
Developmental Cognitive Neuroscience 49 (2021) 100957

Available online 19 April 2021
1878-9293/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Rich-club structure contributes to individual variance of reading skills via 
feeder connections in children with reading disabilities 

Chenglin Lou a,b,*, Alexandra M. Cross b,c, Lien Peters a,b, Daniel Ansari a,b,d, 
Marc F. Joanisse a,b,e 

a Department of Psychology, The University of Western Ontario, London, Canada 
b Brain and Mind Institute, The University of Western Ontario, London, Canada 
c Health and Rehabilitation Sciences, The University of Western Ontario, London, Canada 
d Faculty of Education, The University of Western Ontario, London, Canada 
e Haskins Laboratories, New Haven, CT, USA   

A R T I C L E  I N F O   

Keywords: 
Reading disabilities 
Rich-club 
Reading network 
Connectome 
Diffusion tensor imaging 

A B S T R A C T   

The present work considers how connectome-wide differences in brain organization might distinguish good and 
poor readers. The connectome comprises a ‘rich-club’ organization in which a small number of hub regions play a 
focal role in assisting global communication across the whole brain. Prior work indicates that this rich-club 
structure is associated with typical and impaired cognitive function although no work so far has examined 
how this relates to skilled reading or its disorders. Here we investigated the rich-club structure of brain’s white 
matter connectome and its relationship to reading subskills in 64 children with and without reading disabilities. 
Among three types of white matter connections, the strength of feeder connections that connect hub and non-hub 
nodes was significantly correlated with word reading efficiency and phonemic decoding. Phonemic decoding was 
also positively correlated with connectivity between connectome-wide hubs and nodes within the left- 
hemisphere reading network, as well as the local efficiency of the reading network. Exploratory analyses also 
identified sex differences indicating these effects were stronger in girls. This work highlights the independent 
roles of connectome-wide structure and the more narrowly-defined reading network in understanding the neural 
bases of skilled and impaired reading in children.   

1. Introduction 

Skilled readers are able to recognize and map phonological, ortho
graphic and semantic components of language quickly and accurately. 
However, around 10 % of children have reading disabilities (RD), which 
entails dysfluent and inaccurate reading performance (Lyon et al., 
2003). One predominant theory proposes phonological deficits are the 
main cause of RD (Boets et al., 2013, 2011; Ramus, 2003; Snowling, 
2000). Neuroimaging studies have demonstrated links between poor 
reading or phonology and structural anomalies in RD. However, a clear 
picture describing neural and cognitive substrates of RD still requires 
further exploration as these studies reported inconsistent results across 
measures of white matter tracts and structural morphology (Ramus 
et al., 2018). 

Magnetic resonance imaging (MRI) studies have identified a 
specialized leftward lateralized reading network in the brain supporting 

reading functions (Price and Devlin, 2011; Pugh et al., 2000). Several 
white matter pathways within the reading network are proposed to 
support specific reading functions, with dorsal pathways supporting the 
orthographic-phonology mapping and ventral pathways supporting 
orthographic-semantic mapping (Jobard et al., 2003; Schlaggar and 
Mccandliss, 2007). The connectivity of white matter tracts is usually 
evaluated via diffusion tensor imaging (DTI), which quantifies the 
orientation and integrity of white matter fibers based on the direction 
and degree of diffusion of water molecules within voxels (Basser, 1995; 
Basser et al., 1994). Studies using DTI have reported altered connectivity 
in reading-related white matter pathways, and their associations with 
reading performance in RD (Deutsch et al., 2005; Klingberg et al., 2000; 
Lou et al., 2019; Niogi and McCandliss, 2006; Richards et al., 2008; 
Rimrodt et al., 2010; Steinbrink et al., 2008; Su et al., 2018; Vander
mosten et al., 2012a; Zhao et al., 2016). Although diverse major white 
matter pathways, such as the arcuate fasciculus and superior 
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longitudinal fasciculus, have been generally found to differ in poor 
readers, results have been somewhat inconsistent with respect to the 
involvement of other white matter pathways and widespread brain re
gions linked with those tracts. This suggests that reading-related white 
matter pathways may contribute to the individual variance of reading 
abilities via interactions among each other instead of each supporting 
particular cognitive function independently. However, the manner in 
which the alterations of these connections constrain reading perfor
mance as a global system has not been well explored. Analytic strategies 
that consider connectome-wide white matter structure represent a 
potentially useful model to investigate anatomical structure at 
large-scale network level. 

The term ‘connectome’ describes the human brain as a network with 
nodes representing cortical regions, and edges representing white mat
ter tracts that connect them into a matrix (Sporns et al., 2005). The 
connectome has been proposed as the elementary building block of 
cognitive architecture (Petersen and Sporns, 2015), and it has been 
investigated in a range of cognitive functions (for review see Medaglia 
et al., 2015). Hypothesised connectivity alterations in neurological 
disorders are reflected by both convergence and divergence in the types 
of connectome disruptions across various clinical populations (van den 
Heuvel and Sporns, 2019). 

The human connectome follows a hierarchical connection principle 
that generally divides regions into a small number of hubs and a larger 
number of peripheral regions. Hubs are more centrally embedded in the 
connectome, such that they have a higher than usual level of connec
tivity with other regions (Gong et al., 2008; Hagmann et al., 2008; 
Sporns et al., 2007; van den Heuvel and Sporns, 2011). Hubs are also 
more likely to connect to each other, thereby forming “rich-club” con
nections in which hub regions represent the primary route to interre
gional signal transmission, representing a central backbone for global 
brain communication (van den Heuvel et al., 2012; van den Heuvel and 
Sporns, 2011). Crossley et al. (2014), using massive open source DTI 
data with 26 brain disorders, demonstrated that hubs in the white matter 
connectome were more likely to present anatomical anomalies than 
peripheral regions in various neurological disorders. Altered 
rich-club-wise connectivity has also been implicated in various disorders 
such as autism spectrum disorder (Ray et al., 2014; Hong et al., 2019), 
ADHD (Ray et al., 2014), schizophrenia (Griffa et al., 2015; van den 
Heuvel et al., 2013), and bipolar disorder (Roberts et al., 2018). 

