (<20µg/L,200-400µg/L) were

included in the study. The dataset was assigned randomly to the

training cohort or test cohort at a ratio of 7:3. The flow chart is

illustrated in Figure 1.
Follow-up

All patients were followed up, and abdominal US or CT

scanning and AFP were performed every 3 months. A recurrence

is considered when a recurrent lesion in or outside the liver is

determined by imaging technology. The primary endpoint was

tumor ER, which was defined as new intra- or extrahepatic

tumors occurring within 1 year after surgery (9, 16). If

recurrence occurred after the first year during follow-up, the

endpoint of the study was considered to be ER. The definition of

recurrence-free was 1-year period from the date of surgery to the

date of first recurrence or metastasis.
Ultrasonic examination

The US research was performed in Philips IU22 and EQIC7

systems and GE LOGIQ E9. All patients participating in this

study fasted for a minimum of 8 h before the CEUS examination.

The patients were asked to breath calmly. First, the upper

abdomen was examined using grayscale US to locate the mass

to be studied, and then, 2.4 ml of SonoVue was injected through

the elbow vein by 5–10 ml of 0.9% saline. CEUS examination

used low mechanical index (MI<0.1). The target lesion was

continuously observed, and at least 3 min of digital movie

clips were stored on the hard disk. According to the

guidelines, it was divided into the arterial phases (AP) (0–30 s)

and portal phases (PP) (30–120 s) (28). We selected three images

for analysis: the tumor with US, the tumor in the AP on CEUS,

and the tumor in the PP on CEUS.
Extraction of CEUS radiomics features
and construction of CEUS
radiomics model

The maximum section image of the lesion was imported into

Mazda 4.6 software. Two radiologists with more than 5 years of

experience in CEUS depict a region of interest (ROI). The CEUS

radiomics features were extracted from the ultrasonic image ROI

of each patient by Mazda software. The corresponding texture

parameters were histogram parameters (mean value, variance,

kurtosis, skewness, percentile, etc.), grayscale symbiosis matrix

(energy, contrast, autocorrelation, entropy, symbiosis sum, etc.),

run test (length non-uniformity, long run weight, short run

weight, and grayscale heterogeneity), autoregressive model,

wavelet transform (wavelet transform system), number
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(energy), and absolute gradient (gradient mean, variance,

skewness, and kurtosis). The inter- and intra-class correlation

coefficients (ICCs) were employed to evaluate the consistency

and repeatability of the results delineated. The ROI selections

were performed by two readers. There was a good agreement of

the feature extraction when the ICCs was >0.75. The ROI

selections of the remaining images was performed by reader 1.

All cases in the training cohort were used to train the

prediction model. All cases in the test cohort were used to

evaluate the performance of the model independently. Finally, z-

score was adopted to standardize the data. First, features with

ICCs >0.75 were retained. Then, the U-test and the least absolute

shrinkage and selection operator (LASSO) were used to filter the

most useful features further. Finally, the CEUS radiomics model

was developed using random forest. The selected radiomics

features were linearly combined with their weighting

coefficients to generate a radiomics score for each patient.
Deep learning model

The proposed CNN retained the ResNet-50 network

structure, which pre-trained on Imagene and adapted it to fit

US data. Before model training, image processing operations

such as rotation, horizontal or vertical flipping, random clipping,

and random channel shifting were applied for data
Frontiers in Oncology 03
augmentation to generate more training images. These

operations resemble the diversity observed in the real-world

data and prevent overfitting. All the images were resized to 224 ×

224 pixels and normalized.

As a small dataset was available, we adopted transfer learning

and fine-tuning. We also performed feature extraction using

pretrained models to take advantage of features learned from

models trained on large datasets in the same domain. We set the

learning rate as 1e−5 and applied the logistic optimizer to update

the network parameters with batch size 24. The maximum

iteration step was set to 1,000, and the learning rate decayed by

one-half at 2,000 and 4,000 steps. The output prediction results of

the ResNet-50 network were used as the classification results, and

the cross-entropy of the prediction results and the labels was

calculated as the loss function. This was done by instantiating a

pretrained model and adding a feature extraction FC layer. The

last 1,000 nodes of the FC layer were replaced with a specifically

designed one FC layer with transfer learning initialized weights.

Then, the parameters of the pretrained model were frozen, and

only the classifier weights were updated during training. Deep

learning model learned the high throughput image features, which

could make full use of all embedded information in US images.