As a developmental disorder with neurological origins, RD has also 
been associated with alterations at the connectome level in different 
modalities (Bailey et al., 2018; Finn et al., 2014; Liu et al., 2015; Lou 
et al., 2019; Qi et al., 2016). Specifically, Lou et al. (2019) recently 
examined the structure of the white matter connectome in children with 
developmental dyslexia, reporting a subnetwork consisting of brain re
gions which overlapped with the reading network and connections 
among them. Results showed fewer white matter streamlines within the 
subnetwork in the left hemisphere of children with RD (Lou et al., 2019). 
Moreover, significant correlations between global topological proper
ties, which quantify the structure of the white matter connectome, and 
reading performance have been illustrated in children with RD (Lou 
et al., 2019) and children with poor reading performance in school 
(Bathelt et al., 2018). Those studies support the view that the con
nectome is related to reading and RD at both a global and local level. 
Reading requires not only processing various language components 
within individual brain regions, but also mapping the components via 
long-distance connections among those regions. Therefore, complex 
cognitive tasks like reading might be expected to take advantage of this 
rich-club structure. However, only one study to date has examined the 
relationship between topological properties of hub regions and reading 
performance in the white matter connectome (Bathelt et al., 2018). This 
study found critical associations between topological properties of brain 
network hubs and reading and math achievement in school-age chil
dren. However, the concept of rich-club provides a more intuitive view 
of connections extending from hub regions, raising the question of 

whether rich-club-wise correlates of specific reading mechanisms are 
important to reading disabilities. Similarly, the association between the 
connectomic hubs and the better-established reading network has not 
been well explored yet. 

Associations between white matter connectivity and either word or 
pseudoword reading have been reported in many prior studies of earlier 
reading disability (Deutsch et al., 2005; Klingberg et al., 2000; Lou et al., 
2019; Niogi and McCandliss, 2006; Rimrodt et al., 2010; Odegard et al., 
2009; Steinbrink et al., 2008; Zhao et al., 2016). White matter connec
tivity was also related to rapid automatized naming and comprehension 
skills (Deutsch et al., 2005; Carter et al., 2009). Here, we hypothesized 
that associations between white matter and reading subskills could also 
be reflected at the larger-scale white matter network level. 

The present study aims to investigate the relationship between rich- 
club structure and these four important subskills of reading perfor
mance, and how this rich-club structure corresponds to brain regions 
within the reading network. We examined a range of sub-skills related to 
reading in children with and without RD. Given a lack of evidence of 
categorical distinctions between typical readers and individuals with 
RD, and the advisability of imposing arbitrary cut-off scores for cate
gorizing children into either group, here we have examined behavioral 
markers of reading as continuous variables. We then tested how indi
vidual differences in these sub-skills correlated with rich-club-wise 
connections which were categorized into specific types based on hub 
and non-hub nodes they linked. In addition, we investigated how this 
rich club structure relates to connectivity structure within the reading 
network. 

A second set of exploratory analyses was also performed for the boys 
and girls group separately. This was intended to address prior findings 
that the rate of diagnosis of RD tends to be higher in boys (Flannery 
et al., 2000; Katusic et al., 2001; Rutter et al., 2004; Liederman et al., 
2005). Moreover, some MRI studies in RD reported stronger associations 
between brain structure and reading in either male or female readers 
(Altarelli et al., 2013, 2014; Clark et al., 2014; Evans et al., 2014; Sandu 
et al., 2008; Su et al., 2018). Such findings highlighted the possibility 
that there could be different neuroanatomical bases of RD for boys than 
girls (Krafnick and Evans, 2019). Likewise, at least one study o func
tional connectivity in spoken language processing has raised the possi
bility of sex differences at the connectome level (Xu et al., 2020). To 
address these findings, this study performed an exploratory analysis that 
examined connectome-reading correlations separately for boys and 
girls. 

2. Methods 

2.1. Participants 

An initial group of 73 school-age children (mean age: 11.15 years, 
standard deviation: 1.39, range from 8.83 to 14.68) were recruited into 
the study. Thirty-four of them were boys and 39 were girls. All partici
pants in the study were native English speakers with normal hearing and 
uncorrected vision abilities, with no history of neurological disorders as 
assessed by parental report. All participants were combined from two 
datasets who completed the same reading tests and structural MRI scan 
sequences. One of the datasets included 44 children (10.51 ± 0.89 years 
old, range from 8.83 to 11.90 years) and the second dataset included 29 
children (12.13 ± 1.45 years old, range from 10.03 to 14.68 years). 
Recruitment for the first dataset was targeted toward children with 
reading difficulties and as such, 18 participants had been previously 
identified as having reading difficulties by school professionals. The 
remaining participants in this dataset were children with a wide range of 
reading abilities, but any poor readers had not been formally identified 
with reading difficulties. The second dataset comprised children with a 
wide range of reading abilities, with some demonstrating a profile of 
abilities consistent with reading disability. As the first dataset included 
more children with reading difficulties and the mean age of children 
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from the second dataset was significantly higher than the first, this study 
controlled for the confounding correlation between standard reading 
scores and age by removing 7 children from the second dataset whose 
ages were higher than 12 years old and who had standardized sight word 
reading and phonemic decoding scores higher than 100. Age and 
reading scores of the remaining 64 participants included in this study 
(mean age: 10.94 years, standard deviation: 1.26, range 8.83–14.68) 
were not correlated and were not confounded by recruitment group. 
This study was approved by the Office of Human Research Ethics of the 
Western Research Ethics Board. Informed consent was provided by a 
parent or guardian of each participant, and written and verbal assent 
was obtained from each participant. 

2.2. Behavioral measures 

The Sight Word Efficiency and Phonemic Decoding Efficiency sub
tests of the Test of Word Reading Efficiency 2 (TOWRE, Torgesen et al., 
2012) were administered to examine sight word reading and decoding 
fluency. The Sight Word Efficiency subtest asked children to read 
familiar words as quickly and accurately as they could in 45 s. The 
Phonemic Decoding subtest asked children to read pseudowords as 
quickly and accurately as they could in 45 s. Reading comprehension 
ability was tested using the Woodcock Johnson III Test of Achievement 
Normative Update (McGrew et al., 2007; Woodcock et al., 2001) Passage 
Comprehension subtest by asking children to read a sentence or para
graph and provide a missing word. Rapid Automatized Naming (RAN) of 
letters was assessed by asking children to name each letter from a set of 4 
(k, r, m, g) presented at random in a 5 × 10 grid of items as quickly as 
possible (Arnell et al., 2009). The score consisted of the number of 
correctly named items per second. All scores, except for RAN, were 
standardized based on age. 

2.3. Imaging acquisition 

Prior to MRI scanning, all children participated in a training session 
to familiarize them with the scanner environment, lying on a bed inside 
a simulated MRI scanner for around 5 min. An audiobook and recordings 
of MRI scanner sounds were played simultaneously, and feedback was 
provided to them about movement using an electromagnetic motion 
tracker. This training session also served as an informal assessment of 
whether each participant could remain sufficiently still during the MRI. 
No participants were excluded from the study based on excessive 
movement or reported discomfort during the training session. Children 
then underwent actual MRI scanning with a Siemens 3T Magnetom 
Prisma MRI scanner equipped with a 32-channel head coil at the Robarts 
Research Institute, Western University, London, Ontario, Canada. To 
control head movement, foam pads were used while participants lay 
awake on the scanner bed. Whole-brain 3D anatomical imaging was 
performed using a T1-weighted MPRAGE sequence (TR = 2.30 s, TE =
2.98 s, FOV = 256 × 256 mm, voxel size = 1 mm × 1 mm × 1 mm, 192 
slices). The diffusion weighted (DW) images were acquired using a DTI 
scan sequence (TR = 3.0 s, TE =50.6 ms, FOV = 256 × 256 mm, voxel 
size = 2.04 mm × 2.04 mm x 2 mm, 64 slices, 56 directions with b =
1000s/mm2 and 8 directions with b = 0). A 6-minute resting-state fMRI 
scan was also acquired during the scanning session from children in the 
first dataset, and additional 3 fMRI tasks from children in the second 
dataset as part of another study, both part of a separate study not re
ported here. Total scanning time was approximately 30 min per child in 
the first dataset and around 60 min per children in the second dataset, 
including set-up time. 

2.4. Image analysis 

For each of the T1-weighted images, the robustfov command from 
FSL was applied to crop the images, ensuring better skull stripping re
sults. The FSL Brain Extraction Tool (BET, Smith, 2002) was used to 

perform skull stripping. In terms of DW images, processing steps used 
p-code version of ExploreDTI (Leemans et al., 2009, http://www.explo 
redti.com) toolbox for MATLAB. First, NIFTI images were converted to 
MATLAB-compatible format. Head motion and eddy current correction 
were applied. To correct EPI distortions, DW images were also non
linearly registered onto the cropped T1 images, resampled to 1 × 1 × 1 
mm voxel size. Corrected DW images were then used to perform 
whole-brain tractography via the deterministic DTI algorithm. Fibers 
were reconstructed by starting from a seed voxel and followed the main 
diffusion direction until encountering a voxel with a fractional anisot
ropy (FA) lower than 0.1 or the turning angle exceeded 60 degrees. The 
length of the fibers ranged from 25 to 500 mm with a step size of 0.5 mm. 

White matter connectome maps were constructed for each partici
pant: nodes consisted of anatomical regions obtained by parcellating 
each brain image into 90 gray matter regions of interests (ROIs) based on 
the Automated Anatomical Labelling (AAL) template (Tzourio-Mazoyer 
et al., 2002). These were fit to individual brains using FMRIB’s 
Nonlinear Image Registration Tool (FNIRT, FSL; Jenkinson et al., 2012, 
http://www.fmrib.ox.ac.uk/fsl/). The FA map of each participant, 
which was extracted from corrected DW images using ExploreDTI, was 
registered to the cropped T1 images to acquire a transfer matrix. Next, 
the cropped T1 images were nonlinearly registered to the MNI (Montreal 
Neurological Institute) 152 template. The two transfer matrices were 
combined and inversed to generate a transformation matrix from the 
standard space to each participant’s native space. An AAL template in 
each native space was then acquired by applying the matrix to the atlas. 
Edges of the matrix were defined as the number of white matter 
streamlines connecting each pair of nodes, which quantifies the amount 
of reconstructed white matter streamlines starting from one node and 
terminating at the other. The present study used the number of 
streamlines to quantify edge weight, on the assumption that number of 
streamlines estimates fiber strength (Delettre et al., 2019; van den 
Heuvel et al., 2015), and therefore the efficiency of information trans
mission among brain regions. This captured both the volume and 
diffusion characteristics of white matter voxels linking pairs of nodes. 
This contrasts with DTI measures such as FA as edge weights, since these 
require averaging many FA values across all reconstructed streamlines 
while ignoring, for instance, the principal directions of diffusion that 
might provide additional information about connection efficiency. The 
flow chart of constructing the network shown in Fig. 1. 

2.5. Network analysis 

Before performing network analyses, each network was thresholded 
to remove any edge with fewer than 3 streamlines. This step aimed to 
minimize false positive tracts between brain regions and yielded a 
sparsely connected matrix. 

We defined hub regions based on the degree of the nodes. The degree 
of any one node equals the number of other nodes directly connected to 
it: 

di =
∑

j∈N
aij  

where N is the set of all nodes in the network and aij is the binary value of 
the connection between node i and j. The distribution of degree within 
the connectome follows a truncated power law degree distribution, 
where most of the nodes have low degree and few of them have high 
degree. Nodes with a degree higher than a threshold of k could be 
defined as hubs. We considered a wide range of k-degree thresholds to 
avoid arbitrary selection. For each degree threshold, a set of hub regions 
was identified and a normalized rich-club coefficient was computed to 
examine the existence of rich-club structure. The rich-club coefficient 
(Opsahl et al., 2008) was defined as: 
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ϕw(k) =
W>k

∑E>k
l=1 Wranked

l  

where E>k refers all connections between any pair of nodes whose de
gree is higher than k, W>k is the total weighted value of connections 
between each pair of those nodes, and Wranked is the ranked connections 
according to the weight of edges across whole network. The normalized 
rich-club coefficient was then computed by comparing the rich-club 
coefficient of the original network to that of 10,000 random networks 
with identical size and degree sequence: 

ϕnorm(k) =
ϕ(k)