Convolution operations were used to extract the features

associated with each image, and the classifier was trained to

determine the image class according to extracted features. By

supervised classification, the label of input images was used to
FIGURE 1

The flow chart is illustrated.
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fine-tune the network and update the parameters and finally led to

the most relevant features in the FC layer.
Feature selection and development of
three prediction models

The ICC method, U-test, and LASSO with 10-fold cross-

testing method were used to select characteristic parameters. We

performed this process separately using previously extracted

radiomics features and DL features to construct a radiomics

model and the DL model, respectively. The RF was used to

construct the radiomics model, and the support vector machine

(SVM) was used to construct the deep learning model. Next, we

performed a further post-fusion process using the radiomics

model (RF algorithm) and the deep learning model (SVM

algorithm) to make them jointly construct a combined

prediction model. The architecture of the proposed CNN is

shown in Figure 2.
Statistical methods

The R3.3.2 (http://www.R-project.org) software and Python

3.7 (http://www.python.org) software were used to conduct data

statistical modeling and analysis. Pearson chi-square test and

Fisher’s exact test were also used. The p-values <0.05 were

considered statistically significant. Statistically significant

results obtained from univariate analysis will be submitted to

multiple logistic regression. In this study, area under the curve

(AUC), sensitivity, specificity, positive predictive value (PPV),

and negative predictive value (NPV) of ResNet-50 model were
Frontiers in Oncology 04
used. Radiomics model and comprehensive model

were calculated.
Results

The clinicopathological features in the training set and

testing test are shown in Table 1. A total of 172 patients and

68 cases had ER. Except for two cases of recurrent lesions in the

lung and one case of bone metastasis, the rest of the 65 case

recurred in the liver. Among 172 patients, according to the 7:3

segmentation data of training and test data, there were 121

patients in the training group, including 48 cases of recurrence

within 1 year, and there were 73 cases without ER, with 104 men

and 17 women, aged 48.3 ± 13.2 years. There were 51 cases in the

training set, of which 20 cases recurred within 1 year and 31

cases had no ER; there were 43 men and 8 women, aged 52.9 ±

13.1 years.
Feature extraction and screening,
and CEUS-based radiomics
model development

A total of 918 CEUS radiomics features were extracted from

each patient’s ultrasound image ROIs using the Mazda software

package. Mann–Whitney U-test (non-normal variables) was

performed on the omics features, and 543 features were

eliminated (p>0.05). A highly collinear relationship existed

between omics features. Before modeling, Pearson or

Spearman correlation analysis was conducted on the

remaining 375 image features. If the correlation of the two
FIGURE 2

The flow chart of CEUS-based deep learning radiomics analysis for predicting ER of HCC is shown.
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variables was more than 0.6, the variable with an overall higher

correlation was excluded, and 14 features were eliminated. After

LASSO regression analysis, 11 meaningful radiomics features

were finally obtained (Figure 3A). The CEUS radiomics score

was created according to the following formula: CEUS radiomics
Frontiers in Oncology 05
score= −0.111× US_Teta2-0.014× DP_Perc.01.-.009×

AP_Perc.50.+0.006×PP_S.1.0.Correlat0.038×US_S.1.0.Correlat

+ 0 . 0 5 5×AP_GrSk ewne s s 0 . 1 3 7×US_WavEnHL_ s . 5

+0 .151×AP_S .1 .0 .Corre l a t0 .183×PP_WavEnHL_s .6

+0.194×US_Mean0.325×US_135dr_GlevNonU.

A total of 7,144 deep learning features were extracted from

each patient’s ultrasound images (from three type of US images)

by the ResNet-50 network. The same feature selection steps were

performed to select the most significant features. Finally, 16 deep

features were retained to construct the further model

(Figure 3B). The combined model was constructed based on

11 radiomics features and 16 depth features.
Diagnostic efficacy of three models in ER

The ROC curve for predicting the ER of HCC by CEUS

radiomics was drawn; the AUCs of the training and testing

samples were 0.774 and 0.763 (Figure 4), respectively. The

accuracy, sensitivity, and specificity of the CEUS-based radiomics

score in predicting ER of HCC were 0.727, 0.667, and 0.767,

respectively, in the training cohort and 0.686, 0.600, and 0.742,

respectively, in the testing cohort. In the CEUS-based DLmodel, the

AUC in the training and testing cohorts were 0.885 and 0.834,

respectively. The accuracy, sensitivity, and specificity of the CEUS-

based DL in predicting ER of HCC were 0.785, 0.896, and 0.712,

respectively, in the training samples and 0.686, 0.800, and 0.613,

respectively, in the testing samples; stacking model based on the

radiomics model and the deep learning model, the AUCs in the

training and testing cohorts were 0.942 and 0.889, respectively. The

accuracy, sensitivity, and specificity of the CEUS-based DL
TABLE 1 The clinicopathological features in the training and testing
tests.

Characteristic Training Testing

Number 121 51

Age 48.3 ± 13.2 52.9 ± 13.1

Sex

Male 104 43

Female 17 8

Size(cm)

≤5 62 25

>5 59 26

Hepatitis

Positive 115 46

Negative 6 5

Cirrhosis

Positive 93 36

Negative 28 15

AFP(ng/ml)

<20 39 16

20–400 29 11

>400 53 24

ER

Positive 48 20

Negative 73 31
BA

FIGURE 3

Characteristics selected the radiomics and DL model. (A) 11 features and its coefficients for the radiomics model. (B) 16 features and its
coefficients for the DL model.
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radiomics model in predicting ER of HCC were 0.868, 1.000, and

0.781, respectively, in the training cohort and 0.784, 0.900, and

0.710, respectively, in the testing cohort (Table 2). The decision

curve analysis showed that the combined model predicts a good

overall net income of ER (Figure 5).
Discussion

Hepatectomy is themost effective treatment for HCC; ER within

1 year is now recognized as a critical determinant for a poor

prognosis (29, 30). In this study, we evaluated the applicability of

radiomics model based on CEUS and CEUS DL for the ER of HCC.