ϕrandom(k)

where ϕrandom(k) is the rich-club coefficient of the random network. 
When ϕ(k) is higher than ϕrandom(k), one-sample t-tests were performed 
to compare the normalized rich-club coefficient and 1 (when ϕ(k) is 
higher than ϕrandom(k)). The network was considered as being equipped 
with a rich-club structure if the normalized rich-club coefficient was 

significantly higher than 1. 
Across all thresholds where all participants exhibited rich-club 

structure, the threshold Km with the highest normalized rich-club coef
ficient was viewed as the most representative threshold and the subse
quent analyses were performed under that threshold. As visualized in 
Fig. 2, all individuals’ networks contained rich-club connections under a 
wide range of k-degree thresholds ranging from 4 to 20 (green line). 
Within this range, the normalized rich-club coefficients (ϕnorm) were all 
significantly higher than 1 (ts(63) > 4.49, ps < 2e− 5), however we 
selected the point of highest ϕnorm k = 20 (ϕnorm = 1.53, t(63) = 7.30, p =
3e-10) (Fig. 2, blue line). It ensures that the strongest rich-club structure 
was identified under the corresponding threshold. Hence, the Km was set 
as 20 for all analyses. 

When the hub regions were identified for each network, edges across 
the whole network could be categorized into three types (Fig. 3). Edges 
between two hub nodes were classified as rich-club connections. Edges 
between a hub a and a non-hub node were classified as feeder connec
tions. Edges between two non-hub nodes were classified as local 

Fig. 1. Workflow for building white matter network.  

Fig. 2. Trade-off between number of partici
pants demonstrating rich-club connections 
(green) and the normalized rich-club coefficient 
(blue), across a wide range of k-degree 
threshold. All participants showed rich-club 
connections under thresholds between the two 
dashed lines. Normalized rich-club coefficients 
were significantly greater than 1 under thresh
olds which were labelled with ***; for this study 
we chose a k-threshold of 20 the highest coef
ficient point at which all participants showed 
rich-club structure.   
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connections. The present study used mean number of streamlines across 
every edge in each type as metrics for statistical analyses. 

Rich-club structure is related to topological properties of the con
nectome. Specifically, more feeder connections reduce the shortest path 
length between a pair of nodes, inducing lower characteristic path 
length, which is equal to the average shortest path length between any 
pair of nodes across the whole network (Watts and Strogatz, 1998). To 
investigate how feeder connections changed shortest path length of 
rich-club nodes, we calculated local efficiency (Latora and Marchiori, 
2001), which is the inverse shortest path length, of each rich-club nodes: 

elocal =
1
n
∑

i∈N

∑
j,h∈N, j∕=1aijajh

[
pjh(Ni)

]− 1

di(di − 1)

where pjh(Ni) is the shortest path length between node j and h. Efficiency 
of rich-club structure was computed by averaging local efficiency of all 
rich-club nodes. 

The selection of nodes forming the reading network was based on a 
meta-analysis study that summarized 20 fMRI studies across multiple 
task types in children with typical reading abilities (Martin et al., 2015), 
a meta-analysis of functional neuroimaging studies in dyslexia (Maisog 
et al., 2008), as well as a recent study of white matter connectome in 
dyslexic children which reported differences within one subnetwork 

(Lou et al., 2019). Regions of interest identified in these studies were 
then colocated with anatomical regions as labelled in the AAL template. 
This included the pars triangularis and pars opercularis of inferior 
frontal gyrus (IFG), insula, fusiform gyrus, inferior parietal lobe, 
supramarginal gyrus, angular gyrus, Heschl’s gyrus, superior temporal 
gyrus (STG), middle temporal gyrus (MTG), inferior temporal gyrus, 
inferior occipital gyrus, precentral gyrus, and Rolandic operculum 
(which included ventral areas of pre- and post-central gyrus) in the left 
hemisphere. In addition, we included the left thalamus, given recent 
studies reporting its role in reading disabilities/dyslexia (Díaz et al., 
2012; Müller-Axt et al., 2017; Paz-Alonso et al., 2018; Tschentscher 
et al., 2019). The connections between rich-club structure and reading 
network nodes were extracted from each participant. When examining 
feeder connections between rich-club nodes and reading network nodes, 
overlapping nodes between the two sub-networks were labelled as 
rich-club nodes instead of reading network nodes. Otherwise, connec
tions between rich-club nodes and overlapping nodes were labelled as 
rich-club connections instead of feeders. 

2.6. Statistical analyses 

To assess the relationship between rich-club structure and reading 
subskills, we computed the mean number of streamlines for each of the 
three types of connections (rich-club, feeder and local) for each indi
vidual, and calculated Pearson’s correlations with each of the four 
behavioural reading scores (sight word reading, phonemic decoding, 
passage comprehension, and RAN), including sex, average whole-brain 
FA, and handedness as covariates. As no age-based norms exist for our 
RAN measure, age was included as an additional covariate for this 
measure. 

A similar approach was taken to analyzing the structure of the 
reading network. Connections between rich-club nodes and reading 
network nodes, as well as the efficiency of reading network nodes, were 
extracted to examine their correlations with reading scores using partial 
Pearson’s correlations. Sex, average whole-brain FA, handedness, and 
the proportion of overlapped rich-club nodes between rich-club and 
reading network (Prc, number of overlapped rich-club nodes/total 
number of rich-club nodes) were set as covariates. 

We also performed an exploratory analysis that examined these 
correlations separately in the male and female participants by running 
the above partial Pearson’s correlations in boys and girls separately. For 
all analyses, family-wise error was corrected with 10,000-permutation 
Monte-Carlo simulations. 

3. Results 

3.1. Demographic and behavioural measures 

Descriptive statistics for demographic and behavioural measures are 
shown in Table 1. 

Fig. 3. a) Hypothetical rich-club structure showing different node and 
connection types; b) Chord diagram describing connections between hubs (red), 
reading network nodes (green) and other non-hub nodes (grey). The connection 
line thickness corresponds to the number of streamlines between nodes. Red 
links refers to connections between reading network nodes and hubs. Blue links 
refers to rich-club connections. Grey links represents the rest feeder connections 
and all local connections. 

Table 1 
Demographic and behavioural measures.   

N Mean SD Range (min/ 
max) 

Age (years) 64 10.94 1.26 8.83/14.68 
Sex (boys/girls) 31/ 

33 
/ /  

Handedness (left/right) 2/62 / /  
Sight Word Efficiency (standard score) 64 93.02 21.35 55/139 
Phonemic Decoding (standard score) 64 92.72 19.83 55/129 
Passage Comprehension (standard 

score) 
64 90.03 13.30 46/114 

Rapid Automatized Naming (RAN) 
(#correct/second) 

64 1.87 0.48 0.56/2.84  
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3.2. Rich-club structure and reading scores 

With the Km threshold set as 20, the location of the group-level hubs 
was identified. Those hubs generally overlapped with findings in prior 
rich-club studies (van den Heuvel et al., 2012; van den Heuvel and 
Sporns, 2011), including bilateral superior frontal lobe, precuneus, 
supplemental motor area, and thalamus. 

Partial Pearson’s correlation tests showed that the average number 
of streamlines of feeder connections was significantly correlated with 
standard scores on the Sight Word Efficiency (r(59) = 0.352, corrected p 
= 0.047) and Phonemic Decoding (r(59) = 0.354, corrected p = 0.045) 
tasks (Fig. 4). The average number of streamlines of feeder connections 
was also positively correlated with Passage Comprehension scores, 
however this did not survive correction for multiple comparisons (r(59) 
= 0.346, corrected p = 0.053). Rich-club and local connections were not 
correlated with any reading scores. RAN score was not correlated with 
any types of connections. The results are shown in Table 2. 

Before examining sex differences in those correlations, a multivariate 
analysis of variance (MANOVA) test was conducted to test if there were 
any sex differences in both reading scores and connectomic metrics. As 
indicated in Table S1 boys only differed from girls on standardized 
phonemic decoding, where they showed higher scores on average (F 
(1,62) = 8.087, p = 0.006); no other behavioral differences were 
observed As shown in Table 3, after splitting participants by sex, partial 
correlation results showed that the average number of streamlines of 
feeder connections was significantly correlated with standard Sight 
Word Efficiency (r(29) = 0.543, p = 0.002), Phonemic Decoding (r(29) 
= 0.533, p = 0.002) and Passage Comprehension (r(29) = 0.565, p <
0.001) in girls. No significant correlations were found in the boys group. 

As expected, analyses in the full sample showed that the average 
number of streamlines of feeder connections was negatively correlated 
with characteristic path length (r(64) = -0.600, p < 0.001). Likewise, 
average local efficiency of rich-club nodes was also correlated with 
feeder connections (r(64) = 0.785, p < 0.001). However, similar cor
relations between other behavioural measures and local efficiency were 
not significant: Sight Word Efficiency (r(59) = 0.230, p = 0.072), Pho
nemic Decoding (r(59) = 0.230, p = 0.072) and Passage Comprehension 
(r(59) = 0.245, p = 0.055) scores. 

3.3. Connections between rich-club and reading networks 

The connection strengths between the rich-club and reading network 
nodes were significantly correlated with TOWRE Phonemic Decoding 
score (r(58) = 0.288, corrected p = 0.026) (Fig. 5a), and marginally 
correlated with TOWRE Sight Word Efficiency and Passage Compre
hension scores (Table 4). 

Follow-up analyses examined this pattern in girls vs. boys. As above, 
connections between rich-club and reading network were significantly 

correlated with standard Sight Word Efficiency (r(29) = 0.413, p =
0.023) and Phonemic Decoding (r(29) = 0.414, p = 0.023) scores only in 
girls. No significant correlations were found in the boys group (Table 4). 

3.4. Efficiency of reading network 

Mean local efficiency of the reading network was significantly 
correlated with both Sight Word Efficiency (r(58) = 0.331, corrected p =
0.016) and Phonemic Decoding score (r(58) = 0.343, corrected p =
0.013) (Fig. 5b and c). The correlation between mean local efficiency of 
reading network and Sight Word Efficiency score did not survive 
correction (r(58) = 0.273, corrected p = 0.054). 

After splitting participants into boys and girls, partial correlation, 
including sex, average whole-brain FA, and handedness as covariates, 
results showed that mean local efficiency of reading network was 
significantly correlated with standard Sight Word Efficiency (r(29) =
0.439, p = 0.015) and Phonemic Decoding scores (r(29) = 0.491, p =
0.006) only in girls group. No significant correlations were found in the 
boys group. 

Fig. 4. Correlations between average number of streamlines of feeder connections and standard reading scores. (a) Sight Word Efficiency and (b) Phonemic 
Decoding. Values of feeder connections, standard Sight Word Efficiency, and standard Phonemic Decoding scores on the scatter plots are standard residuals after 
controlling for sex, mean whole-brain FA, and handedness. 

Table 2 
Correlations and uncorrected p values between rich-club-wise connections and 
reading scores.   

Rich-club Feeder Local 

Sight word efficiency 0.073 
(0.578) 

0.352 (0.005) 
* 

− 0.007 
(0.959) 

Phoneme decoding 0.094 
(0.471) 

0.354 (0.005) 
* 

− 0.025 
(0.850) 

Passage comprehension 0.026 
(0.845) 

0.346 (0.006) − 0.016 
(0.901) 

Rapid Automatized Naming 
(RAN) 

0.180 
(0.168) 

0.128 (0.329) − 0.015 
(0.908)  

* Correlations survived correction by 10,000-permutation Monte-Carlo 
simulation. 

Table 3 
Correlations between average number of the feeder streamlines in boys and girls 
group.   

Boys Girls  

r p r p 

Sight word efficiency 0.066 0.726 0.556 < 0.001* 
Phoneme decoding 0.024 0.897 0.533 0.0017* 
Passage comprehension 0.039 0.835 0.527 0.0019* 
Rapid Automatized Naming (RAN) − 0.021 0.910 0.237 0.184  

* Correlations survived correction by 10,000-permutation Monte-Carlo 
simulation. 
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3.5. Validation 