A CUES-based DL radiomics using 11 features from radiomics and

16 features from DL analysis exhibited satisfactory performance; the

predictive AUCs on ER of HCC of the training and testing samples

were 0.942 and 0.889, respectively. Simultaneously, the combination

of radiomics and DL to establish the model demonstrates a better

effect than a single model. The CEUS DL is easy to use and can

promote personalized risk stratification and further treatment

decision-making in patients with HCC.
Frontiers in Oncology 06
The ER of HCC may be due to micrometastasis and invasive

tumor biological behavior (31). SonoVue is a blood pool contrast

agent, which possibly reflects the microvessel composition of HCC.

Previous studies have demonstrated that the CEUS characteristics

can effectively predict the MVI and differentiation of HCC (13, 32,

33); these results suggest that the characteristics of CEUS are closely

related to the ER. Qin’s research found that washout is a predictor

of ER of HCC (16). The risk of ER increases with the flushing speed.

Washout represents a more invasive vascular composition to a

certain extent. Hai bin Tu also believes that Li-Rads can effectively

predict the ER of HCC (15). However, the classification is subjective

and depends on the experience of the radiologist. Radiomics

transforms medical images into high-throughput features to

quantitatively evaluate tumor phenotypes (18). This technology

can extract quantitative image features using a computer algorithm

to detect high-dimensional image features. Therefore, imageomics

is objective compared with the conventional image interpretation of

radiologists. The former can thoroughly analyze the whole tumor

and obtain equivalent ormore information than that obtained using

conventional radiology (34). Imaging features reflect the texture

information of the tumor and are important signs of intratumor
FIGURE 4

The ROC of radiomics model, DL model and combined model in training cohort and testing cohort. (A) AUC of combined models in training
cohorts (AUC of 0.911) was significantly higher than that of the radiomics model (AUC of 0.740) and DL model (AUC of 0.887). (B) AUC of
combined models in testing cohorts (AUC of 0.840) was significantly higher than that of the radiomics model (AUC of 0.780) and DL model
(AUC of 0.813).
TABLE 2 Performance of training and testing sets in three models.

Cohort Model AUC (95%CI) Accuracy Sensitivity Specificity

Radiomic 0.774 0.727 0.667 0.767

Train ResNet50 0.885 0.785 0.896 0.71

Deep Learning Radiomics 0.942 0.868 1 0.78

Radiomic 0.763 0.69 0.600 0.742

Testing ResNet50 0.834 0.69 0.8 0.613

Deep Learning Radiomics 0.889 0.784 0.9 0.667
fro
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heterogeneity. Intratumoral heterogeneity may result from genomic

heterogeneity, associated with poor prognosis (32). Our study

extracted the radiomics features of lesions from CEUS images.

The radiomics score is based on 11 selected radiomics features,

further indicating the tumor texture characteristics. Our results

demonstrate that the CEUS-based radiomics score can effectively

predict the ER of HCC. ResNet-50 has been used in feature

extraction with high stability and performance for medical image

classification (35). ResNet-50 can detect and classify lesions by

setting an anchor and a bounding box without separating the

foreground from the background. Moreover, it can extract features

directly from the lesion area and then combine multiple features to

classify lesions (36). Furthermore, integrating DL and radiomics

algorithms can achieve higher diagnostic efficiency than a single

method, and its benefits have been reflected in different clinical

applications (26, 37). By integrating ResNet50 and radiomics

models, we have improved our diagnostic ability, with an AUC of

0.889, which is higher than that of a single model.

Additionally, the combined model demonstrates satisfactory

distinction, which provides an easy-to-use, visual, and

personalized tool for ER prediction, assisting the doctors in

the early prediction of the ER of HCC and performing

corresponding measures, which is highly significant for the

effective treatment of patients.

Our retrospective study has some limitations. First, radiomics

features are based on the CEUS images in the two phases, and some

information may have been omitted. Second is due to the small

sample size, which may lead to overfitting and low repeatability of

the prediction results. Third, as ultrasonic examination primarily

depends on the experience of operators, the difference in operators

may lead to the difference in graphic quality.

In conclusion, we developed a DL radiomics model based on

CEUS to predict ER and achieve satisfactory performance. Its

diagnostic efficiency is significantly better than that of the
Frontiers in Oncology 07
radiomics model. The DL radiomics model can be used by

clinicians to judge the risk of ER and more effectively manage

patients after surgery.
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