To examine whether the tractography parameters influenced the 
topological properties of the connectome and subsequent correlations 
with behavioural measures, two additional whole-brain tractography 
calculations were performed, in which we either reduced the turning 
angle threshold to 30 degrees, or increased the minimal fiber length 
from 25 to 50 mm. This allowed us to better assess whether our results 
are fundamentally linked to tunable parameters in our tractography 
approach. Rich-club, feeder and local connections, and hub-reading- 
network connections were all positively correlated between the orig
inal and the two additional tractography calculations (rs > 0.59, ps <
2.9e-7). This indicated that the variability of number of streamlines 
between participants scaled in a predictable way when tractography 
parameters were modified. Similarly, significant connectome-reading 
correlations were not influenced by these changes. For the 30-degree 
turning angle threshold, these correlations were very similar to those 
observed in the original connectome feeder-SWE, feeder-PDE (r = 0.26, 
p = 0.043), hub-to-reading-network-PDE (r = 0.39, p = 0.002). A similar 
pattern was found for the 50 mm minimal length threshold: feeder-PDE 

(r = 0.30, p = 0.017), hub-to-reading-network-PDE (r = 0.30, p =
0.019), although the feeder-SWE correlation also increased (r = 0.30, p 
= 0.018) compared to our original analysis (r = 0.20, p = 0.106). In 
addition, the previously-noted significant correlation between local ef
ficiency of reading network and PDE was not replicated with either the 
30-degree turning angle or 50 mm streamline constraint. The failure of 
verification in nodal efficiency may be due to the modified parameters 
generating fewer streamlines, leading to limitation on the variance that 
could be captured by the statistical models. 

In addition, the present study applied logarithm transforms to verify 
the usage of number of streamlines as edge weights (Sotiropoulos and 
Zalesky, 2019). Statistical analyses on networks which were weighed as 
logarithm-transformed numbers of streamlines revealed similar results 
to the number-of-streamline weighted network. Specifically, the number 
of feeder connections in the logarithm-transformed network was 
correlated with both SWE (r = 0.30, p = .019) and PDE scores (r = 0.27, 
p = .038). Local efficiency of the reading network was correlated with 
PDE score (r = 0.27, p = .040) as well. The correlation of number of 
streamlines joining hub and reading network nodes and PDE scores was 
in the same direction as in our initial analyses, but did not reach sig
nificance (r = 0.25, p = .057). 

Finally, it is possible that our findings with regard to white matter 
connectivity within the reading network were susceptible to the choice 
of ROIs. To test this possibility, the ROI list was revised based on those 
listed in a different study (McNorgan et al., 2011), which proposed a 
more restricted subset of regions. This re-analysis found very similar 
results, which replicated all the significant correlations identified in 
Table 4, indicating that our findings were not affected by minor dis
tinctions in the literature concerning the exact specification of reading 
network nodes. 

4. Discussion 

This study examined the relationship between connectome-wide 
rich-club structure and reading performance. Here we considered 
component processes of reading along a spectrum of good and poor 

Fig. 5. Correlations between (a) standard Phonemic Decoding score and feeder connections from rich-club nodes to reading network, (b) mean local efficiency of the 
reading network and standard Sight Word Efficiency and (c) standard Phonemic Decoding scores. Values of standard Sight Word Efficiency and Phonemic Decoding 
scores, rich-club nodes to reading network, and mean local efficiency of reading network on the scatter plots are standard residuals after controlling for sex, mean 
whole-brain FA, handedness, and the proportion of overlapped rich-club nodes between rich-club and reading network. 

Table 4 
Correlations between average number of streamlines in connections between 
hubs and reading network.   

All participants Boys Girls  

r p r p r p 

Sight word efficiency 0.252 0.052 0.056 0.774 0.413 0.023 
* 

Phoneme decoding 0.288 0.026 
* 

0.151 0.434 0.414 0.023 
* 

Passage comprehension 0.175 0.182 0.051 0.792 0.274 0.143 
Rapid Automatized 

Naming (RAN) 
0.095 0.472 − 0.017 0.930 0.192 0.310  

* Correlations survived correction by 10,000-permutation Monte-Carlo 
simulation. 
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readers, given evidence that reading disability is a graded disorder with 
no clear cutoff point, and that observed neurocognitive differences be
tween good and poor readers lie along a continuum (Fletcher, 2012; 
Pugh et al., 2014; Shaywitz et al., 1992). Accordingly, across a number 
of measures we observed significant associations between network 
structure and performance on reading sub-tasks. In particular, the 
number of feeder streamlines was significantly correlated with sight 
word reading and phonemic decoding scores, measuring familiar and 
nonword reading, respectively. Phonemic decoding ability was also 
positively correlated with the number of streamlines between hubs and 
reading network nodes. In addition, sight word efficiency and phonemic 
decoding were positively correlated with the local efficiency of reading 
network nodes as well. Finally, exploratory measures indicated sex 
differences on the correlation between connectivity of rich-club struc
ture and reading performance, marked by appreciably stronger effects in 
girls. 

4.1. Feeder connections and reading 

Feeder connections in the white matter connectome are pathways 
linking hub and non-hub regions, and serve as bridges between 
anatomical cores and peripheral stations (van den Heuvel et al., 2012). 
While not all types of connections exhibited associations with reading 
scores, significant correlations between number of streamlines per 
feeder connection and reading scores (sight word efficiency and pho
nemic decoding) indicate that rich-club structure is reflected in chil
dren’s reading skill. Rich-club structure has been viewed as the skeleton 
of the connectome for supporting high-level cognitive functions 
(Crossley et al., 2013; van den Heuvel et al., 2012). This structure en
ables the brain to process information in sparsely distributed modules 
and integrate the processed information across different modules via 
long-distance connections between hubs (van den Heuvel and Sporns, 
2011). This structure represents an optimization among the competing 
needs of maintaining a sparsely connected matrix of brain regions, and 
minimizing the path length of connections among distal regions. Like
wise, reading involves coordinating widespread brain regions which are 
responsible for its many component sub-processes (Paulesu et al., 2014). 
Hubs serve as a pivot to ensure optimized organization for high effi
ciency of transmitting information among distributed brain regions. As 
there was little overlap between the rich-club hubs and the reading 
network, connections between the two could be categorized as feeders. 
This suggests that processing reading materials requires feeder con
nections, beyond links within the reading network, for integrating 
reading components across various modules. 

Prior work has found differences in connectivity of individual white 
matter tracts in RD, especially with regards to pathways within the 
reading network (e.g., Su et al., 2018; Zhao et al., 2016; for review see 
Vandermosten et al., 2012b). Likewise, Bathelt et al. (2018) demon
strated correlations between global measures of the white matter con
nectome and educational achievement, including children with a wide 
range of reading and math abilities. Lou et al. (2019) also reported 
global structure of the connectome correlates of word reading skill, as 
well as decreased number of white matter streamlines within the reading 
network. Accordingly, the present study is the first to more directly 
examine how reading is specifically related to rich-club structure within 
the brain’s entire white matter connectome, and to tie these results 
specifically to different component processes of reading ability. 

Well-developed reading abilities could be sustained by this hierar
chical structure while receiving and processing reading material within 
the reading network, involving not only anatomical connections within 
the reading network but also hubs that project links to reading network. 
Decreased feeder connections could be barriers for integrating specific 
reading components (e.g. phonological or orthographic information) 
from one module to another. Feeder connections affect the efficiency of 
information transmission across the whole brain by increasing or 
decreasing shortest path length between two nodes (Ball et al., 2014). 

Altered topological properties might be due to decreased feeder con
nections in poor readers. More feeder connections reduce the number of 
steps travelling from one peripheral node to another, especially when 
the shortest path contains hubs, yielding higher global efficiency of the 
network. Therefore, results from the present study are in line with 
previous white matter connectome studies, indicating that disruption of 
rich-club structure coexists with the alteration of topological properties 
of white matter network in children with RD. Additionally, among all 
four reading tests, sight word efficiency and phonemic decoding were 
observed to be positively correlated with number of feeder connections. 
Processing real words or pseudowords involves both ventral lateral 
extrastriate and left inferior occipito-temporal area, and dorsal inferior 
parietal lobule and superior temporal gyrus, where typical readers 
exhibited higher activation in typical readers than RD (Pugh et al., 
2000). Stronger feeder connection ensures rapid communication among 
those areas which belong to diverse structural modules. The nominal 
correlation between number of feeder streamlines and passage 
comprehension may be due to the fact that passage comprehension re
quires a range of processes in addition to single-word recognition 
(Biancarosa & Snow, 2004; Swanson and Trahan, 1996), and the vari
ation in comprehension scores cannot be solely explained by the feeder 
connection metric (Meyler et al., 2007). 

Interestingly, the RAN task was not correlated with feeder connec
tions in spite of prior work indicating it is a significant predictor of 
reading ability (Bowers and Wolf, 1993). This difference may reflect the 
automaticity of processes for letters with fewer interactions among 
high-level cognitive functions (Norton and Wolf, 2012). Overall, the 
result highlights that feeder connections play a specific role in 
word-level recognition rather than more broadly-construed reading 
subskills. 

4.2. Connections between hub and reading network nodes 

The second finding of this study is the positive correlation between 
the number of hub-reading-network streamlines and phonemic decod
ing. The location of the hubs identified in the present study mostly 
overlapped with previous studies of rich club structure in adults (van 
den Heuvel et al., 2012; van den Heuvel and Sporns, 2011), including 
bilateral superior frontal lobe, precuneus, supplemental motor area, and 
thalamus. Children, even newborn babies, exhibit a similar hub distri
bution (Ball et al., 2014; Grayson et al., 2014). Interestingly, the left 
thalamus was the exclusive hub that overlapped with the reading 
network. Therefore, white matter pathways between hubs and reading 
network nodes could be mostly classified as feeder connections, sug
gesting that feeder connections between hubs and the reading network 
contributed to individual variability in phonemic decoding ability. 
Phonemic decoding measures the translation of written words into 
spoken words without meaning cues, via association between letters and 
phonemic representations (Byrne, 1998). The present study illustrated 
that phonemic decoding involves not only direct connections within the 
reading network, but also detouring pathways outside the reading 
network. One explanation is that brain regions for processing letters and 
sounds pertain to different modules, and more feeder connections 
facilitate communication across these modules (van den Heuvel and 
Sporns, 2013). Another explanation comes from the navigation model, 
which depicts a communication strategy for passing information from 
one node to target within in a large-scale network (Kleinberg, 2000). 
Optimizing the route from a seed node to the destination requires 
knowledge of global topology of the network, which is impractical for 
the network itself. Instead, navigating in the network follows the rule 
that information is transferred to the next node geometrically closer to 
the destination (In a social network, for instance, one person has no idea 
about the entire picture of the relationship network. Hence, if one in
tends to find a pathway to contact a stranger, they would contact an 
acquaintance (local information) who might have the closest relation
ship to the target individual). For efficient communication within a 
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large-scale brain network, both the topology and geometry of the 
network are also utilized for travelling from a seed node to the desired 
destination (Seguin et al., 2018). Direct bundles of fibers for reading, 
such as superior longitudinal fasciculus and arcuate fasciculus, minimize 
the number of edges between two brain nodes topologically. However, 
as reading involves multiple brain regions and connections, travelling 
only along this route is not sufficient for supporting the corresponding 
process and also ignores geometry distance of the entire network. It is 
therefore suggested that readers with better reading skills, especially 
with respect to phonological processes, can better exploit connections 
outside the reading network, achieving an optimal combination between 
topology path length and geometry distance in the connectome. 

Unlike phonemic decoding, sight word efficiency was not signifi
cantly correlated with number of hub-reading-network streamlines. This 
differed from the pattern between reading scores and feeder connec
tions, and may related to the procedure of word recognition. Word-level 
reading in RD or poor readers can be similar to novel-word reading, due 
to difficulty recognizing target words and increased dependence on the 
grapheme-phoneme correspondence rules. Good readers, on the other 
hand, have mastered grapheme-phoneme conversion and can accord
ingly apply a more direct orthographic pathway to recognize a familiar 
word (Frith, 1985). This is related to the reduced involvement of 
between-module communication during word-level reading in good 
readers, which leads to a decrease in the magnitude of the positive 
correlation between hub-reading-work connections and sight word 
reading. 

4.3. Topological properties 

Sight Word Efficiency and Phonemic decoding scores were also 
positively correlated with the mean local efficiency of all nodes in the 
reading network. This is generally concordant with prior studies 
examining the relationship between word reading performance and 
whole-brain topological properties. For example, Lou et al. (2019), also 
used deterministic tractography, applied a constrained spherical 
deconvolution (CSD) algorithm with turning angle threshold of 35 de
grees and minimal fiber length of 25 mm (Lou et al., 2019). Although the 
turning angle threshold was lower than the present study, that earlier 
study also reported similar correlations between network efficiency and 
word-level reading scores. Decreased whole-brain local efficiency of 
other modalities of the connectome was also reported in Chinese native 
speakers with RD (Liu et al., 2015; Liu et al., 2016). Higher efficiency 
indicates better transfer of information between nodes (Bullmore and 
Sporns, 2009; Latora and Marchiori, 2001). Better physical organization 
across the whole brain accordingly supports higher ability of text 
reading, which is partly aligned with findings of the present study. 
Previous studies calculated the efficiency across the whole brain, which 
mixed information from irrelevant nodes and edges. The present study 
found contributions from topological properties of the connectome in 
more precise areas, which was aligned with prior study illustrating 
fewer number of streamlines in a subnetwork that largely overlapped 
with reading network in children with RD (Lou et al., 2019). To sum up, 
the efficiency of the reading network is associated with word-level 
reading abilities, including sight word reading and phonemic decoding 
skills, and more general reading activity relies on the efficiency of 
broader brain area which includes hubs. 

4.4. Sex differences 

Even though there was no priori hypothesis of sex differences in the 
relationship between the connectome and reading skills in this study, 
exploratory analyses suggested significant correlations persisted when 
limited to girls but were not significant when restricted to boys. We did 
find an effect of sex on one of our reading measures (the PDE subtest of 
TOWRE, which measures nonword decoding). However, this finding 
alone cannot explain our results since all subsequent analyses of sex 

differences were conducted within-group. We also assessed whether 
differences in variance could explain girl-specific significance in 
connectome-reading correlations. Levene’s test showed that there were 
no sex differences in variance with regard to age, reading scores or 
connectome measures. This indicated that sex differences on word- 
reading-connectome correlations did not originate from issues or 
range restriction in measures of behavioral, demographic or con
nectomic measures in either girls or boys. We caution however that 
examining such effects necessarily reduced our statistical power and 
thus these results call for further replication in larger samples. 

The possibility of sex differences in reading disability is not a new 
one of course. To explain higher prevalence of RD in males, Geschwind 
(1981) proposed that it reflects either distinct etiology in male and fe
male individuals with dyslexia, or that severe reading disability is 
over-represented in male individuals. Geschwind and Galaburda (1985) 
also proposed a hormonal account, arguing that female sex-linked hor
mones increase the resilience to disruptions of brain development. 
Therefore, female readers with RD may present more severe neural 
disruptions compared with male readers who show an equal degree of 
reading disabilities (Ramus, 2006), which may suggest that neuroana
tomical differences between RD and controls, as well as brain-reading 
correlations, could be more easily observed in female readers. This is 
supported by evidence from previous studies, which reported deviations 
in brain morphology in female brains, but not male brains (Sandu et al., 
2008; Altarelli et al., 2013; Su et al., 2018). The present results are 
consistent with this: observed connectome-reading correlations were 
only significant in girls. However, several studies reported sex effects in 
the opposite direction, where neural differences in RD were more severe 
in males (Altarelli et al., 2014; Clark et al., 2014; Evans et al., 2014). The 
inconsistent results on sex effects may due to the large amount of vari
ability across those studies, such as age, sample size, and brain measures 
(Krafnick and Evans, 2019). Hence, our observed sex differences in 
connectome-reading correlations should be approached with caution. 

At the macro-scale network level, one recent study of the functional 
connectome under a semantic fMRI task reported that functional brain 
networks for language exhibited differences in functional connection 
and topological properties between male and female participants (Xu 
et al., 2020). This effect may be rooted in the type of structural basis 
noted here. However, the available connectome model has limited 
power to explain such a structure-function relationship (Suárez et al., 
2020). Further studies integrating the two modalities could be helpful to 
better grasp whether effects of sex on the relationship between the 
structural connectome and RD are robust, and if so, to more fully 
articulate their neurobiological origin. 

Although the participants in this study exhibited a wide range of 
reading abilities, they were not divided into RD and typical readers for 
group analyses as previous white matter and connectome studies in RD. 
However, findings in the present study were in line with that from prior 
studies, which reported significant correlations between white matter 
connectivity and reading score when RD and typical readers were 
pooled into single group (Deutsch et al., 2005; Klingberg et al., 2000; 
Niogi and McCandliss, 2006; Rimrodt et al., 2010; Steinbrink et al., 
2008; Vandermosten et al., 2012a). In addition, correlations between 
connectome-wise measures and reading scores were also reported in 
participants showing high variance in reading abilities (Lou et al., 2019; 
Bathelt et al., 2018). Overall the results suggest that such findings are 
not indicative of a qualitative difference between high- and 
low-achieving readers, and instead reflect a continuum in the neural 
correlates of reading across all skill levels. 

One limitation of the present study is that we were not able to assess 
socioeconomic status (SES) of participants. It has been shown that SES is 
related to variance of reading achievements (Peterson and Pennington, 
2015). This effect may also be reflected in neural differences, especially 
as it pertains to low versus middle-SES (Noble et al., 2005). The present 
study did not directly assess SES in children, and therefore it is not 
possible to evaluate its effect in this sample. With that in mind, other 
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studies of white matter and reading have demonstrated that the inferior 
longitudinal fasciculus, a ventral reading-related white matter pathway, 
was related to SES in children with low-SES (Ozernov-Palchik et al., 
2019). Although a similar correlation was not observed in other 
reading-related white matter pathways, it might induce alterations at 
whole-brain connectome level. For example, Romeo et al. (2018) re
ported that the cortical thickness of bilateral perisylvian and supra
marginal regions were related to SES. As the cortical thickness is 
associated with white matter pathways under corresponding cortex, SES 
may also contribute to white matter connectome development. Future 
connectome-wide studies of reading and SES are therefore warranted. 

5. Conclusions 

This study investigated the relationship between rich-club structure 
of the white matter network and reading skills in children with RD. 
Feeder connections were positively correlated with both the sight word 
efficiency and phonemic decoding scores. Among all feeder connections, 
the number of streamlines in those linking hubs and reading network 
nodes was also positively correlated with phonemic decoding score. 
Sight word efficiency and phonemic decoding was also related to mean 
local efficiency of the reading network. In summary, the hierarchical 
rich-club structure exhibited associations with reading skills, suggesting 
that white matter fibers outside the reading network also contributed to 
reading performance and broadening the view of how whole-brain 
connectivity contributes to reading success. 
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